Evaluation of Limiting Factors for Stocked Kokanee and Rainbow Trout in Lake Roosevelt, Washington, 1999

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Limiting Factors for Stocked Kokanee and Rainbow Trout in Lake Roosevelt, Washington, 1999 STATE OF WASHINGTON March 2002 EvaluationEvaluation ofof LimitingLimiting FactorsFactors forfor StockedStocked KokaneeKokanee andand RainbowRainbow TroutTrout inin LakeLake Roosevelt,Roosevelt, WAWA by Casey Baldwin & Matt Polacek Washington Department of FISH AND WILDLIFE Fish Program Inland Fish Investigations FPA 04-03 Evaluation of Limiting Factors for Stocked Kokanee and Rainbow Trout In Lake Roosevelt, Washington, 1999 Prepared by: Casey Baldwin Matt Polacek Washington Department of Fish and Wildlife Inland Fish Investigations 10905 E. Montgomery, Suite 3 Spokane, WA 99206 Funded by: The Spokane Tribe of Indians Lake Roosevelt Fisheries Evaluation Program P.O. Box 100 Welpinit, WA 99040 As a subcontract of the Lake Roosevelt Fisheries Evaluation Program, funded by: U.S. Department of Energy Bonneville Power Administration Division of Fish and Wildlife P.O. Box 3621 Portland, OR 97283-3621 BPA Contract Number 94BI32148 March 2002 Abstract Hatchery supplementation of kokanee Oncorhynchus nerka and rainbow trout O. mykiss has been the primary mitigation provided by Bonneville Power Administration for loss of anadromous fish to the waters above Grand Coulee Dam (GCD). The hatchery program for rainbow trout has consistently met management goals and provided a substantial contribution to the fishery; however, spawner returns and creel survey results for kokanee have been below management goals. Our objective was to identify factors that limit limnetic fish production in Lake Roosevelt by evaluating abiotic conditions, food limitations, piscivory, and entrainment. Dissolved oxygen concentration was adequate throughout most of the year; however, levels dropped to near 6 mg/L in late July. For kokanee, warm water temperatures during mid-late summer limited their nocturnal distribution to 80-100 m in the lower section of the reservoir. Kokanee spawner length was consistently several centimeters longer than in other Pacific Northwest systems, and the relative weights of rainbow trout and large kokanee were comparable to national averages. Large bodied daphnia (> 1.7 mm) were present in the zooplankton community during all seasons indicating that top down effects were not limiting secondary productivity. Walleye Stizostedion vitreum were the primary piscivore of salmonids in 1998 and 1999. Burbot Lota lota smallmouth bass Micropterus dolomieui, and northern pikeminnow Ptychocheilus oregonensis preyed on salmonids to a lesser degree. Age 3 and 4 walleye were responsible for the majority (65%) of the total walleye consumption of salmonids. Bioenergetics modeling indicated that reservoir wide consumption by walleye could account for a 31-39% loss of stocked kokanee but only 6-12% of rainbow trout. Size at release was the primary reason for differential mortality rates due to predation. Entrainment ranged from 2% to 16% of the monthly abundance estimates of limnetic fish, and could account for 30% of total mortality of limnetic fishes, depending on the contribution of littoral zone fishes. Inflow to GCD forebay showed the strongest negative relationship with entrainment whereas reservoir elevation and fish vertical distribution had no direct relationship with entrainment. Our results indicate that kokanee and rainbow trout in Lake Roosevelt were limited by top down impacts including predation and entrainment, whereas bottom up effects and abiotic conditions were not limiting. Acknowledgements We would like to thank the Spokane Tribe of Indians (STI) and the Bonneville Power Administration for funding this research. Keith Underwood, Tom Cichosz, John Shields, Hank Etue, and other Spokane tribal staff were particularly helpful in providing guidance, historical data, and field and lab assistance and equipment. We thank other agencies and people who provided historical data and/or facilities including Richard LeCaire (Colville Confederated Tribes); Mitch Combs [Washington Department of Fish and Wildlife (WDFW), Sherman Creek Hatchery], Mike Lewis (WDFW Spokane Hatchery); Aulin Smith, Ray Duff, Brian Trickle, Scott Young, and Lois Blanchette (WDFW Region 1); Al Scholz, Holly McLellan, and Jason McLellan (EWU); Scott Bonar, Craig Burley, Bob Gibbons, and Ross Fuller (WDFW Olympia); the National Park Service for parking, camping, and use of boat ramps; Craig Sprankle (Bureau of Reclamation). We thank Dr. Al Scholz, Holly McLellan, Jason McLellan, Deanne Pavlik (STI), and Heather Woller (WDFW) for reviewing drafts of this report. Table Of Contents List Of Tables ................................................................................................................................ iii List Of Figures .................................................................................................................................v Introduction......................................................................................................................................1 Project History.....................................................................................................................1 Limiting Factors...................................................................................................................1 Objectives ............................................................................................................................2 Study Area...........................................................................................................................3 Methods............................................................................................................................................5 Abiotic Conditions and Limnetic Fish Distribution.............................................................5 Abiotic Conditions...................................................................................................5 Limnetic Fish Distribution.......................................................................................7 Food Limitation ...................................................................................................................7 Spawner Lengths and Relative Weights ..................................................................7 Availability of Large Zooplankton ..........................................................................7 Planktivore Consumption Versus Available Daphnia Biomass ..............................8 Piscivory on Salmonids by Piscivorous Fishes..................................................................10 Relative Impact of Piscivore Species and Age Classes .........................................10 Losses of Juvenile Salmonids to Walleye..............................................................10 Entrainment........................................................................................................................12 Results ................................................................................................................................14 Temperature and Dissolved Oxygen Limitations ..............................................................14 Limnetic Fish Vertical Distribution.......................................................................14 Comparison of Fish Distribution with Temperature and Dissolved Oxygen ........14 Food Limitation .................................................................................................................19 Spawner Lengths and Relative Weights ................................................................19 Availability of Large Zooplankton ........................................................................19 Planktivore Consumption Versus Available Daphnia Biomass ............................22 Piscivory on Salmonids by Piscivorous Fishes..............................................................................23 Relative Impact of Piscivore Species and Age Classes .........................................23 Losses of Juvenile Salmonids to Walleye..............................................................28 Entrainment........................................................................................................................29 Discussion......................................................................................................................................41 Temperature and Dissolved Oxygen Limitations ..............................................................41 Food Limitation .................................................................................................................41 Piscivory of Salmonids by Piscivorous Fishes ..................................................................43 Entrainment........................................................................................................................43 Literature Cited ..............................................................................................................................45 i Limiting Factors for Stocked Kokanee and Rainbow Trout in Lake Roosevelt, Washington March 2002 Appendix A. Gill net, trawl, and hydroacoustic survey results .................................................51 Appendix B. Bioenergetics model parameters and input ..........................................................63 Appendix C. Sherman Creek Predation Study 1999 and 2000, draft manuscript (as submitted to the Transactions of the American Fisheries Society).....................76 ii Limiting Factors for Stocked Kokanee and Rainbow Trout in Lake Roosevelt, Washington March 2002 List Of Tables Page
Recommended publications
  • Mussel Currents ~
    4th Annual Freshwater Mussels Of the Pacific Northwest Symposium ~ Mussel Currents ~ April 17th, 2007 Water Resources Education Center, Vancouver, WA Hosted by: the Pacific Northwest Native Freshwater Mussel Workgroup “Dedicated to conservation of Pacific Northwest drainage mussel populations and promoting restoration, protection, education, and identification of further research needs.” Special Thanks To Our Sponsors Bureau of Land Management Interagency Status/ U.S. Fish and Wildlife Service Sensitive Species Program City of Vancouver Clark County Washington Water Resources Education Center Solid Waste Program Environmental Information Cooperative American Fisheries Society Clark County, Washington Oregon Chapter Washington Department Society for Ecological Restoration of Fish and Wildlife Northwest Chapter Table of Contents About the Pacific Northwest Native Freshwater Mussel Workgroup…………………..... 2 Symposium Agenda ………………………..……………………………………………... 3 About the Keynote Speakers ……………………………………………………………… 5 Speaker Abstracts …..…………………………………………………………………….. 6 List of Technical Posters & Poster Abstracts….………………………………….…….... 13 Presenter Contact Information ……………………….………………………………… 16 Attendee Contact Information .…………………………………………………...……… 18 Pacific Northwest Native Freshwater Mussel Workgroup Members.................................. 20 About the Pacific Northwest Native Freshwater Mussel Workgroup History The status of the seven species of freshwater mussels native to the Pacific Northwest has received very little attention, despite the fact that freshwater mussels in general are considered the most endangered group of animals in North America. On February 19, 2003, a workshop on freshwater mussels was held in Vancouver, Washington that consisted of presented papers and a panel discussion. The purpose of the workshop was to initiate discussion on the regional population status of freshwater mussels. The workshop was attended by 91 participants of very diverse backgrounds. From this meeting, the Pacific Northwest Native Freshwater Mussel Workgroup was founded.
    [Show full text]
  • REVIEW of the ATLANTIC STATES MARINE FISHERIES COMMISSION's INTERSTATE FISHERY MANAGEMENT PLAN for SPINY DOGFISH (Squalus Acanthias)
    REVIEW OF THE ATLANTIC STATES MARINE FISHERIES COMMISSION'S INTERSTATE FISHERY MANAGEMENT PLAN FOR SPINY DOGFISH (Squalus acanthias) May 2004 – April 2005 FISHING YEAR Board Approved: February 2006 Prepared by the Spiny Dogfish Plan Review Team: Ruth Christiansen, ASMFC, Chair I. Status of the Fishery Management Plan Date of FMP Approval: November 2002 Date of Addendum I Approval: November 2005 Management Unit: Entire coastwide distribution of the resource from the estuaries eastward to the inshore boundary of the EEZ States With Declared Interest: Maine - Florida Active Boards/Committees: Spiny Dogfish and Coastal Shark Management Board, Advisory Panel, Technical Committee, Stock Assessment Subcommittee, and Plan Review Team In April 1998, the National Marine Fisheries Service (NMFS) declared spiny dogfish overfished. The Mid-Atlantic and New England Fishery Management Councils jointly manage the federal spiny dogfish fishery. NMFS partially approved the federal FMP in September 1999, but implementation did not begin until the May 2000, the start of the 2000-2001 fishing year. The federal FMP uses a target fishing mortality to specify a coastwide commercial quota and splits this quota into two seasonal periods (Period 1: May 1 to October 31 and Period 2: November 1 to April 30). The seasonal periods also have separate possession limits that are specified on an annual basis. In August 2000, ASMFC took emergency action to close state waters to the commercial harvest, landing, and possession of spiny dogfish when federal waters closed because the quota was fully harvested. With the emergency action in place, the Commission had time to develop an interstate FMP, which prevented the undermining of the federal FMP and prevented further overharvest of the coastwide spiny dogfish population.
    [Show full text]
  • Alaskan Kokanee Species Status Report
    Kokanee Salmon, (Oncorhynchus nerka) Data: Alaska Department of Fish & Game Partners: AK__________________________ Species Status Review: most northern population in North America at latitude 62.42° North. Kokanee are generally known as the much smaller form of the sockeye salmon O. nerka that Range of Kokanee: completes its life cycle entirely in freshwater. Kokanee are differentiated from “residual The native range of kokanee salmon is from the sockeye salmon,” which are the non-anadromous Kenai Peninsula south through Southeast Alaska progeny of anadromous fish. While kokanee are extending south to the Deschutes River in primarily found in landlocked lakes they also Oregon. Kokanee are also found in Asia ranging occur in anadromous systems. Kokanee typically from Japan to Siberia. exist independently from the anadromous form by segregating spatially and temporarily. The status of specific stocks of native kokanee populations in Alaska is unknown and few have ever been evaluated. The abundance of kokanee appears to vary significantly from very abundant in some lakes to very small populations in others. No specific explanation for the widely varying abundance is known. Sportfishing Status of Kokanee: Throughout their native range, kokanee are a sport fish but are considered somewhat difficult to catch since they are primarily plankton feeders. While kokanee are occasionally targeted by sport Kokanee Habitat Requirements: anglers in Alaska they are generally caught incidentally by anglers targeting trout or Dolly Kokanee require spawning habitat with adequate Varden. In Southeast Alaska, these landlocked gravel in inlet or outlet streams, or along lake sockeye salmon seldom grow to more than 7 to 9 bottoms.
    [Show full text]
  • Lake Roosevelt Fisheries Monitoring Program. 1993 Annual Report
    Annual Report 1993 BONNEVILLE DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED f This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The views in this report are the author's and do not necessarily represent the views of BPA. For additional copies of this report, write to: Bonneville Power Administration Public Information Center - CKPS-1 P.O. Box 3621 Portland, OR 97208 Please include title, author, and DOE/BP number from the back cover in the request. LAKE ROOSEVELT FISHERIES MONITORING PROGRAM 1993 ANNUAL REPORT Prepared by: Keith Underwood and John Shields Department of Natural Resources Spokane Tribe of Indians Wellpinit,WA Prepared for: U. S. Department of Energy Bonneville Power Administration Environment, Fish and Wildlife P.O. Box 3621 Portland, OR 97208-3621 Project Number 88-63 Contract Number DE-8179-88DP91819 June; 996 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof.
    [Show full text]
  • 2004 Status Review of Southern Resident Killer Whales (Orcinus Orca) Under the Endangered Species Act
    NOAA Technical Memorandum NMFS-NWFSC-62 2004 Status Review of Southern Resident Killer Whales (Orcinus orca) under the Endangered Species Act December 2004 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA Technical Memorandum NMFS Series The Northwest Fisheries Science Center of the National Marine Fisheries Service, NOAA, uses the NOAA Technical Memorandum NMFS series to issue infor- mal scientific and technical publications when com- plete formal review and editorial processing are not appropriate or feasible due to time constraints. Docu- ments published in this series may be referenced in the scientific and technical literature. The NMFS-NWFSC Technical Memorandum series of the Northwest Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest & Alaska Fisheries Science Center, which has since been split into the Northwest Fisheries Science Center and the Alaska Fisheries Science Center. The NMFS-AFSC Technical Memorandum series is now being used by the Alaska Fisheries Science Center. Reference throughout this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. This document should be cited as follows: Krahn, M.M., M.J. Ford, W.F. Perrin, P.R. Wade, R.P. Angliss, M.B. Hanson, B.L. Taylor, G.M. Ylitalo, M.E. Dahlheim, J.E. Stein, and R.S. Waples. 2004. 2004 Status review of Southern Resident killer whales (Orcinus orca) under the Endangered Species Act. U.S. Dept. Commer., NOAA Tech. Memo. NMFS- NWFSC-62, 73 p. NOAA Technical Memorandum NMFS-NWFSC-62 2004 Status Review of Southern Resident Killer Whales (Orcinus orca) under the Endangered Species Act Margaret M.
    [Show full text]
  • Westslope Cutthroat Trout
    This file was created by scanning the printed publication. Errors identified by the software have been corrected; Chapter 1 however, some errors may remain. Westslope Cutthroat Trout John D. IVIclntyre and Bruce E. Rieman, USDA Forest Service, Intermountain Research Station, 316 E. iViyrtle Street, Boise, Idaho 83702 Introduction Westslope cutthroat trout begin to mature at age 3 but usually spawn first at age 4 or 5 (table 2). Sexu­ The westslope cutthroat trout inhabits streams on ally maturing adfluvial fish move into the vicinity of both sides of the Continental Divide. On the east side tributaries in fall and winter where they remain un­ of the divide, they are distributed mostly in Mon­ til they begin to migrate upstream in the spring tana but also occur in some headwaters in Wyoming (Liknes 1984). They spawn from March to July at and southern Alberta (Behnke 1992). They are in the water temperatures near 10°C (Roscoe 1974; Liknes Missouri Basin downstream to about 60 km below 1984; Shepard et al. 1984). A population of adult fish Great Falls and in the headwaters of the Judith, Milk, in the St. Joe River, Idaho, included 1.6 females for and Marias rivers. On the west side of the Continen­ each male (Thurow and Bjornn 1978). Average length tal Divide the subspecies occurs in the upper was 334 mm for females and 366 mm for males. A Kootenai River; the Clark Fork drainage in Montana similar population in Big Creek, Montana, included and Idaho downstream to the falls on the Fend Oreille 4.1 females for each male (Huston et al.
    [Show full text]
  • Eagle Creek Radio Telemetry Report
    Ecological and Genetic Interactions between Hatchery and Wild Steelhead in Eagle Creek, Oregon Final Report Jeff Hogle and Ken Lujan collecting genetic and fish health samples in Eagle Creek, Oregon. Photo Credit: Maureen Kavanagh Ecological and Genetic Interactions between Hatchery and Wild Steelhead in Eagle Creek, Oregon Final Report Prepared by: Maureen Kavanagh, William R. Brignon and Doug Olson U.S. Fish and Wildlife Service Columbia River Fisheries Program Office Hatchery Assessment Team Vancouver, WA 98683 -and- Susan Gutenberger U.S. Fish and Wildlife Service Lower Columbia River Fish Health Center Willard, WA 98605 -and- Andrew Matala and William Ardren U.S. Fish and Wildlife Service Abernathy Fish Technology Center Applied Research Program in Conservation Genetics Longview, WA 98632 July 23, 2009 Table of Contents 1.0 Executive Summary ................................................................................................................................ 9 2.0 Introduction ........................................................................................................................................... 10 3.0 Geographic Area ................................................................................................................................... 12 4.0 Background Information on Winter Steelhead in the Clackamas River & Eagle Creek ....................... 13 5.0 Methods ...............................................................................................................................................
    [Show full text]
  • The California and Nevada Departments of Fish and Game Initiated the Cooperative Lake Tahoe Fisheries Study on July 1, 1960
    REPRINTS FROM Calif. Fish and Game, 54(2) : 68-89. 1968. AN EVALUATION OF TROUT PLANTING IN LAKE TAHOE' ALMO J. CORDONE Inland Fisheries Branch California Department of Fish and Game and TED C. FRANTZ Nevada Fish and Game Department Reno, Nevada Experimental plants of various strains of rainbow and cutthroat trout (SaImo gairdnerii and S. clarkii) made in Lake Tahoe from 1960 to 1963 were evaluated for both immediate and long-range contributions to the sport fishery. None of the plants was considered as successful as was desired. Lahontan and Yellowstone cutthroat (S. c. henshawi and S. c. lewisi) contributed least to the fishery. Estimated total harvests of va- rious Kamloops rainbow (S. g. kamloops) plants were never greater than 4%. However, they showed some potential for providing a long- range or premium fishery. Domestic rainbow contributed relatively few premium fish to the creel, but had the highest immediate returns (3 to 36%). The majority of those caught were recaptured within 60 days of release. An occasional Kamloops and domestic rainbow survived in the lake for as long as 3 to 4 years. To demonstrate other characteristics (e.g., movements, growth, etc.) of trout stocked in Lake Tahoe, returns from plants made over a 9-year period (1956-1964) were used. Kam- loops and Williams Lake rainbow (a wild strain from Idaho) distributed themselves widely in Tahoe's limnetic zone, and the Kamloops commonly entered its tributaries. Domestic and Pyramid Lake rainbow (a wild strain from Nevada) tended to remain in the lake in shallow, roe.), areas. Initially, planted trout grew at a rate of about 0.4 inch per month and then gradually tapered off to about 0.1 inch per month after 30 months in the lake.
    [Show full text]
  • National Register of Historic Places Registration Form
    NFS Form 10-900 (Oct. 1990) r United States Department of the Interior National Park Service National Register of Historic Places Registration Form This form is for use in nominating or requesting determinations for individual properties and districts. See in Inn linn 1iT«i H 1 in hmnjjjuli the National Register of Historic Places Registration Form (National Register Bulletin 16A). Complete each item by marking "x" in the appropriate box or by entering the information requested. If an item does not apply to the property being documented, enter "N/A" for "not applicable." For functions, architectural classification, materials, and areas of significance, enter only categories and subcategories from the instructions. Place additional entries and narrative items on continuation sheets (NFS Form 10-900a). Use a typewriter, word processor, or computer, to complete all items. 1. Name of Property ~ historic name Fairweather/Trevitt House________________________________ other names/site numberBowlby House. Ferry County Cultural Resource Survey //4/OT/2 2. Location street & number _ 645 Kauffman LJ not for publication city or town Republic _ D vicinity state Washington code WA county Ferr y County code 019 zip code 99166 3. State/Federal Agency Certification As the designated authority under the National Historic Preservation Act, as amended, I hereby certify that this Ej nomination d request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60. In my opinion, the property £§ meets D does not meet'the National Register criteria. I recommend that this property be considered significant CD nationally O statewide $Q locally.
    [Show full text]
  • Acipenser Brevirostrum
    AR-405 BIOLOGICAL ASSESSMENT OF SHORTNOSE STURGEON Acipenser brevirostrum Prepared by the Shortnose Sturgeon Status Review Team for the National Marine Fisheries Service National Oceanic and Atmospheric Administration November 1, 2010 Acknowledgements i The biological review of shortnose sturgeon was conducted by a team of scientists from state and Federal natural resource agencies that manage and conduct research on shortnose sturgeon along their range of the United States east coast. This review was dependent on the expertise of this status review team and from information obtained from scientific literature and data provided by various other state and Federal agencies and individuals. In addition to the biologists who contributed to this report (noted below), the Shortnose Stugeon Status Review Team would like to acknowledge the contributions of Mary Colligan, Julie Crocker, Michael Dadswell, Kim Damon-Randall, Michael Erwin, Amanda Frick, Jeff Guyon, Robert Hoffman, Kristen Koyama, Christine Lipsky, Sarah Laporte, Sean McDermott, Steve Mierzykowski, Wesley Patrick, Pat Scida, Tim Sheehan, and Mary Tshikaya. The Status Review Team would also like to thank the peer reviewers, Dr. Mark Bain, Dr. Matthew Litvak, Dr. David Secor, and Dr. John Waldman for their helpful comments and suggestions. Finally, the SRT is indebted to Jessica Pruden who greatly assisted the team in finding the energy to finalize the review – her continued support and encouragement was invaluable. Due to some of the similarities between shortnose and Atlantic sturgeon life history strategies, this document includes text that was taken directly from the 2007 Atlantic Sturgeon Status Review Report (ASSRT 2007), with consent from the authors, to expedite the writing process.
    [Show full text]
  • FOR IMMEDIATE RELEASE for More Information Timothy Coleman, Kettle Range Conservation Group 509-775-2667 | Tcoleman@Kettlerange
    FOR IMMEDIATE RELEASE For More Information Timothy Coleman, Kettle Range Conservation Group 509-775-2667 | [email protected] For Immediate Release: May 13, 2021 Lawsuit Filed to Protect Ancient Forest & Wildlife Sanpoil Timber Sale Challenged Spokane, WA. The Kettle Range Conservation Group filed a complaint yesterday in federal district court challenging the Sanpoil timber project in the Kettle River Range, located in the Colville National Forest in northeast Washington. The U.S. Forest Service predicts the timber sale will produce 50-60 million board feet of timber, enough to fill an estimated 10- 12,000 logging trucks. The Project threatens to cut down ancient forests, destroy wildlife habitat, and ruin pristine wilderness areas. The complaint contends the decision approving the Sanpoil Project was arbitrary and capricious, and that the Forest Service failed to evaluate the Project’s effects on the upper Sanpoil River watershed. “This project is going to change the forest landscape for decades to come,” said Timothy Coleman, executive director of the Kettle Range Conservation Group. “The project provides for the logging more than 10,000 acres, much of which will be clearcut, or have just a couple of trees left standing per acre.” The Forest Service recently completed two other projects adjacent to the Sanpoil area of the Kettle River Range, and has two more projects already in the planning phase. Conservationists allege the Forest Service failed to consider the cumulative effects of these projects on Colville’s recreation, wildlife, ancient forests and pristine wilderness areas. “Unlogged wild forests are our primary source of clean water, and contribute significantly to the health of fish and wildlife,” Coleman said.
    [Show full text]
  • Facts About Kokanee
    WRIA1 SALMON RECOVERY PROGRAM Facts about Kokanee Description Kokanee (Oncorhyncus nerka) are sockeye salmon that spend their entire lives in freshwater. They are usually found in lakes that have either limited or no access to the ocean. Kokanee tend to be smaller in size than sockeye, as lakes have more limited food sources than rivers. They average between 10 and 18 inches in length and weigh one to four pounds. They exhibit similar markings and coloration to the sockeye, with bright silver sides, bluish-black tops and white bellies. Before spawning, kokanee will turn bright red with green Male kokanee (Photo Credit: Manu Esteve) heads; the males will also develop a humped back and hooked jaw. Distribution In Whatcom County, native populations of kokanee can be found in Lake Samish and Lake Whatcom. They spawn in Brannian, Olson, Fir, and Anderson Creeks and, to some extent, in Carpenter and Smith Creeks in Lake Whatcom and in Mud Creek in Lake Samish. The Lake Whatcom stock is also enhanced through hatchery operations, and their eggs are used to stock lakes throughout the United States. Kokanee are native to British Columbia, Alaska, Washington, Idaho, Siberia, and Japan, but have been introduced worldwide into lakes and hatcheries. Life Cycle and Reproduction After reaching maturity around three or four years of age, kokanee return to their natural area and spawn between August and November. Distribution of kokanee in the Lake Whatcom watershed (marked Spawning may occur in an inlet stream or gravel in purple). beds along the lakeshore. Depending on her size, the female kokanee carries between 250 and 2,000 eggs, which she deposits into three or four redds.
    [Show full text]