The Causal Foundations of Applied Probability and Statistics [Ch. 31 In: Dechter, R., Halpern, J., and Geffner, H., Eds. Probab
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Difference-Making Account of Causation1
A difference-making account of causation1 Wolfgang Pietsch2, Munich Center for Technology in Society, Technische Universität München, Arcisstr. 21, 80333 München, Germany A difference-making account of causality is proposed that is based on a counterfactual definition, but differs from traditional counterfactual approaches to causation in a number of crucial respects: (i) it introduces a notion of causal irrelevance; (ii) it evaluates the truth-value of counterfactual statements in terms of difference-making; (iii) it renders causal statements background-dependent. On the basis of the fundamental notions ‘causal relevance’ and ‘causal irrelevance’, further causal concepts are defined including causal factors, alternative causes, and importantly inus-conditions. Problems and advantages of the proposed account are discussed. Finally, it is shown how the account can shed new light on three classic problems in epistemology, the problem of induction, the logic of analogy, and the framing of eliminative induction. 1. Introduction ......................................................................................................................................................... 2 2. The difference-making account ........................................................................................................................... 3 2a. Causal relevance and causal irrelevance ....................................................................................................... 4 2b. A difference-making account of causal counterfactuals -
Case Study Applications of Statistics in Institutional Research
/-- ; / \ \ CASE STUDY APPLICATIONS OF STATISTICS IN INSTITUTIONAL RESEARCH By MARY ANN COUGHLIN and MARIAN PAGAN( Case Study Applications of Statistics in Institutional Research by Mary Ann Coughlin and Marian Pagano Number Ten Resources in Institutional Research A JOINTPUBLICA TION OF THE ASSOCIATION FOR INSTITUTIONAL RESEARCH AND THE NORTHEASTASSO CIATION FOR INSTITUTIONAL REASEARCH © 1997 Association for Institutional Research 114 Stone Building Florida State University Ta llahassee, Florida 32306-3038 All Rights Reserved No portion of this book may be reproduced by any process, stored in a retrieval system, or transmitted in any form, or by any means, without the express written permission of the publisher. Printed in the United States To order additional copies, contact: AIR 114 Stone Building Florida State University Tallahassee FL 32306-3038 Tel: 904/644-4470 Fax: 904/644-8824 E-Mail: [email protected] Home Page: www.fsu.edul-airlhome.htm ISBN 1-882393-06-6 Table of Contents Acknowledgments •••••••••••••••••.•••••••••.....••••••••••••••••.••. Introduction .•••••••••••..•.•••••...•••••••.....••••.•••...••••••••• 1 Chapter 1: Basic Concepts ..•••••••...••••••...••••••••..••••••....... 3 Characteristics of Variables and Levels of Measurement ...................3 Descriptive Statistics ...............................................8 Probability, Sampling Theory and the Normal Distribution ................ 16 Chapter 2: Comparing Group Means: Are There Real Differences Between Av erage Faculty Salaries Across Departments? •...••••••••.••.•••••• -
Applied Mathematics 1
Applied Mathematics 1 MATH 0180 Intermediate Calculus 1 Applied Mathematics MATH 0520 Linear Algebra 2 1 APMA 0350 Applied Ordinary Differential Equations 2 & APMA 0360 and Applied Partial Differential Equations Chair I 3 4 Bjorn Sandstede Select one course on programming from the following: 1 APMA 0090 Introduction to Mathematical Modeling Associate Chair APMA 0160 Introduction to Computing Sciences Kavita Ramanan CSCI 0040 Introduction to Scientific Computing and The Division of Applied Mathematics at Brown University is one of Problem Solving the most prominent departments at Brown, and is also one of the CSCI 0111 Computing Foundations: Data oldest and strongest of its type in the country. The Division of Applied CSCI 0150 Introduction to Object-Oriented Mathematics is a world renowned center of research activity in a Programming and Computer Science wide spectrum of traditional and modern mathematics. It explores the connections between mathematics and its applications at both CSCI 0170 Computer Science: An Integrated the research and educational levels. The principal areas of research Introduction activities are ordinary, functional, and partial differential equations: Five additional courses, of which four should be chosen from 5 stochastic control theory; applied probability, statistics and stochastic the 1000-level courses taught by the Division of Applied systems theory; neuroscience and computational molecular biology; Mathematics. APMA 1910 cannot be used as an elective. numerical analysis and scientific computation; and the mechanics of Total Credits 10 solids, materials science and fluids. The effort in virtually all research 1 ranges from applied and algorithmic problems to the study of fundamental Substitution of alternate courses for the specific requirements is mathematical questions. -
(STROBE) Statement: Guidelines for Reporting Observational Studies
Policy and practice The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies* Erik von Elm,a Douglas G Altman,b Matthias Egger,a,c Stuart J Pocock,d Peter C Gøtzsche e & Jan P Vandenbroucke f for the STROBE Initiative Abstract Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study’s generalizability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control and cross-sectional studies. We convened a two-day workshop, in September 2004, with methodologists, researchers and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results and discussion sections of articles. Eighteen items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the web sites of PLoS Medicine, Annals of Internal Medicine and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies. -
Causal Effects of Monetary Shocks: Semiparametric
Causal effects of monetary shocks: Semiparametric conditional independence tests with a multinomial propensity score1 Joshua D. Angrist Guido M. Kuersteiner MIT Georgetown University This Revision: April 2010 1This paper is a revised version of NBER working paper 10975, December 2004. We thank the Romers’for sharing their data, Alberto Abadie, Xiaohong Chen, Jordi Gali, Simon Gilchrist, Yanqin Fan, Stefan Hoderlein, Bernard Salanié and James Stock for helpful discussions and seminar and conference participants at ASSA 2006, Auckland, Berkeley, BU, Columbia, Harvard-MIT, Georgetown, Indiana, Illinois, Konstanz, LAMES 2006, the 2004 NSF/NBER Time Series Conference, CIREQ Monteral, Rochester, Rutgers, Stanford, St. Gallen, the Triangle Econometrics Workshop, UCLA, Wisconsin, Zurich and the 2nd conference on evaluation research in Mannheim for helpful comments. Thanks also go to the editor and referees for helpful suggestions and comments. Kuersteiner gratefully acknowledges support from NSF grants SES-0095132 and SES-0523186. Abstract We develop semiparametric tests for conditional independence in time series models of causal effects. Our approach is motivated by empirical studies of monetary policy effects. Our approach is semiparametric in the sense that we model the process determining the distribution of treatment —the policy propensity score — but leave the model for outcomes unspecified. A conceptual innovation is that we adapt the cross-sectional potential outcomes framework to a time series setting. We also develop root-T consistent distribution-free inference methods for full conditional independence testing, appropriate for dependent data and allowing for first-step estimation of the (multinomial) propensity score. Keywords: Potential outcomes, monetary policy, causality, conditional independence, functional martingale difference sequences, Khmaladze transform, empirical Rosenblatt transform 1 Introduction The causal connection between monetary policy and real economic variables is one of the most important and widely studied questions in macroeconomics. -
Alireza Sheikh-Zadeh, Ph.D
Alireza Sheikh-Zadeh, Ph.D. Assistant Professor of Practice in Data Science Rawls College of Business, Texas Tech University Area of Information Systems and Quantitative Sciences (ISQS) 703 Flint Ave, Lubbock, TX 79409 (806) 834-8569, [email protected] EDUCATION Ph.D. in Industrial Engineering, 2017 Industrial Engineering Department at the University of Arkansas, Fayetteville, AR Dissertation: “Developing New Inventory Segmentation Methods for Large-Scale Multi-Echelon In- ventory Systems” (Advisor: Manuel D. Rossetti) M.Sc. in Industrial Engineering (with concentration in Systems Management), 2008 Industrial Engineering & Systems Management Department at Tehran Polytechnic, Tehran, Iran Thesis: “System Dynamics Modeling for Study and Design of Science and Technology Parks for The Development of Deprived Regions” (Advisor: Reza Ramazani) AREA of INTEREST Data Science & Machine Learning Supply Chain Analytics Applied Operations Research System Dynamics Simulation and Stochastic Modeling Logistic Contracting PUBLICATIONS Journal Papers (including under review papers) • Sheikhzadeh, A., & Farhangi, H., & Rossetti, M. D. (under review), ”Inventory Grouping and Sensitivity Analysis in Large-Scale Spare Part Systems”, submitted work. • Sheikhzadeh, A., Rossetti, M. D., & Scott, M. (2nd review), ”Clustering, Aggregation, and Size-Reduction for Large-Scale Multi-Echelon Spare-Part Replenishment Systems,” Omega: The International Journal of Management Science. • Sheikhzadeh, A., & Rossetti, M. D. (4th review), ”Classification Methods for Problem Size Reduction in Spare Part Provisioning,” International Journal of Production Economics. • Al-Rifai, M. H., Rossetti, M. D., & Sheikhzadeh, A. (2016), ”A Heuristic Optimization Algorithm for Two- Echelon (r; Q) Inventory Systems with Non-Identical Retailers,” International Journal of Inventory Re- search. • Karimi-Nasab, M., Bahalke, U., Feili, H. R., Sheikhzadeh, A., & Dolatkhahi, K. -
A Visual Analytics Approach for Exploratory Causal Analysis: Exploration, Validation, and Applications
A Visual Analytics Approach for Exploratory Causal Analysis: Exploration, Validation, and Applications Xiao Xie, Fan Du, and Yingcai Wu Fig. 1. The user interface of Causality Explorer demonstrated with a real-world audiology dataset that consists of 200 rows and 24 dimensions [18]. (a) A scalable causal graph layout that can handle high-dimensional data. (b) Histograms of all dimensions for comparative analyses of the distributions. (c) Clicking on a histogram will display the detailed data in the table view. (b) and (c) are coordinated to support what-if analyses. In the causal graph, each node is represented by a pie chart (d) and the causal direction (e) is from the upper node (cause) to the lower node (result). The thickness of a link encodes the uncertainty (f). Nodes without descendants are placed on the left side of each layer to improve readability (g). Users can double-click on a node to show its causality subgraph (h). Abstract—Using causal relations to guide decision making has become an essential analytical task across various domains, from marketing and medicine to education and social science. While powerful statistical models have been developed for inferring causal relations from data, domain practitioners still lack effective visual interface for interpreting the causal relations and applying them in their decision-making process. Through interview studies with domain experts, we characterize their current decision-making workflows, challenges, and needs. Through an iterative design process, we developed a visualization tool that allows analysts to explore, validate, arXiv:2009.02458v1 [cs.HC] 5 Sep 2020 and apply causal relations in real-world decision-making scenarios. -
Causal Inference for Process Understanding in Earth Sciences
Causal inference for process understanding in Earth sciences Adam Massmann,* Pierre Gentine, Jakob Runge May 4, 2021 Abstract There is growing interest in the study of causal methods in the Earth sciences. However, most applications have focused on causal discovery, i.e. inferring the causal relationships and causal structure from data. This paper instead examines causality through the lens of causal inference and how expert-defined causal graphs, a fundamental from causal theory, can be used to clarify assumptions, identify tractable problems, and aid interpretation of results and their causality in Earth science research. We apply causal theory to generic graphs of the Earth sys- tem to identify where causal inference may be most tractable and useful to address problems in Earth science, and avoid potentially incorrect conclusions. Specifically, causal inference may be useful when: (1) the effect of interest is only causally affected by the observed por- tion of the state space; or: (2) the cause of interest can be assumed to be independent of the evolution of the system’s state; or: (3) the state space of the system is reconstructable from lagged observations of the system. However, we also highlight through examples that causal graphs can be used to explicitly define and communicate assumptions and hypotheses, and help to structure analyses, even if causal inference is ultimately challenging given the data availability, limitations and uncertainties. Note: We will update this manuscript as our understanding of causality’s role in Earth sci- ence research evolves. Comments, feedback, and edits are enthusiastically encouraged, and we arXiv:2105.00912v1 [physics.ao-ph] 3 May 2021 will add acknowledgments and/or coauthors as we receive community contributions. -
Dictionary Epidemiology
A Dictionary ofof Epidemiology Fifth Edition Edited for the International Epidemiological Association by Miquel Porta Professor of Preventive Medicine & Public Health, School of Medicine, Universitat Autònoma de Barcelona; Senior Scientist, Institut Municipal d’Investigació Mèdica, Barcelona, Spain; Adjunct Professor of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill Associate Editors Sander Greenland John M. Last 1 2008 PPorta_FM.inddorta_FM.indd iiiiii 44/16/08/16/08 111:51:201:51:20 PPMM 1 Oxford University Press, Inc., publishes works that further Oxford University’s objective excellence in research, schollarship, and education Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi Shanghai Taipei Toronto With offi ces in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Copyright © 1983, 1988, 1995, 2001, 2008 International Epidemiological Association, Inc. Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 www.oup-usa.org All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. This edition was prepared with support from Esteve Foundation (Barcelona, Catalonia, Spain) (http://www.esteve.org) Library of Congress Cataloging-in-Publication Data A dictionary of epidemiology / edited for the International Epidemiological Association by Miquel Porta; associate editors, John M. Last . [et al.].—5th ed. p. cm. Includes bibliographical references and index. -
Regression Assumptions in Clinical Psychology Research Practice—A Systematic Review of Common Misconceptions
Regression assumptions in clinical psychology research practice—a systematic review of common misconceptions Anja F. Ernst and Casper J. Albers Heymans Institute for Psychological Research, University of Groningen, Groningen, The Netherlands ABSTRACT Misconceptions about the assumptions behind the standard linear regression model are widespread and dangerous. These lead to using linear regression when inappropriate, and to employing alternative procedures with less statistical power when unnecessary. Our systematic literature review investigated employment and reporting of assumption checks in twelve clinical psychology journals. Findings indicate that normality of the variables themselves, rather than of the errors, was wrongfully held for a necessary assumption in 4% of papers that use regression. Furthermore, 92% of all papers using linear regression were unclear about their assumption checks, violating APA- recommendations. This paper appeals for a heightened awareness for and increased transparency in the reporting of statistical assumption checking. Subjects Psychiatry and Psychology, Statistics Keywords Linear regression, Statistical assumptions, Literature review, Misconceptions about normality INTRODUCTION One of the most frequently employed models to express the influence of several predictors Submitted 18 November 2016 on a continuous outcome variable is the linear regression model: Accepted 17 April 2017 Published 16 May 2017 Yi D β0 Cβ1X1i Cβ2X2i C···CβpXpi C"i: Corresponding author Casper J. Albers, [email protected] This equation predicts the value of a case Yi with values Xji on the independent variables Academic editor Xj (j D 1;:::;p). The standard regression model takes Xj to be measured without error Shane Mueller (cf. Montgomery, Peck & Vining, 2012, p. 71). The various βj slopes are each a measure of Additional Information and association between the respective independent variable Xj and the dependent variable Y. -
Statistics As a Condemned Building: a Demolition and Reconstruction Plan
EPIDEMIOLOGY SEMINAR / WINTER 2019 THE DEPARTMENT OF EPIDEMIOLOGY, BIOSTATISTICS AND OCCUPATIONAL HEALTH, - SEMINAR SERIES IS A SELF-APPROVED GROUP LEARNING ACTIVITY (SECTION 1) AS DEFINED BY THE MAINTENANCE OF CERTIFICATION PROGRAM OF THE ROYAL COLLEGE OF PHYSICIANS AND SURGEONS OF CANADA Sander Greenland Emeritus Professor Epidemiology and Statistics University of California, Los Angeles Statistics as a Condemned Building: A Demolition and Reconstruction Plan MONDAY, 18 FEBRUARY 2019 / 4:00PM 5:00PM McIntyre Medical Building 3655 promenade Sir William Osler – Meakins Rm 521 ALL ARE WELCOME ABSTRACT: OBJECTIVES BIO: As part of the vast debate about how 1. To stop dichotomania Sander Greenland is Emeritus to reform statistics, I will argue that (unnecessary chopping of quan- Professor of Epidemiology and Sta- probability-centered statistics should tities into dichotomies); tistics at the University of California, be replaced by an integra- Los Angeles, specializing in the lim- 2. To stop nullism (unwarranted tion of cognitive science, caus- itations and misuse of statistical bias toward "null hypotheses" of al modeling, data descrip- methods, especially in observational no association or no effect); tion, and information transmis- studies. He has published over 400 sion, with probability entering as 3. To replace terms and concepts articles and book chapters in epide- one of the mathemati- like "statistical significance" and miology, statistics, and medicine, cal tools for delineating the pri- "confidence interval" with com- and given over 250 invited lectures, mary elements. Ironically, giv- patibility statements about hy- seminars and courses en the decades of treating it as potheses and models. worldwide in epidemiologic and scapegoat for all the ills of statistics, statistical methodology. -
A Causation Coefficient and Taxonomy of Correlation/Causation Relationships
A causation coefficient and taxonomy of correlation/causation relationships Joshua Brulé∗ Abstract This paper introduces a causation coefficient which is defined in terms of probabilistic causal models. This coefficient is suggested as the natural causal analogue of the Pearson correlation coefficient and permits comparing causation and correlation to each other in a simple, yet rigorous manner. Together, these coefficients provide a natural way to classify the possible correlation/causation relationships that can occur in practice and examples of each relationship are provided. In addition, the typical relationship between correlation and causation is analyzed to provide insight into why correlation and causation are often conflated. Finally, example calculations of the causation coefficient are shown on a real data set. Introduction The maxim, “Correlation is not causation”, is an important warning to analysts, but provides very little information about what causation is and how it relates to correlation. This has prompted other attempts at summarizing the relationship. For example, Tufte [1] suggests either, “Observed covariation is necessary but not sufficient for causality”, which is demonstrably false arXiv:1708.05069v1 [stat.ME] 5 Aug 2017 or, “Correlation is not causation but it is a hint”, which is correct, but still underspecified. In what sense is correlation a ‘hint’ to causation? Correlation is well understood and precisely defined. Generally speaking, correlation is any statistical relationship involving dependence, i.e. the ran- dom variables are not independent. More specifically, correlation can refer ∗Department of Computer Science, University of Maryland, College Park. [email protected] 1 to a descriptive statistic that summarizes the nature of the dependence.