Sophie Maurogordato

Total Page:16

File Type:pdf, Size:1020Kb

Sophie Maurogordato 261 STATISTICAL ANALYSIS OF WIDE-ANGLE GALAXY SURVEYS Sophie Maurogordato Centre National de la Recherche ScientifiqueU A 173 Laboratoire d'Astrophysique Extragalactique et de Cosmologie Observatoire de Meudon, 92195 Meudon, France Paris - Abstract Our knowledge of large scale clustering has improved very rapidly in the last decade due to the increasing width and depth of galaxy redshift surveys. I will review hereafter the main statistical tools which have been applied to quantify this clustering. However three main problems are to be solved in order to reconstruct the mass density field from observations and compare to the prediction from models : redshift distortions, biasing, and non-linear effects. High-order correlations are necessary to describethe present day galaxy distribution and show a hierarchical relation which is predicted for the mass distribution resulting from gravitational evolution of Gaussian initial fluctuations. In future, the next generation of galaxy surveys, combined to small-angle measurements of the fluctuations will allow to constrain more tightly the models of galaxy formation. CMB 262 1 Introduction The history of large-scale clustering in the Universe has undergone a rapid evolution in the last decades. Several groups have focusedon the more salient high density structures evidenced from the angular distribution on the sky and verified their reality by intensive redshift measurements. Under-dense regions have been discovered too, the most spectacular one being the 'Bootes Void' (Kirschner et al. 1981) which spreads over a diameter of 6000kms-1• On the other side, the statistical analysis of the projected galaxy distribution under the care of Peebles began to give substantial results (He.user and Peebles 1973, Davis and Peebles 1977, Fry and Peebles 1978). The need forrepresentative three-dimensional samples became urgent and led to the completion of flux-limitedredshift catalogs which should allow a real quantitative analysis of the frequency and size of structures in the Universe. The CfA redshift survey was then completed (Huchra et al. 1983), followed by the Southern Sky Redshift Survey (da Costa et al. 1991), the Pisces-Perseus survey (Giovanelli and Haynes 1991) and their respective extensions to fainter magnitudes ( de Lapparent et al. 1986, Geller and Huchra 1989, da Costa et al. 1994). The APM 2D catalog (Maddox et al. 1990) has provided the positions of 2 million galaxies on the sky, and is followed by the Stromlo-APM redshift survey (sparse-sampling of in 10, Loveday l et al. 1992). From the IRAS point source catalog, "whole sky" redshift surveys have been progressively completed at fainter limiting flux: the 2Jy (Strauss et al.1990), 1.2 Jy (Fisher et al 1992), and the 1-in-6 sparse sampled QDOT survey limited at 0.6 Jy (Lawrence et al. 1995). While the wide-angle surveys give a detailed vision of the structure of the nearby Universe, the 'pencil-beam' surveys, complete to much fainter magnitudes on a very small area of the sky, allow to probe very deep regions of the Universe (see the review by Valerie de Lapparent, this conference). The recent development of distance indicators independent of redshift gives access to the velocity and to the dynamical density field. The statistical indicators computed from the different surveys are then confronted to models of galaxy formation, allowing to set constraints on the nature of dark matter ingredients, on the value of and on the 'biasing' l1 mechanism. I will not enter into details about the description of the galaxy catalogs available today in this paper as it was covered previously (Maurogordato 1994), and will address rapidly the statistical analysis and evocate the difficultiesencountered along the chain of processes to compare the data to the predictions of models. For a deeper and complete analysis, see the detailed review by George Efstathiou (1995). On flux-limited 2D and 3D catalogs, various statistical tools are applied in order to charac­ terize the density distribution. From the data, one has access to the distribution of galaxies in redshift space. In order to test various models which give predictions on the mass distribution, the first task to achieve is to understand the relation between the _galaxyand the mass density distribution. As a first approximation, the fluctuations of the density field of mass and galaxy are often assumed to be related by a linear relation: op9 /p9 bOpM/PM, (linear biasing). This = assumption embodies the standard model for biased galaxy formation, but several studies in which feedback mechanisms cause the efficiency of galaxy formation to be modulated by en­ vironment effects could lead to a more complicated relation between the mass and the _galaxy density fields. A second problem to deal with is that the positions of galaxies are derived via 263 the Hubble law from the radial component of their velocity. Thus, the peculiar motions of galaxies will produce systematic errors on the positions and then distortions in the clustering pattern. I will first focus on the methods of estimating the well-known two-point correlation function, and give some of its determinations both from angular and redshift catalogs. In the following sections, I will discuss the effects of redshift distortions and of biasing mechanisms, which are essential to model in order to reach the mass distribution. I will then shift to Fourier Space with a confrontation of recent estimates of the power spectrum for different catalogs to the predictions of various models of galaxy formation once their amplitude is normalized to COBE measurements. High-order correlations will then be addressed through related statistics as the void probability function and the counts in cells. These promising tools can hopefully set constraints on the type of initial conditions and on the various biasing mechanisms. The two-point correlation function 2 The two-point correlation function has been the most popular statistical indicator since it was introduced by Peebles in the 70's to analyze the galaxy distribution. The spatial two-point correlation function �(r) is directly connected to the power-spectrum by a Fourier transform. On 2D catalogs, one can measure the projected angular two-point correlation function w(B). As it has the property to scale with the depth of the survey D as w( B) W(BD) where Wis = n-1 a function only of the shape of the catalog, a comparison of w( B) for 2D catalogs with different limit in flux is possible. Moreover, under some specific assumptions, it can be de-projected via the Limber equation to derive the spatial correlation function �(r). Although some dilution on the statistics does occur because of the projection on the sky, the 2D estimates are measured with great accuracy as the number of objects used for the statistical analysis is large, and have the great advantage of being independent of redshift distortions (see next section). The first estimate of B) was performed on the Lick catalog of counts by Groth and Peebles w( in 1977, who found a clear power law behavior w(B) 01-� with 1.77. The APM catalog ex I= (Maddox et al. 1990), providing the angular positions of about 2 million galaxies, has allowed to improve the precision on w( B) and thanks lo its depth to measure it up to large angular separations ( B 20°). The power law is confirmed up to 3° with a slope 1.668. Above 3°, = I = a break is apparent in w(B). At large scales, the data show an excess of power which is one of the most serious challenge to the standard CDM model. The avaibility of flux-limitedredshift catalogs has allowed to estimate directly the direction- average d re d s h'ft corre1 at10n· funct10n · " s ) w ]iere (V2 V2-2V1 V2 cos 1 2 The two-pomt " + B12) 1 • I ( s = ' 2 • correlation function in redshift-space is commonly estimated by weightedHo counts of the galaxy­ galaxy pairs DD(s) and of the galaxy-random pairs DR(s) in a random catalog with the same ge­ ometry as the galaxy one in order to account directly foredge effects: DD( s) = Li Lj WiWj NDD and DR(s) Then, 1 + ((s) (Davis and Peebles 1983). = Li Lj WiWjNDR· = ��f:j;;; However, in presently available catalogs, the mean density is still fluctuating up to scales of the order of the sample size . With the previous estimator, the uncertainty on �(s) grows as fast as the relative over-density The correlation function is then very difficult to measure i5 = �ii . 264 correctly at large scales where fluctuations are small compared to the mean and the accuracy is limited by the uncertainty on the mean density. Hamilton (1993a) introduced a new estimator: 1 + f(s) = D1i}�f!r(•) (RR(s) is the number of pairs in the random catalog defined as above) whose dependence on the uncertainty in the mean density is quadratic and not linear in lowest order. In this case, the statistical uncertainty is limited by pair counts. Besides to the choice of the most accurate estimator, several weighting schemes have been advocated : the uniform weighting , the selection function weighting, and the minimum variance weighting. The uniform weighting is generally used when working on complete sub-samples limited both in distance and in absolute magnitude, so of roughly constant density. When analyzing magnitude-limited samples, one has to take into account the fall-off of the density with radial distance. In this case, the uniformweighting gives too much weight to foreground galaxies. A classical weighting is to multiply the contribution of each galaxy by the inverse of the selection function (Davis and Peebles, 1983) l/<P(r). This however gives quite a high weight to distant pairs and w; = increases the white noise for small separations.
Recommended publications
  • On the Nature of Filaments of the Large-Scale Structure of the Universe Irina Rozgacheva, I Kuvshinova
    On the nature of filaments of the large-scale structure of the Universe Irina Rozgacheva, I Kuvshinova To cite this version: Irina Rozgacheva, I Kuvshinova. On the nature of filaments of the large-scale structure of the Universe. 2018. hal-01962100 HAL Id: hal-01962100 https://hal.archives-ouvertes.fr/hal-01962100 Preprint submitted on 20 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the nature of filaments of the large-scale structure of the Universe I. K. Rozgachevaa, I. B. Kuvshinovab All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences (VINITI RAS), Moscow, Russia e-mail: [email protected], [email protected] Abstract Observed properties of filaments which dominate in large-scale structure of the Universe are considered. A part from these properties isn’t described within the standard ΛCDM cosmological model. The “toy” model of forma- tion of primary filaments owing to the primary scalar and vector gravitational perturbations in the uniform and isotropic cosmological model which is filled with matter with negligible pressure, without use of a hypothesis of tidal interaction of dark matter halos is offered.
    [Show full text]
  • Mining the Sky with Redshift Surveys 3 Semblance Whatever to the Predictions of Models of the Time
    Mining the Sky with Redshift Surveys Marc Davis1 & Jeffrey A. Newman1 University of California, Berkeley, CA 94720, USA Abstract. Since the late 1970’s, redshift surveys have been vital for progress in understanding large-scale structure in the Universe. The original CfA redshift sur- vey collected spectra of 20-30 galaxies per clear night on a 1.5 meter telescope; over a two year period the project added ≈ 2000 new redshifts to the literature. Subsequent low-z redshift surveys have been up to an order of magnitude larger, and ongoing surveys will yield a similar improvement over the generation preced- ing them. Full sky redshift surveys have a special role to play as predictors of cosmological flows, and deep pencil beam surveys have provided fundamental con- straints on the evolution of properties of galaxies. With the 2DF redshift survey and the SDSS survey, our knowledge of the statistical clustering of low-redshift galaxies will achieve unprecedented precision. Measurements of clustering in the distant Universe are more limited at present, but will become much better in this decade as the VLT/VIRMOS and Keck/DEIMOS projects produce results. As in so many other fields, progress in large scale structure studies, both observational and theoretical, has been made possible by improvements in technologies, especially computing. This review briefly highlights twenty years of progress in this evolving discipline and describes a few novel cosmological tests that will be attempted with the Keck/DEIMOS survey. 1 The Original Center for Astrophysics Survey Up until the late 1970’s, most extragalactic spectroscopy was dependent on photographic plates, or photographic plates in contact with image intensifier tubes.
    [Show full text]
  • The HI Content and Extent of Low Surface Brightness Galaxies – Could LSB Galaxies Be Responsible for Damped Ly-Α Absorption?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Extragalactic Gas at Low Redshift ASP Conference Series, Vol. , 2001 Mulchaey, et al. The HI Content and Extent of Low Surface Brightness Galaxies { Could LSB Galaxies be Responsible for Damped Ly-α Absorption? Karen O’Neil NAIC/Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 [email protected] Abstract. Low surface brightness galaxies, those galaxies with a central surface brightness at least one magnitude fainter than the night sky, are often not included in discussions of extragalactic gas at z < 0.1. In this paper we review many of the properties of low surface brightness galaxies, in- cluding recent studies which indicate low surface brightness systems may contribute far more to the local HI luminosity function than previously thought. Additionally, we use the known (HI) gas properties of low sur- face brightness galaxies to consider their possible contribution to nearby damped Lyman-α absorbers. 1. Introduction - What is a LSB Galaxy? Typically, low surface brightness (LSB) galaxies are defined as those galaxies with an observed central surface brightness that is at least one magnitude fainter than the night sky. In the B band, this translates to µB(0) 22.6 – 23.0 mag 2 ≥ arcsec− . However, alternatives to this definition do exist. One common defini- tion is that a LSB galaxy is a galaxy whose inclination corrected central surface 2 brightness is µB(0) 23.0 mag arcsec− (Matthews, Gallagher, & van Driel 1999). Although it is≥ a more consistent definition, this second definition relies on understanding the dust properties and opacity of the studied galaxies.
    [Show full text]
  • The Deep2 Galaxy Redshift Survey: the Voronoi–Delaunay Method Catalog of Galaxy Groups
    The Astrophysical Journal, 751:50 (23pp), 2012 May 20 doi:10.1088/0004-637X/751/1/50 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE DEEP2 GALAXY REDSHIFT SURVEY: THE VORONOI–DELAUNAY METHOD CATALOG OF GALAXY GROUPS Brian F. Gerke1,13, Jeffrey A. Newman2, Marc Davis3, Alison L. Coil4, Michael C. Cooper5, Aaron A. Dutton6, S. M. Faber7, Puragra Guhathakurta7, Nicholas Konidaris8, David C. Koo7,LihwaiLin8, Kai Noeske9, Andrew C. Phillips7, David J. Rosario10,BenjaminJ.Weiner11, Christopher N. A. Willmer11, and Renbin Yan12 1 KIPAC, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 29, Menlo Park, CA 94725, USA 2 Department of Physics and Astronomy, 3941 O’Hara Street, Pittsburgh, PA 15260, USA 3 Department of Physics and Department of Astronomy, Campbell Hall, University of California–Berkeley, Berkeley, CA 94720, USA 4 Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, MC 0424, La Jolla, CA 92093, USA 5 Center for Galaxy Evolution, Department of Physics and Astronomy, University of California–Irvine, Irvine, CA 92697, USA 6 Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada 7 UCO/Lick Observatory, University of California–Santa Cruz, Santa Cruz, CA 95064, USA 8 Astronomy Department, Caltech 249-17, Pasadena, CA 91125, USA 9 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 10 Max Planck Institute for Extraterrestrial Physics, Giessenbachstr. 1, 85748 Garching bei Munchen,¨ Germany 11 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA 12 Department of Astronomy and Astrophysics, University of Toronto, 50 St.
    [Show full text]
  • PFS Science White Paper
    PFS Science White Paper Prepared by the PFS Science Collaborations Contents 1 Introduction: Rationale for and Capabilities of a Wide-Field Spectrograph for Subaru . 5 1.1 Scientific Rationale ..................................... 5 1.2 The history of the PFS concept .............................. 6 1.3 Galaxy Redshifts from zero to > 10 ............................ 8 1.4 Large-Scale Structure, Baryon Oscillations and Weak Lensing ............. 9 1.5 Galaxy Evolution Studies ................................. 10 1.6 Spectroscopy of quasars .................................. 11 1.7 Spectroscopic Surveys at z > 5 .............................. 12 1.8 Stellar Spectroscopy .................................... 13 References .......................................... 13 2 Spectrograph Design ..................................... 15 2.1 The Collimator and the Fibers .............................. 16 2.2 The Gratings ........................................ 17 2.3 The Dichroics ........................................ 18 2.4 The Cameras ........................................ 18 2.5 Spectrograph Performance ................................. 20 2.6 The Next Steps ....................................... 22 2.7 Science and Survey Design ................................. 22 2.8 Spectrograph Design .................................... 23 3 HSC Survey .......................................... 31 4 Cosmology with SuMIRe HSC/PFS Survey ......................... 33 4.1 Executive Summary .................................... 33 4.2 Background ........................................
    [Show full text]
  • Observational Cosmology - 30H Course 218.163.109.230 Et Al
    Observational cosmology - 30h course 218.163.109.230 et al. (2004–2014) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 31 Oct 2013 03:42:03 UTC Contents Articles Observational cosmology 1 Observations: expansion, nucleosynthesis, CMB 5 Redshift 5 Hubble's law 19 Metric expansion of space 29 Big Bang nucleosynthesis 41 Cosmic microwave background 47 Hot big bang model 58 Friedmann equations 58 Friedmann–Lemaître–Robertson–Walker metric 62 Distance measures (cosmology) 68 Observations: up to 10 Gpc/h 71 Observable universe 71 Structure formation 82 Galaxy formation and evolution 88 Quasar 93 Active galactic nucleus 99 Galaxy filament 106 Phenomenological model: LambdaCDM + MOND 111 Lambda-CDM model 111 Inflation (cosmology) 116 Modified Newtonian dynamics 129 Towards a physical model 137 Shape of the universe 137 Inhomogeneous cosmology 143 Back-reaction 144 References Article Sources and Contributors 145 Image Sources, Licenses and Contributors 148 Article Licenses License 150 Observational cosmology 1 Observational cosmology Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors. Early observations The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Einstein's General Theory of Relativity.
    [Show full text]
  • Clusters of Galaxy Hierarchical Structure the Universe Shows Range of Patterns of Structures on Decidedly Different Scales
    Astronomy 218 Clusters of Galaxy Hierarchical Structure The Universe shows range of patterns of structures on decidedly different scales. Stars (typical diameter of d ~ 106 km) are found in gravitationally bound systems called star clusters (≲ 106 stars) and galaxies (106 ‒ 1012 stars). Galaxies (d ~ 10 kpc), composed of stars, star clusters, gas, dust and dark matter, are found in gravitationally bound systems called groups (< 50 galaxies) and clusters (50 ‒ 104 galaxies). Clusters (d ~ 1 Mpc), composed of galaxies, gas, and dark matter, are found in currently collapsing systems called superclusters. Superclusters (d ≲ 100 Mpc) are the largest known structures. The Local Group Three large spirals, the Milky Way Galaxy, Andromeda Galaxy(M31), and Triangulum Galaxy (M33) and their satellites make up the Local Group of galaxies. At least 45 galaxies are members of the Local Group, all within about 1 Mpc of the Milky Way. The mass of the Local Group is dominated by 11 11 10 M31 (7 × 10 M☉), MW (6 × 10 M☉), M33 (5 × 10 M☉) Virgo Cluster The nearest large cluster to the Local Group is the Virgo Cluster at a distance of 16 Mpc, has a width of ~2 Mpc though it is far from spherical. It covers 7° of the sky in the Constellations Virgo and Coma Berenices. Even these The 4 brightest very bright galaxies are giant galaxies are elliptical galaxies invisible to (M49, M60, M86 & the unaided M87). eye, mV ~ 9. Virgo Census The Virgo Cluster is loosely concentrated and irregularly shaped, making it fairly M88 M99 representative of the most M100 common class of clusters.
    [Show full text]
  • Spectral Classification and Luminosity Function of Galaxies in the Las Campanas Redshift Survey
    Spectral Classification and Luminosity Function of Galaxies in the Las Campanas Redshift Survey The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Bromley, Benjamin C., William H. Press, Huan Lin, and Robert P. Kirshner. 1998. “Spectral Classification and Luminosity Function of Galaxies in the Las Campanas Redshift Survey.” The Astrophysical Journal 505 (1): 25–36. https://doi.org/10.1086/306144. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41399833 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA THE ASTROPHYSICAL JOURNAL, 505:25È36, 1998 September 20 ( 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A. SPECTRAL CLASSIFICATION AND LUMINOSITY FUNCTION OF GALAXIES IN THE LAS CAMPANAS REDSHIFT SURVEY BENJAMIN C. BROMLEY AND WILLIAM H. PRESS Physics Department, Harvard University; Harvard-Smithsonian Center for Astrophysics HUAN LIN Department of Astronomy, University of Toronto AND ROBERT P. KIRSHNER Harvard-Smithsonian Center for Astrophysics Received 1997 November 19; accepted 1998 April 3 ABSTRACT We construct a spectral classiÐcation scheme for the galaxies of the Las Campanas Redshift Survey (LCRS) based on a principal-component analysis of the measured galaxy spectra. We interpret the physi- cal signiÐcance of our six spectral types and conclude that they are sensitive to morphological type and to the amount of active star formation. In this Ðrst analysis of the LCRS to include spectral classi- Ðcation, we estimate the general luminosity function, expressed as a weighted sum of the type-speciÐc luminosity functions.
    [Show full text]
  • Galaxy Structures-Groups, Clusters and Superclusters
    October 15, 2018 5:55 WSPC/INSTRUCTION FILE GalStruct_sepp International Journal of Geometric Methods in Modern Physics c World Scientific Publishing Company GALAXY STRUCTURES - GROUPS, CLUSTERS AND SUPERCLUSTERS TIIT SEPP Department of Cosmology, Tartu Observatory, Observatooriumi 1 T~oravere, Estonia 61602 and Institute of Physics, University of Tartu, T¨ahe 4, Tartu, Estonia 50113 [email protected] MIRT GRAMANN Department of Cosmology, Tartu Observatory, Observatooriumi 1 T~oravere, Estonia 61602 [email protected] Received (30 June 2013) Revised (30 June 2013) We provide a brief summary of the history of galaxy structure studies. We also introduce several large-scale redshift surveys and summarize the most commonly used methods to identify the groups and clusters of galaxies. We present several catalogues of galaxy groups.These catalogues can be used to study the galaxy groups in different environ- ments. We also consider the properties of superclusters of galaxies in the nearby Universe and describe the largest system of galaxies observed - the Sloan Great Wall. Keywords: large scale structure; galaxies; galaxy groups; galaxy clusters; galaxy super- clusters. 1. Introduction Galaxies are the best tracers we have for the study of the structure of the Universe. Although we can consider our Universe homogeneous and isotropic on the largest scales it becomes highly structured once we start to study it in detail. At the arXiv:1309.7786v2 [astro-ph.CO] 30 Dec 2013 first step from largest to smaller the Universe can be described by the cosmic web structure. The cosmic web consists of galaxy-rich areas that contain different galaxy structures - galaxy groups, clusters and superclusters.
    [Show full text]
  • • Scope and Structure of the Course • Project Overview • Assessment and Grading ASTR 505 – Fall 2014 Sara Ellis
    ASTR 505 – Fall 2014 Sara Ellison [email protected] www.astro.uvic.ca/~sara/A505.html • Scope and structure of the course • Project overview • Assessment and grading Course purpose: A practical course in galaxy research, based on data mining techniques. Course structure: 6 weeks of lectures and literature discussion, followed by an independent research project. Lecture structure: weekly (up to) 1.5-2 hours of lecture, followed by literature discussions for (up to) 1 hour. Course objectives: • Learn about galaxies! • Learn about current research in galaxies through literature discussions. • Learn practical research skills (presentations, science writing, logging your research) • Learn technical skills (programming, visualization, database management, multi-variate analysis) • Write a report which could lead to a paper or get a thesis started! The details (weeks 1-6): Friday 9am-12pm Sept 5: Sara Ellison - Intro to large surveys and projects. Sept 12: Luc Simard – mysql and databases. Sept 19: Luc Simard – photometric properties of galaxies. Sept 26: Hossein Teimoorinia – Practical application of artificial neural networks in astronomy Oct 3: Asa Bluck – data manipulation and visualization. Oct 10: Sara Ellison – Spectroscopic properties of galaxies. Lecture attendance is compulsory – if you need to be absent, consult with the lecturer, and let me know. Literature discussions: Take place in the last hour of each lecture. Papers posted to website. Make sure you read and prepare for participating in the discussion (10% of grade)! Preparation can be done as a group. The details (week 7+): Friday 11:15am-12:30pm Once projects are underway, the format changes, and most of your time should be spent on projects.
    [Show full text]
  • MARGARET J. GELLER Education: University of California, Berkeley, BA
    MARGARET J. GELLER Education: University of California, Berkeley, B.A. (physics, 1970) Princeton University, M.A. (physics, 1972) Princeton University, Ph.D. (physics, 1974) Positions: 1970-1973 NSF Predoctoral Fellow, Princeton University 1974-1976 Center Postdoctoral Fellow, Center for Astrophysics 1976-1978 Research Fellow, Harvard College Observatory 1977-1980 Lecturer, Harvard University 1978-1980 Research Associate, Harvard College Observatory 1978-1980 Senior Visiting Fellow, Institute of Astronomy, Cambridge University 1980-1983 Assistant Professor, Harvard University 1983-1991 Astronomer, Smithsonian Astrophysical Observatory 1991- Senior Scientist, Smithsonian Astrophysical Observatory Professional Societies: International Astronomical Union American Association for the Advancement of Science (Fellow 1992) American Physical Society (Fellow 1995) Honorary Societies: Phi Beta Kappa (elected 1969) American Academy of Arts and Sciences (elected 1990) National Academy of Sciences (elected 1992) Honorary Degrees: D.S.H.C. Connecticut College (1995) D.S.H.C. Gustavus Adolphus College (1997) D.S.H.C. University of Massachusetts, Dartmouth (2000) D.S.H.C. Colby College (2009) D.S.H.C. Universitat Rovira i Virgili (Tarragona, Spain) (2009) D.S.H.C. Dartmouth College (2014) L.H.C. University of Turin (2017) Awards (Selected) : MacArthur Fellowship (1990-1995) AAAS Newcomb - Cleveland Prize (1989) Best Case Study (for redshift survey graphics), IEEE SIGGRAPH Visualization (1992) Helen Sawyer Hogg Lectureship, Royal Astronomical Society
    [Show full text]
  • Large-Scale Structure in the Distribution of Galaxies As A
    Large-Scale Structure in the Distribution of Galaxies as a Probe of Cosmological Models Michael A. Strauss∗,†, Princeton University Observatory, Princeton, NJ 08544 ([email protected]) March 10, 2018 The last 20 years have seen an explosion in our understanding of the large-scale distribution and motions of galaxies in the nearby universe. The field has moved from a largely qualitative, morphological description of the structures seen in the galaxy distribution, to a rich and increasingly rigorous statistical description, which allows us to constrain cosmological models. New surveys just now getting underway will be unprecedented in their uniformity and volume surveyed. The study of the evolution of large-scale structure with time is now becoming feasible. 1 Introduction In 1970, Alan Sandage wrote an article[1] describing observational cosmology as a “search for two numbers”, namely the Hubble Constant H0, which sets the overall scale of the universe, and the acceleration parameter q0, which measures its curvature[2, 3]. Although the values of these two parameters are still very much a matter of contention[4], the field of observational cosmology has broadened considerably since then, as we have become aware of the richness of the information encoded in the large-scale distribution of galaxies. The observed distribution of galaxies on the sky shows hints of structure on large scales[5, 6], but without distance information to each individual galaxy, one is only seeing the galaxy distribution in projection. However, Hubble’s law[7] states that due to the expansion of the universe, the redshift of a galaxy cz is proportional to its distance r: cz = H0r.
    [Show full text]