A. Kryszczynska Et Al.: Do Slivan States Exist in Other Asteroid

Total Page:16

File Type:pdf, Size:1020Kb

A. Kryszczynska Et Al.: Do Slivan States Exist in Other Asteroid A. Kryszczyn´ska et al.: Do Slivan States exist in other asteroid families? I. Table 2. Physical data of the Flora family asteroids. Objects observed within this survey are marked with boldface, A indicates data from AcuA, diameters if not given by AcuA are calculated from MPC absolute magnitude H and albedo, taxonomic types from (Neese 2010) are indicated with 1, types from SDSS-based Asteroid Taxonomy (Hasselman et al. 2011) are marked with 2, and Alvarez-Candal et al. (2006) marked with 3. Asteroid D[km] H[mag] A[mag] pv P[h] f[1/d] type HCM WAM HCM 2010 8 Flora 138.31A 6.49A 0.11 0.235A 12.865 1.8655 S, Sw 1 + + + 9 Metis 166.48A 6.28A 0.36 0.213A 5.079 4.7253 S 1 + 43 Ariadne 58.75A 7.93A 0.66 0.347A 5.762 4.1652 S, Sk, Sq 1 + + + 244 Sita 11.60A 12.20A 0.82 0.176A 129.51 0.1853 Sa, Sw 1 + 281 Lucretia 12.27A 12.02A 0.30 0.185A 4.349 5.5183 SU 1 + + 291 Alice 13.19A 11.45A 0.50 0.270A 4.316 5.5607 S 1 + + 298 Baptistina 20.53A 11.00A 0.15 0.170A 16.23 1.4787 X, Xc 1 + + + 315 Constantia 6.089 13.20 0.57 0.25 5.345 4.4902 – + + 352 Gisela 26.76A 10.01A 0.66 0.249A 7.4796 3.2087 S,Sl, S0, Sw 1 + + + 364 Isara 28.78A 9.86A 0.65 0.244A 9.1570 2.6209 S, S0 1 + + 367 Amicitia 16.78A 10.70A 0.70 0.343A 5.055 4.7478 S 3 + 376 Geometria 34.80A 9.49A 0.19 0.235A 7.734 3.1032 S 1,2 + 428 Monachia 21.79A 11.50A 0.25 0.097A 3.6342 6.6039 X 3 + + 453 Tea 24.07A 10.60A 0.12 0.176A 6.811 3.5237 S 1 + + 540 Rosamunde 19.12A 10.76A 0.60 0.265A 9.349 2.5671 S 1 + + + 553 Kundry 9.93A 12.20A 0.52 0.237A 12.381 1.9200 S 1 + + + 685 Hermia 11.46A 11.80A 0.90 0.280A 50.40 0.4768 S 1 + + + 700 Auravictrix 15.19A 11.20A 0.44 0.263A 6.075 3.9506 S 1,3 + + + 711 Marmulla 11.90A 11.90A 0.04 0.224A 2.88 8.3333 A 3 + + + 728 Leonisis 7.32 12.80 0.20 0.25 5.5783 4.3024 A,S 1,2 + + + 736 Harvard 17.92A 11.64A 0.32 0.122A 6.7 3.5821 S 1 + 770 Bali 16.07A 10.93A 0.65 0.304A 5.8199 4.1238 S 1 + 800 Kressmannia 14.23A 11.61A 0.34 0.202A 4.4610 5.3794 S 1 + + + 802 Epyaxa 8.027 12.60 0.70 0.25 4.389 5.4645 – + + 810 Atossa 8.405 12.50 0.55 0.25 4.385 5.4732 A 3 + 825 Tanina 13.06A 11.50A 0.50 0.278A 6.9398 3.4583 SR,S 1 + + 827 Wolfiana 15.04 13.20 0.19 0.041 4.0 6.0000 D 3 + + 836 Jole 5.06 13.6 0.37 0.25 9.615 2.4961 S 2 + 841 Arabella 8.027 12.60 0.25 0.25 3.352 7.1599 – + + + 851 Zeissia 12.81A 11.62A 0.38 0.248A 9.34 2.5696 S 1 + + 864 Aase 5.76A 12.87A 0.20 0.378A 3.2325 7.4246 S 1 + + 883 Matterania 8.027 12.60 0.42 0.25 5.64 4.2553 S 1 + + + 901 Brunsia 11.61A 11.35A 0.27 0.480A 3.136 7.6523 S 1 + 905 Universitas 11.84A 11.59A 0.28 0.30A 14.238 1.6856 S 1 + + + 913 Otila 11.32A 11.90A 0.10 0.245A 4.8719 4.9262 Sa, Sw 1 + + + 915 Cosette 12.31A 11.70A 0.52 0.247A 4.4701 5.3690 S 1,3 + + + 929 Algunde 10.70A 12.10A 0.14 0.242A 3.310 7.2503 S, Sl 1 + + + 935 Clivia 7.18A 12.90A 0.13 0.247A 3.6222 6.6258 – + + 937 Bethgea 12.69A 11.83A 0.20 0.203A 7.539 3.1834 S 1 + + 951 Gaspra 15.68A 11.46A 1.00 0.189A 7.0420 3.4081 S 1 + + + 956 Elisa 8.00 12.1 0.36 0.4 16.50 1.4545 V 1 + 960 Birgit 6.991 12.90 0.27 0.25 8.85 2.7119 A 3 + 963 Iduberga 10.38A 12.49A 0.34 0.165A 3.0341 7.9101 S 1 + + 967 Helionape 13.55A 12.10A 0.13 0.142A 3.232 7.4257 – + + + 1016 Anitra 11.08 11.90 0.28 0.25 5.9288 4.0480 S 1 + + + 1055 Tynka 8.95A 12.00A 0.09 0.35A 11.893 2.0180 S 1 + + 1056 Azalea 13.07A 11.70A 0.72 0.223A 15.03 1.5968 S 1 + + + 1060 Magnolia 7.665 12.70 0.25 0.25 2.9108 8.2452 S 1,2 + + + 1088 Mitaka 13.35A 11.39A 0.62 0.276A 3.0353 7.9070 S 1 + + 1117 Reginita 12.149 11.70 0.30 0.25 2.9464 8.1455 S 1,2 + 1120 Cannonia 9.920A 12.80A 0.16 0.137A 3.8160 6.2893 – + 1130 Skuld 10.24A 12.10A 0.53 0.244A 4.8079 4.9918 S,Sl 1 + + 1133 Lugduna 10.47A 12.22A 0.45 0.208A 5.478 4.3812 S 1 + + 1185 Nikko 12.56A 12.09A 0.50 0.164A 3.79 6.3324 S 1 + + + 1188 Gothlandia 12.11A 11.70A 0.70 0.252A 3.4917 6.8734 S 1 + + + 1219 Britta 11.76A 11.94A 0.73 0.223A 5.5750 4.3049 S 1 + + 1225 Ariane 9.10A 12.10A 0.36 0.308A 5.5068 4.3582 – + + 1249 Rutherfordia 15.77A 11.54A 0.65 0.1720A 18.220 1.3172 S 1 + + + 1270 Datura 7.83A 12.50A 0.61 0.291A 3.359 7.1450 S 3 + + + 1314 Paula 6.7A 12.68A 0.83 0.377A 5.9498 4.0337 S 1 + + + 13 A. Kryszczyn´ska et al.: Do Slivan States exist in other asteroid families? I. Table 2. Continiued Asteroid D[km] H[mag] A[mag] pv P[h] f[1/d] type HCM WAM HCM 2010 1324 Knysna 7.32 12.80 0.08 0.25 2.5538 9.3978 Sq 1 + + 1344 Caubeta 7.32 12.80 0.21 0.25 3.1220 7.6874 S 2 + + 1376 Michelle 8.405 12.50 0.20 0.25 5.9769 4.0155 – + + 1396 Outenniqua 11.00A 12.00A 0.42 0.237A 3.0810 7.7897 S, Sl 1 + 1449 Virtanen 10.581 12.00 0.69 0.25 30.495 0.7870 S, Sl 1 + + + 1472 Muonio 9.216 12.30 0.48 0.25 8.7060 2.7567 – + + 1496 Turku 8.801 12.40 0.51 0.25 6.47 3.7094 – + + 1514 Ricouxa 8.027 12.60 0.62 0.25 10.438 2.2993 – + + 1518 Rovaniemi 8.801 12.40 0.25 0.25 5.2490 4.572 S 1 + + + 1523 Pieksamaki 19.30 12.30 0.46 0.057 5.3202 4.5111 C 3 + + + 1527 Malmquista 9.65 12.20 0.54 0.25 14.077 1.7049 S 2 + + 1562 Gondolatsch 11.12A 11.80A 0.42 0.283A 8.74 2.7460 S 1 + + + 1590 Tsiolkovskaja 12.81A 11.70A 0.30 0.232A 6.7299 3.5662 – + + + 1601 Patry 10.93A 12.32A 0.72 0.178A 5.92 4.0541 Sl 1 + + + 1602 Indiana 8.410A 12.49A 0.17 0.259A 2.6010 9.2272 S 1 + + 1619 Ueta 10.105 12.10 0.35 0.25 2.7180 8.8300 S 1,2 + + 1622 Chacornac 10.27A 12.2A 0.25 0.224A 12.206 1.9662 S 1 + + + 1631 Kopff 9.580A 12.20A 0.41 0.259A 6.6830 3.5912 – + + 1666 Van Gent 8.405 12.50 0.30 0.25 4.1660 5.7609 – + + 1667 Pels 10.62A 12.10A 0.25 0.232A 3.2681 7.3437 Sa,Sw 1 + 1675 Simonida 12.16A 11.90A 0.58 0.211A 5.2885 4.5381 – + + + 1682 Karel 4.80A 12.90A 0.47 0.531A 3.3750 7.1111 – + + + 1738 Oosterhoff 7.62A 12.30A 0.54 0.370A 4.4470 5.3969 S 1 + + 1785 Wurm 6.089 13.20 0.29 0.25 3.2693 7.3410 S 1 + + + 1790 Volkov 8.670A 12.50A 0.09 0.241A 10.742 2.2342 – + + + 1793 Zoya 8.027 12.60 0.72 0.25 5.74 4.1812 S, SL 1 + 1806 Derice 10.14A 12.00A 0.19 0.282A 3.2240 7.4442 S, SL 1 + + + 1807 Slovakia 8.801 12.40 1.00 0.25 308.0 0.0779 S, Sqw 1 + 1829 Dawson 9.67A 12.50A 0.28 0.189A 4.254 5.6417 S 2 + + 1855 Korolev 8.405 12.50 0.75 0.25 4.6500 5.1613 – + + + 2017 Wesson 8.027 12.60 0.61 0.25 3.4158 7.0262 S,X 1,3 + + + 2036 Sheragul 7.0A 12.70A 0.71 0.30A 5.45 4.4037 A 2 + 2080 Jihlava 7.32 12.80 0.15 0.25 2.7088 8.8600 – + 2093 Genichesk 12.29 13.28 0.24 0.057 11.028 2.1763 C 1 + + + 2094 Magnitka 9.910A 12.00A 0.86 0.285A 6.1100 3.9280 – + + + 2156 Kate 8.801 12.40 0.91 0.25 5.6230 4.2682 A 1,2 + 2283 Bunke 16.05 12.70 0.07 0.057 4.3 5.5814 C 2 + 2445 Blazhko 10.581 12.00 0.57 0.25 3.6200 6.6298 S 2 + + + 2460 Mitlincoln 9.216 12.30 0.20 0.25 2.8277 8.4875 L 2 + 2510 Shandong 7.09A 12.60A 0.44 0.345A 3.4963 6.8644 S 1 + + 2647 Sova 8.405 12.50 0.35 0.25 9.3660 2.5625 – + + + 2709 Sagan 6.676 13.00 0.36 0.25 5.2580 4.5645 S 1 + 2768 Gorky 10.105 12.10 0.51 0.25 4.5070 5.3250 A 3 + + + 2839 Annette 7.665 12.70 0.92 0.25 10.457 2.2951 – + 2841 Puijo 7.665 12.70 0.03 0.25 3.5450 6.7701 S, Sk 1 + + + 2853 Harvill 7.32 12.8 0.65 0.25 6.30 3.8095 – + 2961 Katsurahama 6.676 13.0 0.28 0.25 2.937 8.1716 S 1 + + + 3105 Stumpff 7.430A 13.10A 0.35 0.185A 5.0369 4.7648 S, Sl 1 + + 3144 Brosche 4.619 13.80 0.60 0.25 3.30 7.2727 – + + 3165 Mikawa 8.027 12.60 0.25 0.25 5.100 4.7244 S 2 + + + 3410 Vereshchagin 5.303 13.50 0.10 0.25 2.5780 9.3095 S 2 + + + 3411 Debetencourt 5.815 13.30 0.43 0.25 9.9300 2.4169 – + + 3455 Kristensen 7.665 12.70 0.38 0.25 8.1110 2.9589 – + 3533 Toyota 9.90 12.70 0.18 0.15 2.9810 8.0510 Xk, X 1,2 + + + 3573 Holmberg 7.320 12.80 1.03 0.25 6.5431 3.6680 S, Sr 1,2 + + 3722 Urata 8.027 12.60 0.58 0.25 5.5670 4.3111 – + + 3763 Qianxuesen 8.260A 12.50A 0.31 0.259A 3.8840 6.1792 L 2 + + 3825 Nurnberg 7.665 12.70 0.71 0.25 4.0300 5.9553 – + + + 3850 Peltier 4.19 13.50 0.10 0.40 2.4289 9.8810 V 1 + 3953 Perth 5.064 13.60 0.92 0.25 5.083 4.7216 – + 3956 Caspar 7.32 12.80 0.13 0.25 2.7707 8.6621 – + + 3986 Rozhkovskij 7.665 12.70 0.35 0.25 3.5493 6.7619 – + + 4080 Galinskij 5.815 13.30 1.01 0.25 7.3500 3.2653 – + + + 4150 Starr 7.665 12.70 0.21 0.25 4.5179 5.3122 S 2,3 + 14.
Recommended publications
  • Mission to Jupiter
    This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines.
    [Show full text]
  • Journal of the Association of Lunar & Planetary Observers
    ISSN-0039-2502 Journal of the Association of Lunar & Planetary Observers The Strolling Astronomer Volume 60, Number 1, Winter 2018 Now in Portable Document Format (PDF) for Macintosh and PC-compatible computers Online and in COLOR at http://www.alpo-astronomy.org Fireball Over Italy!! (see page 2 for details) The Strolling Astronomer Journal of the Inside the ALPO Association of Lunar & Point of View - My Vision for the ALPO ...................2 News of General Interest ..........................................3 Planetary Observers Our Cover: Fireball Over Italy ...............................3 Call for JALPO Papers ..........................................3 The Strolling Astronomer ALPO Interest Section Reports .................................3 ALPO Observing Section Reports ............................4 Volume 60, No.1, Winter 2018 Obituary: Richard Baum (1930 - 2017) ...................17 This issue published in December 2017 for distribution in both Membership Report ................................................20 portable document format (pdf) and hardcopy format. Papers & Presentations This publication is the official journal of the Association of Lunar & Planetary Observers (ALPO). ALPO Board Meeting Minutes, August 27, 2017, Athens, Georgia ...................................................25 The purpose of this journal is to share observation reports, opinions, A Report on Carrington Rotations 2191 through and other news from ALPO members with other members and the 2194 (2017 05 26.8542 to 2017 09 12.7285) ......34 professional
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • Propellantless Sail-Craft Design for the Main Belt Asteroid Exploration Mission
    Propellantless Sail-craft Design for the Main Belt Asteroid Exploration Mission By Liu yufei1), 2), Cheng zhengai1), Huang xiaoqi1), Zhou lu1), Wang li1) 1)The Qian Xuesen Laboratory of Space Technology, CAST, Beijing,China 2) State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, China (Received 1st Dec, 2016) Based on the propellantless characteristic, a multiple main belt asteroid exploration mission in which the solar sail is the only propeller is proposed by China academy of space technology (CAST). The mission aims to explore at least three main belt asteroids in seven years. The process of determining probe objects and the main nodes of the mission trajectory are first presented. To realize the mission, the spacecraft is a square solar sail with the areal density less than 12g/m2, the side length of 160m and the total mass of 200kg. Then the main subsystems of the solar sail are introduced. The cutting and splicing scheme, the fold and deployment scheme and the margin strengthen scheme are designed in the sail subsystem. A new four radius lenticular boom with two inflatable tubules is proposed to reduce the mass and improve the mechanical property. The slot and membrane antenna and the wireless network are used in the communication subsystem. Two mass blocks and four roll stabilizer bars are designed to control the attitude and orbit. The distribution installation thin film solar cells are used in the power subsystem, so that each sensor and actuator which is not in the central body could be supplied power by cells on itself.
    [Show full text]
  • Perturbations in the Motion of the Quasicomplanar Minor Planets For
    Publications of the Department of Astronom} - Beograd, N2 ID, 1980 UDC 523.24; 521.1/3 osp PERTURBATIONS IN THE MOTION OF THE QUASICOMPLANAR MI­ NOR PLANETS FOR THE CASE PROXIMITIES ARE UNDER 10000 KM J. Lazovic and M. Kuzmanoski Institute of Astronomy, Faculty of Sciences, Beograd Received January 30, 1980 Summary. Mutual gravitational action during proximities of 12 quasicomplanar minor pla­ nets pairs have been investigated, whose minimum distances were under 10000 km. In five of the pairs perturbations of several orbital elements have been stated, whose amounts are detectable by observations from the Earth. J. Lazovic, M. Kuzmanoski, POREMECAJI ELEMENATA KRETANJA KVAZIKOM­ PLANARNIH MALIH PLANETA U PROKSIMITETIMA NJIHOVIH PUTANJA SA DA­ LJINAMA MANJIM OD 10000 KM - Ispitali smo medusobna gravitaciona de;stva pri proksi­ mitetima 12 parova kvazikomplanarnih malih planeta sa minimalnim daljinama ispod 10000 km. Kod pet parova nadeni su poremecaji u vi~e putanjskih elemenata, ~iji bi se iznosi mogli ustano­ viti posmatranjima sa Zemlje. Earlier we have found out 13 quasicomplanar minor planets pairs (the angle I between their orbital planes less than O~500), whose minimum mutual distances (pmin) were less than 10000 km (Lazovic, Kuzmanoski, 1978). The shortest pro­ ximity distance of only 600 km among these pairs has been stated with minor planet pair (215) Oenone and 1851 == 1950 VA. The corresponding perturbation effects in this pair have been calculated (Lazovic, Kuzmanoski, 1979a). This motivated us to investigate the mutual perturbing actions in the 12 remaining minor planets pairs for the case they found themselves within the proximities of their correspon­ ding orbits.
    [Show full text]
  • The Minor Planet Bulletin 44 (2017) 142
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 44, NUMBER 2, A.D. 2017 APRIL-JUNE 87. 319 LEONA AND 341 CALIFORNIA – Lightcurves from all sessions are then composited with no TWO VERY SLOWLY ROTATING ASTEROIDS adjustment of instrumental magnitudes. A search should be made for possible tumbling behavior. This is revealed whenever Frederick Pilcher successive rotational cycles show significant variation, and Organ Mesa Observatory (G50) quantified with simultaneous 2 period software. In addition, it is 4438 Organ Mesa Loop useful to obtain a small number of all-night sessions for each Las Cruces, NM 88011 USA object near opposition to look for possible small amplitude short [email protected] period variations. Lorenzo Franco Observations to obtain the data used in this paper were made at the Balzaretto Observatory (A81) Organ Mesa Observatory with a 0.35-meter Meade LX200 GPS Rome, ITALY Schmidt-Cassegrain (SCT) and SBIG STL-1001E CCD. Exposures were 60 seconds, unguided, with a clear filter. All Petr Pravec measurements were calibrated from CMC15 r’ values to Cousins Astronomical Institute R magnitudes for solar colored field stars. Photometric Academy of Sciences of the Czech Republic measurement is with MPO Canopus software. To reduce the Fricova 1, CZ-25165 number of points on the lightcurves and make them easier to read, Ondrejov, CZECH REPUBLIC data points on all lightcurves constructed with MPO Canopus software have been binned in sets of 3 with a maximum time (Received: 2016 Dec 20) difference of 5 minutes between points in each bin.
    [Show full text]
  • An Anisotropic Distribution of Spin Vectors in Asteroid Families
    Astronomy & Astrophysics manuscript no. families c ESO 2018 August 25, 2018 An anisotropic distribution of spin vectors in asteroid families J. Hanuš1∗, M. Brož1, J. Durechˇ 1, B. D. Warner2, J. Brinsfield3, R. Durkee4, D. Higgins5,R.A.Koff6, J. Oey7, F. Pilcher8, R. Stephens9, L. P. Strabla10, Q. Ulisse10, and R. Girelli10 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovickáchˇ 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 Via Capote Observatory, Thousand Oaks, CA 91320, USA 4 Shed of Science Observatory, 5213 Washburn Ave. S, Minneapolis, MN 55410, USA 5 Hunters Hill Observatory, 7 Mawalan Street, Ngunnawal ACT 2913, Australia 6 980 Antelope Drive West, Bennett, CO 80102, USA 7 Kingsgrove, NSW, Australia 8 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 9 Center for Solar System Studies, 9302 Pittsburgh Ave, Suite 105, Rancho Cucamonga, CA 91730, USA 10 Observatory of Bassano Bresciano, via San Michele 4, Bassano Bresciano (BS), Italy Received x-x-2013 / Accepted x-x-2013 ABSTRACT Context. Current amount of ∼500 asteroid models derived from the disk-integrated photometry by the lightcurve inversion method allows us to study not only the spin-vector properties of the whole population of MBAs, but also of several individual collisional families. Aims. We create a data set of 152 asteroids that were identified by the HCM method as members of ten collisional families, among them are 31 newly derived unique models and 24 new models with well-constrained pole-ecliptic latitudes of the spin axes.
    [Show full text]
  • Phase Integral of Asteroids Vasilij G
    A&A 626, A87 (2019) Astronomy https://doi.org/10.1051/0004-6361/201935588 & © ESO 2019 Astrophysics Phase integral of asteroids Vasilij G. Shevchenko1,2, Irina N. Belskaya2, Olga I. Mikhalchenko1,2, Karri Muinonen3,4, Antti Penttilä3, Maria Gritsevich3,5, Yuriy G. Shkuratov2, Ivan G. Slyusarev1,2, and Gorden Videen6 1 Department of Astronomy and Space Informatics, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine e-mail: [email protected] 2 Institute of Astronomy, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine 3 Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, 00560 Helsinki, Finland 4 Finnish Geospatial Research Institute FGI, Geodeetinrinne 2, 02430 Masala, Finland 5 Institute of Physics and Technology, Ural Federal University, Mira str. 19, 620002 Ekaterinburg, Russia 6 Space Science Institute, 4750 Walnut St. Suite 205, Boulder CO 80301, USA Received 31 March 2019 / Accepted 20 May 2019 ABSTRACT The values of the phase integral q were determined for asteroids using a numerical integration of the brightness phase functions over a wide phase-angle range and the relations between q and the G parameter of the HG function and q and the G1, G2 parameters of the HG1G2 function. The phase-integral values for asteroids of different geometric albedo range from 0.34 to 0.54 with an average value of 0.44. These values can be used for the determination of the Bond albedo of asteroids. Estimates for the phase-integral values using the G1 and G2 parameters are in very good agreement with the available observational data.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 38, NUMBER 2, A.D. 2011 APRIL-JUNE 71. LIGHTCURVES OF 10452 ZUEV, (14657) 1998 YU27, AND (15700) 1987 QD Gary A. Vander Haagen Stonegate Observatory, 825 Stonegate Road Ann Arbor, MI 48103 [email protected] (Received: 28 October) Lightcurve observations and analysis revealed the following periods and amplitudes for three asteroids: 10452 Zuev, 9.724 ± 0.002 h, 0.38 ± 0.03 mag; (14657) 1998 YU27, 15.43 ± 0.03 h, 0.21 ± 0.05 mag; and (15700) 1987 QD, 9.71 ± 0.02 h, 0.16 ± 0.05 mag. Photometric data of three asteroids were collected using a 0.43- meter PlaneWave f/6.8 corrected Dall-Kirkham astrograph, a SBIG ST-10XME camera, and V-filter at Stonegate Observatory. The camera was binned 2x2 with a resulting image scale of 0.95 arc- seconds per pixel. Image exposures were 120 seconds at –15C. Candidates for analysis were selected using the MPO2011 Asteroid Viewing Guide and all photometric data were obtained and analyzed using MPO Canopus (Bdw Publishing, 2010). Published asteroid lightcurve data were reviewed in the Asteroid Lightcurve Database (LCDB; Warner et al., 2009). The magnitudes in the plots (Y-axis) are not sky (catalog) values but differentials from the average sky magnitude of the set of comparisons. The value in the Y-axis label, “alpha”, is the solar phase angle at the time of the first set of observations. All data were corrected to this phase angle using G = 0.15, unless otherwise stated.
    [Show full text]
  • A Study of Asteroid Pole-Latitude Distribution Based on an Extended
    Astronomy & Astrophysics manuscript no. aa˙2009 c ESO 2018 August 22, 2018 A study of asteroid pole-latitude distribution based on an extended set of shape models derived by the lightcurve inversion method 1 1 1 2 3 4 5 6 7 J. Hanuˇs ∗, J. Durechˇ , M. Broˇz , B. D. Warner , F. Pilcher , R. Stephens , J. Oey , L. Bernasconi , S. Casulli , R. Behrend8, D. Polishook9, T. Henych10, M. Lehk´y11, F. Yoshida12, and T. Ito12 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holeˇsoviˇck´ach 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 4 Goat Mountain Astronomical Research Station, 11355 Mount Johnson Court, Rancho Cucamonga, CA 91737, USA 5 Kingsgrove, NSW, Australia 6 Observatoire des Engarouines, 84570 Mallemort-du-Comtat, France 7 Via M. Rosa, 1, 00012 Colleverde di Guidonia, Rome, Italy 8 Geneva Observatory, CH-1290 Sauverny, Switzerland 9 Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100, Israel 10 Astronomical Institute, Academy of Sciences of the Czech Republic, Friova 1, CZ-25165 Ondejov, Czech Republic 11 Severni 765, CZ-50003 Hradec Kralove, Czech republic 12 National Astronomical Observatory, Osawa 2-21-1, Mitaka, Tokyo 181-8588, Japan Received 17-02-2011 / Accepted 13-04-2011 ABSTRACT Context. In the past decade, more than one hundred asteroid models were derived using the lightcurve inversion method. Measured by the number of derived models, lightcurve inversion has become the leading method for asteroid shape determination.
    [Show full text]
  • Do Slivan States Exist in the Flora Family? A
    Do Slivan states exist in the Flora family? A. Kryszczyńska, F. Colas, M. Polińska, R. Hirsch, V. Ivanova, G. Apostolovska, B. Bilkina, F. Velichko, T. Kwiatkowski, P. Kankiewicz, et al. To cite this version: A. Kryszczyńska, F. Colas, M. Polińska, R. Hirsch, V. Ivanova, et al.. Do Slivan states exist in the Flora family?. Astronomy and Astrophysics - A&A, EDP Sciences, 2012, 546, pp.A72. 10.1051/0004- 6361/201219199. hal-03123875 HAL Id: hal-03123875 https://hal.archives-ouvertes.fr/hal-03123875 Submitted on 28 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 546, A72 (2012) Astronomy DOI: 10.1051/0004-6361/201219199 & c ESO 2012 Astrophysics Do Slivan states exist in the Flora family? I. Photometric survey of the Flora region A. Kryszczynska´ 1,F.Colas2,M.Polinska´ 1,R.Hirsch1, V. Ivanova3, G. Apostolovska4, B. Bilkina3, F. P. Velichko5, T. Kwiatkowski1,P.Kankiewicz6,F.Vachier2, V. Umlenski3, T. Michałowski1, A. Marciniak1,A.Maury7, K. Kaminski´ 1, M. Fagas1, W. Dimitrov1, W. Borczyk1, K. Sobkowiak1, J. Lecacheux8,R.Behrend9, A. Klotz10,11, L. Bernasconi12,R.Crippa13, F. Manzini13, R.
    [Show full text]
  • Binary Asteroid Lightcurves
    BINARY ASTEROID LIGHTCURVES Asteroid Type Per1 Amp1 Per2 Amp2 Perorb Ds/Dp a/Dp Reference 22 Kalliope B 4.1483 0.53 B a Descamps, 08 B a 86.2896 Marchis, 08 B a 4.148 86.16 Marchis, 11w 41∗ Daphne B 5.988 0.45 B s 26.4 Conrad, 08 B s 38. Conrad, 08 B s 5.987981 27.289 2.46 Carry, 18 45 Eugenia M 5.699 0.30 B a 113. Merline, 99 B a Marchis, 06 M a Marchis, 07 M a Marchis, 08 B a 5.6991 114.38 Marchis, 11w 87 Sylvia M 5.184 0.50 M a 5.184 87.5904 Marchis, 05 M a 5.1836 87.59 Marchis, 11w 90∗ Antiope B 16.509 0.88 B f 16. Merline, 00 B f 16.509 0.73 16.509 0.73 16.509 Descamps, 05 B f 16.5045 0.86 16.5045 0.86 16.5045 Behrend, 07w B f 16.505046 16.505046 Bartczak, 14 93 Minerva M 5.982 0.20 M a 5.982 0.20 57.79 Marchis, 11 107∗ Camilla M 4.844 0.53 B a Marchis, 08 B a 4.8439 89.04 Marchis, 11w M a 1.550 Marsset, 16 M s 89.096 4.91 Pajuelo, 18 113 Amalthea B? 9.950 0.22 ? u Maley, 17 121 Hermione B 5.55128 0.62 B a Merline, 02 B a Marchis, 04 B a Marchis, 05 B a 5.55 61.97 Marchis, 11w 130 Elektra M 5.225 0.58 B a 5.22 126.2 Marchis, 08 M a Yang, 14 216 Kleopatra M 5.385 1.22 M a 5.38 Marchis, 08 243 Ida B 4.634 0.86 B a Belton, 94 279 Thule B? 23.896 0.10 B s 7.44 0.08 72.2 Sato, 15 283 Emma B 6.896 0.53 B a Merline, 03 B a 6.89 80.48 Marchis, 08 324 Bamberga B? 29.43 0.12 B s 29.458 0.06 71.0 Sato, 15 379 Huenna B 14.141 0.12 B a Margot, 03 B a 4.022 2102.
    [Show full text]