Stellarator News Issue

Total Page:16

File Type:pdf, Size:1020Kb

Stellarator News Issue An international journal of news from the stellarator community Editor: James A. Rome Issue 166 August 2019 E-Mail: [email protected] Phone: +1 (865) 482-5643 On the Web at https://stelnews.info injector from Oak Ridge National Laboratory (ORNL) that Report from the 19th Coordi- is being brought to W7-X with additional support from EUROfusion and NIFS, Japan, and which implements nated Working Group Meeting technology planned for use on ITER. March 12–14, 2019, The scientific community is excited by early theoretical Helmholtz Society, Berlin, Germany ideas to explain the latest results from stellarator experi- ments. Worldwide groups, concentrated in research cen- Overview ters as well as in universities, are increasingly applying their expertise in the understanding of ground-breaking Worldwide stellarator research has gained substantial physics questions, such as turbulence in three-dimensional momentum: On Wendelstein 7-X (W7-X, Greifswald, (3D) fields, impurity transport, fast-ion confinement, and Germany), first campaigns with an uncooled divertor have plasma flows and currents. demonstrated the highest-ever fusion performance normal- ized to the plasma volume and at the same time, the lon- The above-mentioned aspects were the essence of a three- gest pulse lengths. Deuterium experiments in the Large day meeting held at the headquarters of the Helmholtz Helical Device (LHD, Toki, Japan) showed confinement Society, the funding agency of the German fusion pro- at higher performance than gyro-Bohm scaling—differ- gramme (see Fig. 1). The meeting was organized and ences in terms of engineering parameters are less clear. sponsored by the Max Planck Institute for Plasma Physics. Smaller devices are enabling experimental insights for Roughly forty on-site and ten remote participants provided physical understanding, such as turbulence studies in TJ-II reports on collaborations, grouped into seven topics. In an (Madrid, Spain), fueling studies in Heliotron-J (Kyoto, informal workshop format, the participants discussed pro- Japan), and the examination of flows in HSX (Wisconsin, posals for joint action and experiments, taking advantage USA). Progress in the refurbishment of Uragan 2-M of comparative studies in different devices. The CWGM is (Kharkiv, Ukraine) and new concept devices (CFQS, not a scientific conference, but rather a interactive work- Chengdu, China) complement the larger experiments, cre- ating new opportunities to assess aspects relevant to reac- tor-like operation and stellarator optimization. In this issue . Equally important, stellarators benefit from the latest cut- Report from the 19th Coordinated Working ting-edge developments in diagnostics, heating, and Group Meeting (CWGM) plasma fueling. Coordinated programs in the EU, the US, This annual meeting was held at the headquarters of and Japan link innovative developments [e.g., integrated the Helmholtz Society in Berlin March 12–14, 2019. systems for overload detection (EU consortium), x-ray Roughly forty on-site and ten remote participants pro- detectors (Princeton Plasma Physics Laboratory), super- vided reports on collaborations, grouped into seven fast surveillance cameras (EU around WIGNER Research topics that reviewed progress during the past year, Centre for Physics, Hungary) and phase-contrast imaging and planned for the future. The coordinated working (MIT)] to the stellarator programs with obvious mutual group actions (CWGA) serve as a basis to follow up synergies: the pace of experiments is accelerated by joint actions and were agreed to be followed up in the employing these unprecedented measuring capabilities. forthcoming meetings............................................... 1 More and more benefits for tokamaks are materializing: experience gained in long-pulse stellarator experiments contributes to large-scale devices such as JT-60SA and ITER. A select example is the steady-state fueling pellet All opinions expressed herein are those of the authors and should not be reproduced, quoted in publications, or used as a reference without the author’s consent. Fig. 1. Participants of the 19th CWGM in Berlin (March 12–14, 2019). shop wherein agreements on joint publications under the superimposed seeding of krypton and neon in low-density auspices of the IEA Technology Collaboration Program on discharges. In the seeding experiments, the edge electron Stellarators/Heliotrons are promoted to become the mea- temperature decreased about 50%, while the radiated surable outcome of the CWGM. A session on the program power was doubled compared with neon seeding. plans of the main contributors served to enable the At W7-X, a high-density campaign with an island divertor exchange of information, and the community was invited was conducted. As reported by Marcin Jakubowski, this to provide feedback to programmatic considerations. led to the first achievement in stellarators of a high recy- China’s quickly developing stellarator program, with a cling regime, where downstream densities are signifi- sound balance of sustainable build-up of know-how and cantly higher than upstream densities. This allowed scientifically interesting new concepts, namely the outline reaching stable detachment of the plasma with plasma of a quasiaxially symmetric device, attracted great interest. duration of up to 30 s. It is possible to reduce divertor The sessions were led by colleagues serving as coordina- power loads with the help of impurity seeding. Florian tors. The remainder of this report gives brief summaries of Effenberg showed that with neon as the seed, global reduc- each session. tion of divertor loads by a factor of 4 could be achieved at W7-X. Seeding with N2 leads to more subtle influence on Divertor and Edge Physics in Stellarators power loads. Nitrogen seeding results in lower recycling (M. Jakubowski) and requires a long puff duration in order to establish a Two major experimental campaigns were recently con- significant enhancement of radiated power. Nitrogen is ducted that aimed at investigating important aspects of therefore a promising candidate for radiated power control divertor physics in helical devices. At LHD, results of the using a feedback system. first deuterium campaigns were reported by Suguru Masu- As is the case in LHD, edge transport is observed to be zaki. There is no clear difference between hydrogen (H) affected by drift effects in W7-X, e.g., EB drifts. Ken and deuterium (D) plasmas in terms of divertor physics. Hammond presented results from experiments with posi- The asymmetries in divertor particle fluxes, that arise due tive and negative directions of the main magnetic field. to edge drifts look identical in both plasmas. The same is Victoria Winters discussed experiments on the influence true for divertor load patterns. Additional non-evaporative of carbon impurities on radiation patterns. During methane getter pumps installed under the dome structure of the puffs, the percentage increase of C-VI radiation is the helical divertor allowed for increasing of the pump speed same at different density levels, which probably means by about 25%. Stable detachment was achieved using Stellarator News -2- August 2019 that transport processes are similar. Grzegorz Pełka pre- Furthermore, Gates presented a brief comparison of the sented first results for modeling of W7-X limiter plasmas density limit in stellarators and tokamaks and introduced with a new code FINDIFF. It solves fluid equations for fundamental differences and similarities. It was stressed main ions and neutrals in curvilinear coordinates. The that there was seemingly no interest in the tokamak com- code is still not in good enough shape to be able to repro- munity to tackle this issue at the moment, and it was pro- duce experimental data; nevertheless, significant progress posed that the stellarator community should lead an effort has been made in the last year. to verify the presented models experimentally. Several areas in which joint research could be performed Joint actions agreed to in this session are: at LHD and W7-X were identified. They include the A comparison of operational limits for different stel- investigation of stable detachment, the role of plasma larators including, but not limited to, the three largest drifts at the edge, changes in divertor structures due to ones: LHD, TJ-II, and W7-X. plasma dynamics, and 3D migration patterns in helical An investigation on whether identified instabilities devices. More specific actions will be defined in the are generic to stellarators or depend on the specific course of 2019. details of a particular magnetic configuration. Scaling and operation limits (G. Fuchert) An assessment of the density limit with special focus on a comparison with tokamaks. Knowledge about operational limits and scalings of global confinement parameters is crucial for efficient scenario 3D Fast Ion Physics (S. Lazerson) development in stellarators. In this session, three main top- The study of fast ions in stellarators speaks to a fundamen- ics were discussed: The scaling of the energy confinement tal issue of nuclear fusion, specifically the nuclear fusion time, MHD and reconnection instabilities, and the radia- reaction of hydrogen isotopes not only to generate neu- tive density limit. trons but also to sustain the plasma parameters necessary Concerning the energy confinement time scaling, Yamada for the reaction by heating the plasma with the fusion-pro- presented experimental data on isotope effects in LHD. In duced alpha particles While
Recommended publications
  • The Legacy of Masahiro Wakatani
    J. Plasma FusionFusion Res.Res. SERIES,SERIES, Vol. Vol. 6 6(2004) (2004) 100–106 000–000 The Legacy of Masahiro Wakatani VAN DAM James W. and HORTON C. Wendell, Jr. Institute for Fusion Studies, The University of Texas, Austin, Texas 78712, USA (Received: 18 February 2004 / Accepted: 7 April 2004) Abstract As a memorial to Masahiro Wakatani, late professor of plasma physics at Kyoto University, a review is given of his legacy of achievements in scientific research, international collaborations, university administration, student guidance, and personal life. Keywords: Hasegawa-Wakatani equation, turbulent transport, helical system stability, drift wave, reduced MHD equation 1. Introduction Division (1976-1978). The international community of fusion plasma physicists In 1978 he joined the Plasma Physics Laboratory at was deeply saddened by the unexpected loss of one of its Kyoto University as an Associate Professor. He was promoted most respected members, Prof. Masahiro Wakatani, of Kyoto to full Professor in 1985. In 1996 he became a Professor in University, who died from a cerebral hemorrhage on 9 the Department of Fundamental Energy Science and the January 2003. This paper, based on a talk [1] presented during Department of Nuclear Engineering. a special memorial session at the 13th International Toki He was elected a Fellow of the American Physical Conference (9-12 December 2003), is offered as a tribute in Society in 1990. his memory. He died on 9 January 2003. Two obituaries about him Professor Wakatani had a brilliant career as a scientific have been published [2,3]. researcher, international collaborator, university leader, and teacher. In this paper, after providing a brief biographical 3.
    [Show full text]
  • Fusion - a Clean Future Research at Culham Centre for Fusion Energy
    Fusion - A clean future Research at Culham Centre for Fusion Energy FUSION REACTION Increasing energy demands, concerns over climate change and limited supplies of fossil fuels mean that we need to find new, cleaner ways of powering the planet. Nuclear fusion – the process that drives the sun – could play a big part in our sustainable energy future. Around the globe, scientists and engineers are working to make fusion a real option for our electricity supply. At the forefront of this research is Culham Centre for Fusion Energy, home to the UK’s fusion programme and to the world’s largest fusion device, JET, which we operate for scientists from over 20 European countries. Why we need fusion energy Energy consumption is expected to grow dramatically over the next fifty years as the world’s population expands and developing countries become more industrialised. The population of the developing world is predicted to expand from seven billion to nearly ten billion by 2050. As a consequence, a large increase in energy demand can be expected, even if energy can be used more efficiently. At the same time, we need to find new ways of producing our energy. Fossil fuels bring atmospheric pollution and the prospect of climate change; Governments are divided over whether to include nuclear fission in their energy portfolios; and renewable sources will not be enough by themselves to meet the demand. Nuclear fusion can be an important long-term energy source, to complement other low-carbon options such as fission, wind, solar and hydro. Fusion power has the potential to provide more than one-third of the world’s electricity by the year 2100, and will have a range of advantages: • No atmospheric pollution.
    [Show full text]
  • Identification of Coherent Magneto-Hydrodynamic Modes and Transport in Plasmas of the Tj-Ii Heliac
    TESIS DOCTORAL IDENTIFICATION OF COHERENT MAGNETO-HYDRODYNAMIC MODES AND TRANSPORT IN PLASMAS OF THE TJ-II HELIAC Autor: Baojun Sun Directores: Daniel López Bruna María Antonia Ochando García Tutor: Víctor Tribaldos Macía DEPARTAMENTO DE FISICA Leganés, septiembre de 2016 ( a entregar en la Oficina de Posgrado, una vez nombrado el Tribunal evaluador , para preparar el documento para la defensa de la tesis) TESIS DOCTORAL IDENTIFICATION OF COHERENT MAGNETO-HYDRODYNAMIC MODES AND TRANSPORT IN PLASMAS OF THE TJ-II HELIAC Autor: Baojun Sun Directores: Daniel López Bruna Maria Antonia Ochando Garcia Firma del Tribunal Calificador: Firma Presidente: (Nombre y apellidos) Vocal: (Nombre y apellidos) Secretario: (Nombre y apellidos) Calificación: Leganés/Getafe, de de Acknowledgements Once I recalled, the motivation that drove me to change major to fusion was twofold: 1. I saw fusion as the ultimate resource of energy and I expected to witness the construction of ITER; 2. I had the curiosity, the beliefs and the expectation. Chinese philosopher Chuang Tzu, said “newborn calves are not afraid of tigers”, this quote may describe my 5 year adventure. “Being as a newborn calf” makes me to be in trouble but also helps me to get out. What is PhD? In the beginning, I didn’t make myself this question seriously. As a newborn calf, I believed PhD as a chance and thought my PhD would innovate the research field. After about two years of turmoil, the question came again, what is PhD? Istartedto think PhD was about solving a unanswered question. My story was nearly ended there at that moment, but I was a lucky man, since I met with Daniel López Bruna (Daniel) and María Antonia Ochando García (Marian), and later on they became my Thesis directors.
    [Show full text]
  • Wendelstein 7-X in the European Roadmap to Fusion Electricity
    Wendelstein 7-X in the European Roadmap to Fusion Electricity Enrique Ascasíbar for the W7-X Team This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Union‘s Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Andreas DINKLAGE | Hungarian Plasma Physics and Fusion Technology Workshop | Tengelic, Hungary | 09. Mar. 2015 | Page 2 Outline 1. Introduction and Motivation:Stellarators in the EU Roadmap 2. Operational Phases of W7-X: OP1.1, OP1.2 3. Aspects of SSO 4. Summary Enrique ASCASIBAR | 8th IAEA TM ‘Steady-State Operation of Magnetic Fusion Devices’ | Nara, Japan | 26.-29. May 2015 | Page 3 Wendelstein 7-X, the Engineers’ View mass: 725 t ECRH heating plasma vessel 254 ports 117 diagnostics ports R = 5.6 m OP1.1: 5.3 MW a = 0.5 m 3 Vplasma= 30 m B ≤ 3 T = 5/6 - 5/4 outer vessel 20 planar SC coils 10 divertor units support structure 50 non-planar SC coils plasma 1st ECPD 14.-17. Apr. 2015 4 Europe and W7-X / W7-X and Europe Introduction and Motivation: Stellarators in the Roadmap http://www.efda.org/wpcms/wp‐content/uploads/2013/01/JG12.356‐web.pdf?5c1bd2 EU Roadmap: Eight Missions: Mission 8 Bring the HELIAS line to maturity Long-term alternative to tokamaks: mitigate risks and enhance synergies: Wendelstein 7-X is an integral part of the European fusion development strategy. Enrique ASCASIBAR | 8th IAEA TM ‘Steady-State Operation of Magnetic Fusion Devices’ | Nara, Japan | 26.-29.
    [Show full text]
  • Analysis of JT-60SA Operational Scenarios DEMO Scenarios G
    PAPER Related content - Modelling of pulsed and steady-state Analysis of JT-60SA operational scenarios DEMO scenarios G. Giruzzi, J.F. Artaud, M. Baruzzo et al. To cite this article: L. Garzotti et al 2018 Nucl. Fusion 58 026029 - Chapter 6: Steady state operation C. Gormezano, A.C.C. Sips, T.C. Luce et al. - 2008 Public Release of the ITPA Confinement Profile Database View the article online for updates and enhancements. C.M. Roach, M. Walters, R.V. Budny et al. Recent citations - Feasibility of a far infrared laser based polarimeter diagnostic system for the JT- 60SA fusion experiment A Boboc et al This content was downloaded from IP address 194.81.223.66 on 19/09/2019 at 12:02 IOP Nuclear Fusion International Atomic Energy Agency Nuclear Fusion Nucl. Fusion Nucl. Fusion 58 (2018) 026029 (13pp) https://doi.org/10.1088/1741-4326/aa9e15 58 Analysis of JT-60SA operational scenarios 2018 L. Garzotti1 , E. Barbato2, J. Garcia3 , N. Hayashi4, I. Voitsekhovitch1, G. Giruzzi3, P. Maget3, M. Romanelli1, S. Saarelma1, R. Stankiewitz5, © 2018 EURATOM M. Yoshida4 and R. Zagórski5 1 NUFUAU CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, United Kingdom 2 Unità Tecnica Fusione, ENEA C. R. Frascati,via E. Fermi 45, 00044 Frascati (Roma), Italy 3 CEA, IRFM, F-13108 Saint Paul Lez Durance, France 026029 4 National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193, Japan 5 Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw, Poland L. Garzotti et al E-mail: [email protected] Scenarios JT-60SA Received 7 June 2017, revised 17 November 2017 Accepted for publication 29 November 2017 Published 5 January 2018 Printed in the UK Abstract NF Reference scenarios for the JT-60SA tokamak have been simulated with one-dimensional transport codes to assess the stationary state of the flat-top phase and provide a profile database for further physics studies (e.g.
    [Show full text]
  • Stellarator News Issue 67
    Published by Fusion Energy Division, Oak Ridge National Laboratory Building 9201-2 P.O. Box 2009 Oak Ridge, TN 37831-8071, USA Editor: James A. Rome Issue 67 January 2000 E-Mail: [email protected] Phone (865) 574-1306 Fax: (865) 574-7624 On the Web at http://www.ornl.gov/fed/stelnews 1–1.5 T, the vacuum rotational transform is 0.3–0.8 with First plasmas in Heliotron J low magnetic shear, and the magnetic well depth is 1.5% at the plasma edge. Heating systems include 0.5-MW The Heliotron J Group is very happy to announce that at ECH, 1.5-MW neutral beam injection (NBI), and 2.5-MW 7:06 PM on Thursday, 2 December 1999, Heliotron J ion cyclotron resonant frequency heating (ICRH). achieved its first hydrogen discharge by using 1 kW of T. Obiki, F. Sano, K. Kondo,* M. Wakatani,* T. Mizuuchi, 2.45-GHz electron cyclotron heating (ECH) at a magnetic K. Hanatani, Y. Nakamura,* K. Nagasaki, H. Okada, M. Naka- field of 500 G, for discharge cleaning. At 3:57 PM on suga,* S. Besshou,* and M. Yokoyama** Wednesday, 8 December, Heliotron J achieved its first E-mail: [email protected] 53.2-GHz ECH plasma with 300 kW of heating power at a field of 1 T, with an ECH pulse length of about 10 ms. The Institute of Advanced Energy, Kyoto University, Japan *Graduate School of Energy Science, Kyoto University, Japan pulse length is now being increased shot by shot. Figure 1 **National Institute for Fusion Science, Toki, Japan shows the 53.2-GHz ECH plasma as viewed through one of the tangential ports.
    [Show full text]
  • 1 Input from the US Stellarator Research Community to the FESAC
    Input from the US Stellarator Research Community to the FESAC Panel on Toroidal Alternates June 2008 Abstract International research carried out over the past 5 decades has steadily validated the ability of the stellarator magnetic configuration to confine high performance, macroscopically quiescent plasmas with inherent steady-state capability. Sharing many of the same physics characteristics as tokamaks, stellarators attain similar plasma parameters and figures of merit to comparably-sized tokamaks. In conjunction with ongoing tokamak research in the burning plasma era, work on stellarators over the next twenty years is intended to develop the stellarator concept to be ready to proceed to a DEMO-scale experiment. Apart from the plasma-wall interaction and materials problems that confront all steady-state toroidal reactor concepts, the stellarator does not exhibit a clear scientific ‘show-stopper’ that would preclude it from successfully confining a burning DT plasma. The main challenges confronting the stellarator concept specifically are to validate that our understanding of 3D plasma confinement physics extends to fusion relevant plasma parameters and to systematically develop system designs that accommodate the complexity of the highly-shaped, three-dimensional plasma configuration and the magnet coils that produce it. The progress of the stellarator toward its DEMO goal will be facilitated to a great extent if the stellarator coils can be simplified while still producing the magnetic configuration required for good confinement, stability, and fusion gain. To do so will require improved understanding of the behavior of existing and future stellarator plasmas coupled with the ability to provide the necessary shaping of the 3-D magnetic flux surfaces with an efficiently-engineered set of coils.
    [Show full text]
  • An Unreal Reality Pushes Fusion Science Jet – the Most Successful Performance in Years How to Tame Plasma Turbulence
    FUSION IN EUROPE NEWS & VIEWS ON THE PROGRESS OF FUSION RESEARCH AN UNREAL REALITY PUSHES FUSION SCIENCE JET – THE MOST SUCCESSFUL PERFORMANCE IN YEARS HOW TO TAME PLASMA TURBULENCE 4 2016 FUSION IN EUROPE 4 2016 Contents Delphine Keller from EURO­ fusion’s French Research Unit Moving Forward CEA is dressed for a jump into the virtual fusion world. Glas­ 3 A European fusion programme to be proud of ses, immersive headsets and motion trackers allow her to 4 The most successful performance in years study the interior of a tokamak. Picture: CEA 6 An unreal reality pushes fusion science 10 IAEA awards EUROfusion’s work 12 Impressions Research Units 14 COMPASS has changed its point of view 18 How to tame plasma turbulence 18 21 Mix it up! The simulation of electrostatic potential along 22 News the torus lines inside a fusion experiment. These experiments help to find origins of plasma turbulence.. Community Picture: GYRO/General Atomics 24 Supernovae in the lab – powered by EUROfusion 28 Pushing the science beyond fusion 30 Young faces of fusion – Robert Abernethy 12 Fuel for Thought Who says operators at the Czech tokamak 33 Combining Physics and Management Forces COMPASS don’t have a sense Perspectives of humour? – More amusing details from fusion on page 12 and 13. 34 Summing Up Picture: EUROfusion EUROfusion © Tony Donné (EUROfusion Programme Manager) Imprint Programme Management Unit – Garching 2016. FUSION IN EUROPE Boltzmannstr. 2 This newsletter or parts of it may not be reproduced ISSN 1818­5355 85748 Garching / Munich, Germany without permission. Text, pictures and layout, except phone: +49-89-3299-4128 where noted, courtesy of the EUROfusion members.
    [Show full text]
  • European Consortium for the Development of Fusion Energy European Consortium for the Development of Fusion Energy CONTENTS CONTENTS
    EuropEan Consortium for thE DEvElopmEnt of fusion EnErgy EuropEan Consortium for thE DEvElopmEnt of fusion EnErgy Contents Contents introDuCtion ReseaRCH units CooRDinating national ReseaRCH FoR euRofusion 16 agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile (enea), italy euRofusion: eMboDying tHe sPiRit oF euRoPean CollaboRation 17 FinnFusion, finland 4 the essence of fusion 18 fusion@Öaw, austria the tantalising challenge of realising fusion power 19 hellenic fusion research unit (Hellenic Ru), greece the history of European fusion collaboration 20 institute for plasmas and nuclear fusion (iPFn), portugal 5 Eurofusion is born 21 institute of solid state physics (issP), latvia the road from itEr to DEmo 22 Karlsruhe institute of technology (Kit), germany 6 Eurofusion facts at a glance 23 lithuanian Energy institute (lei), lithuania 7 itEr facts at a glance 24 plasma physics and fusion Energy, Department of physics, technical university of Denmark (Dtu), Denmark JEt facts at a glance 25 plasma physics Department, wigner Fusion, hungary 8 infographic: Eurofusion devices and research units 26 plasma physics laboratory, Ecole royale militaire (lPP-eRM/KMs), Belgium 27 ruder Boškovi´c institute, Croatian fusion research unit (CRu), Croatia 28 slovenian fusion association (sFa), slovenia 29 spanish national fusion laboratory (lnF), CiEmat, spain 30 swedish research Council (vR), sweden rEsEarCh unit profilEs 31 sylwester Kaliski institute of plasma physics and laser microfusion (iPPlM), poland 32 the institute
    [Show full text]
  • Effect of ECH/ECCD on Energetic-Particle-Driven MHD Modes in Helical Plasmas
    PAPER • OPEN ACCESS Effect of ECH/ECCD on energetic-particle-driven MHD modes in helical plasmas To cite this article: S. Yamamoto et al 2020 Nucl. Fusion 60 066018 View the article online for updates and enhancements. This content was downloaded from IP address 130.54.110.24 on 02/06/2020 at 13:08 International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 60 (2020) 066018 (12pp) https://doi.org/10.1088/1741-4326/ab7f13 Effect of ECH/ECCD on energetic-particle-driven MHD modes in helical plasmas S. Yamamoto1, K. Nagasaki2, K. Nagaoka3,4, J. Varela3, A.´ Cappa5, E. Ascasíbar5, F. Castejon´ 5, J.M. Fontdecaba5, J.M. García-Regaña5, A.´ Gonz´alez-Jerez5, K. Ida3,6, A. Ishizawa 7, M. Isobe3,6, S. Kado2, S. Kobayashi2, M. Liniers5, D. Lopez-Bruna´ 5, N. Marushchenko 8, F. Medina5, A. Melnikov9,10, T. Minami2, T. Mizuuchi2, Y. Nakamura7, M. Ochando 5, K. Ogawa3,6, S. Ohshima2, H. Okada2, M. Osakabe3,6, M. Sanders11, J.L. Velasco 5, G. M. Weir8 and M. Yoshinuma3,6 1 National Institutes for Quantum and Radiological Science and Technology, Naka, Japan 2 Institute of Advanced Energy, Kyoto University, Uji, Japan 3 National Institute for Fusion Science, Toki, Japan 4 Graduate School of Science, Nagoya University, Nagoya, Japan 5 National Laboratory for Magnetic Fusion, CIEMAT, Madrid, Spain 6 The Graduate University for Advanced Studies, SOKENDAI, Toki, Japan 7 Graduate School of Energy Science, Kyoto University, Uji, Japan 8 Max-Planck-Institute for Plasma Physics, Greifswald, Germany 9 National Research Centre ‘Kurchatov Institute’, Moscow,
    [Show full text]
  • History of Nuclear Fusion Research in Japan
    H-PTh-14 History of Nuclear Fusion Research in Japan Harukazu IGUCHI, Keisuke MATSUOKA1, Kazue KIMURA, Chusei NAMBA, and Shinzaburo MATSUDA2 Fusion Science Archives, National Institute for Fusion Science, Toki 509-5292, Japan 1 Prof. Emeritus of National Institute for Fusion Science, Japan. 2 Tokyo Institute of Technology, Tokyo 152-8550, Japan E-mail:[email protected] The atomic energy research was declassified worldwide at the International Conference on the Peaceful Uses of Atomic Energy in 1955. In the late 1950s there was a lively discussion among scientists on the strategy of nuclear fusion research in Japan, leading to the conclusion that fusion research should be started from the basic, namely, research on plasma physics and from cultivation of human resources at universities under the Ministry of Education, Science and Culture (MOE). However, an endorsement was given that construction of an experimental device for fusion research would be approved sooner or later. Meanwhile, confinement studies were conducted specifically in USSR and USA with tokamaks and multipoles, respectively. In Japan, studies on toroidal plasma confinement started at Japan Atomic Energy Research Institute (JAERI) under the Science and Technology Agency (STA) in the mid-1960s. Successful results from tokamak researches in USSR encouraged scientists worldwide, which resulted in construction rush of tokamaks in Japan, too. However, dualistic fusion research framework established in 1960s has lasted until now; MOE for science and STA for development. World Trend in Early Days as a Background Extracted from “Presidential Address at the 1st International REVIEW OF EXPERIMENTAL The 3rd IAEA Conf. on Nuclear Fusion at Novosibirsk, 1968 Conference on the Peaceful Uses of Atomic Energy” by Mr.
    [Show full text]
  • Fusion Energy Conference 2006 Book of Abstracts
    Fusion Energy Conference 2006 Book of Abstracts Contents Overview (OV) 1 OV/1-1 · Overview progress and future plan of EAST Project . 2 OV/1-2 · Overview of JT-60U Results for Development of Steady-State Advanced Toka- mak Scenario . 2 OV/1-3 · Overview of JET Results . 2 OV/1-4 · Development in the DIII-D Tokamak of Advanced Operating Scenarios and Associated Control Techniques for ITER . 3 OV/2-1 · Extended Steady-State and High-Beta Regimes of Net-Current Free Heliotron Plasmas in the Large Helical Device . 3 OV/2-2 · Overview of ASDEX Upgrade Results . 4 OV/2-3 · Overview of Physics Results from MAST . 4 OV/2-4 · Recent Physics Results from the National Spherical Torus Experiment . 5 OV/3-1 · Integration of High Power, Long Pulse Operation in Tore Supra in Preparation for ITER . 5 OV/3-2 · Overview of Alcator C-Mod Research Program . 6 OV/3-3 · Overview of TCV Results . 6 OV/3-4 · Overview of the FTU results . 7 OV/4-1 · Overview of HL-2A Experiment Results . 7 OV/4-2 · Overview of TJ-II experiments . 8 OV/4-3 · Overview of T-10 Results . 8 OV/4-4 · Experimental Progress on Zonal Flow Physics in Toroidal Plasmas . 8 OV/5-1 · Recent Progress on FIREX Project and Related Fusion Researches at ILE, Osaka 9 OV/5-2 · Overview of Inertial Fusion Research in the United States . 9 OV/5-3 · Theory of Alfv´enwaves and energetic particle physics in burning plasmas . 9 OV/5-4 · Status of R&D Activities on Materials for Fusion Power Reactors .
    [Show full text]