The Evolution of Social Traits and Biodiversity in the Ants

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Social Traits and Biodiversity in the Ants The evolution of social traits and biodiversity in the ants. Thesis submitted by Henry Ferguson-Gow For the examination of the degree of Doctor of Philosophy University of East Anglia September 2014 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. i 1 Abstract Cooperation has shaped the evolution of life on Earth. The ants are the most numerically diverse of the eusocial Hymenoptera, and display wide variation in social complexity. This positions the ants as an ideal taxon in which to study social evolution in a comparative framework. Social evolution theory has generated many hypotheses that are testable in ants, however the lack of comprehensive or complete phylogenies, and the decentralised and scattered nature of trait data, has been an obstacle to these types of study. In this thesis I construct a large species-level, and a complete genus-level, phylogeny of the ants, and draw together a large dataset of social traits from the literature in order to test hypotheses concerning the evolution of social traits in the ants. I find evidence that the earliest ant was large bodied, and lived in small highly related colonies. I show that group size is a significant trait in the evolution of sociality in ants, predicting the probability of a species having polymorphic workers, or of being polyandrous. I also show that the change in these traits is correlated between ancestral nodes on the phylogeny. Furthermore, in the Attini, colony size correlates closely with non-reproductive and reproductive division of labour. Together these results cement group size as a driving force of social evolution in the ants, and this has interesting implications for social evolution in general. Finally, I report the first evidence that intermediate colony sizes, the presence of discrete worker castes and polygyny are associated with increased diversification rates in ants. This thesis provides a valuable tool for the study of comparative hypotheses in the ants in the form of a complete genus-level phylogeny, and offers significant evidence to support several key hypotheses in social evolution. Furthermore, these results generate hypotheses regarding the evolution of social traits for future research. ii 2 Table of Contents 1 Abstract ................................................................................................................... ii 2 Table of Contents .................................................................................................. iii 3 List of tables .......................................................................................................... vi 4 List of figures ......................................................................................................... ix 5 Acknowledgements .............................................................................................. xii 6 Declaration ........................................................................................................... xiii 1 Introduction ............................................................................................................. 1 1.1 The ants ............................................................................................................................. 1 1.2 The importance of social evolution .................................................................................. 2 1.3 Phylogenies and comparative biology .............................................................................. 4 1.4 Thesis overview ................................................................................................................. 4 2 A supertree phylogeny and a trait database for the Formicidae ......................... 7 2.1 Abstract ............................................................................................................................. 7 2.2 Introduction ...................................................................................................................... 7 2.2.1 The study of macroevolution .................................................................................... 7 2.2.2 Ant macroevolution .................................................................................................. 8 2.2.3 The history of ant systematics and phylogenetics .................................................... 8 2.2.4 Building large or complete phylogenies ..................................................................11 2.2.5 Trait data .................................................................................................................14 2.3 Methods ..........................................................................................................................14 2.3.1 Phylogenetic reconstruction ...................................................................................14 2.3.2 Trait database .........................................................................................................20 2.4 Results .............................................................................................................................25 2.4.1 Phylogenetic reconstruction ...................................................................................25 2.4.2 Trait data .................................................................................................................31 2.5 Discussion ........................................................................................................................34 2.5.1 Phylogenetic reconstruction ...................................................................................34 2.5.2 Database .................................................................................................................36 3 The phenotype of the ancestral ant ..................................................................... 38 3.1 Abstract ...........................................................................................................................38 3.2 Introduction ....................................................................................................................38 3.3 Method ...........................................................................................................................44 3.3.1 Trait Data.................................................................................................................44 3.3.2 Supertree construction ...........................................................................................45 iii 3.3.3 Ancestral state reconstruction ................................................................................45 3.3.4 Rates of worker head-width evolution ...................................................................47 3.4 Results .............................................................................................................................48 3.4.1 Ancestral state reconstructions ..............................................................................48 3.4.2 Rate shifts in worker head-width evolution ...........................................................50 3.5 Discussion ........................................................................................................................53 4 Social trait evolution and coevolution in the ants. ............................................. 56 4.1 Abstract ...........................................................................................................................56 4.2 Introduction ....................................................................................................................56 4.2.1 The evolution of social traits ...................................................................................57 4.2.2 Correlated evolution in social traits ........................................................................58 4.3 Method ...........................................................................................................................60 4.3.1 Trait data .................................................................................................................60 4.3.2 Supertree construction ...........................................................................................61 4.3.3 Ancestral state reconstructions ..............................................................................61 4.3.4 Correlated evolution ...............................................................................................61 4.4 Results .............................................................................................................................62 4.4.1 Ancestral state reconstructions ..............................................................................62 4.4.2 Correlated evolution ...............................................................................................62 4.5 Discussion ........................................................................................................................66 5 Colony size predicts division of labour in Attine ants ....................................... 69 5.1 Abstract ...........................................................................................................................69 5.2
Recommended publications
  • Appreciably Modified
    VI1.-KEYS TO THE GESER.1 AND SUBGEKERA OF ASTS BY WM. 31. WHEELER KEYTO THE SUBFAMILIES~ 8, 0 1. Cloacal orifice round, tefminal, surrounded by a fringe of hairs; sting transformed into a sustentacular apparatus for the orifice of the poison vesicle, which has a peculiar structure called by Fore1 '' pulviniferous vesicle" (vessie 2 coussinet) . Abdominal pedicel consisting of a single segment; no constriction between the second and third segments. Male genitalia not retractile. Nymphs rarely naked, most frequently enclosed in a cocoon. FORMICINA3. Cloacal orifice in the shape of a slit. ........................ .2. 2. Sting rudimentary (except Aneuretus) ; abdominal pedicel con- sisting of a single segment; no constriction between the second and third segments of the abdomen; the poison glands are often vestigial and there are anal glands which secrete an aromatic product of characteristic odor (Tapinoma-odor). Nymphs without a cocoon. ..........DOLICHODERINAE. Sting developed, though sometimes very small, but capable never- theless of being exserted from the abdomen. The first two segments of the abdomen usually modified, either forming together a two-jointed pedicel, or the first alone (petiole) forming the pedicel, the second (postpetiole) being merely constricted posteriorly and articulating with a spheroidal surface of the third segment, which is usually transversely striated (stridulatory organ) ; rarely the second segment is not appreciably modified. .................................... .3. 3. Pedicel of two segments, the petiole and the postpetiole; rarely (in Melissotarsus, e. 9.) the postpetiole is attached to the follow- ing segment over its whole extent. Frontal carin= usually separated from each other (except in the Melissotarsini and certain Attini). In the male the copulatory organs are almost always exserted (being entirely retractile in certain genera of the Solenopsidini only) ; cerci nearly always present (except Anergates) .
    [Show full text]
  • Ants in French Polynesia and the Pacific: Species Distributions and Conservation Concerns
    Ants in French Polynesia and the Pacific: species distributions and conservation concerns Paul Krushelnycky Dept of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, Hawaii Hervé Jourdan Centre de Biologie et de Gestion des Populations, INRA/IRD, Nouméa, New Caledonia The importance of ants • In most ecosystems, form a substantial portion of a communities’ biomass (1/3 of animal biomass and ¾ of insect biomass in Amazon rainforest) Photos © Alex Wild The importance of ants • In most ecosystems, form a substantial portion of a communities’ biomass (1/3 of animal biomass and ¾ of insect biomass in Amazon rainforest) • Involved in many important ecosystem processes: predator/prey relationships herbivory seed dispersal soil turning mutualisms Photos © Alex Wild The importance of ants • Important in shaping evolution of biotic communities and ecosystems Photos © Alex Wild Ants in the Pacific • Pacific archipelagoes the most remote in the world • Implications for understanding ant biogeography (patterns of dispersal, species/area relationships, community assembly) • Evolution of faunas with depauperate ant communities • Consequent effects of ant introductions Hypoponera zwaluwenburgi Ants in the Amblyopone zwaluwenburgi Pacific – current picture Ponera bableti Indigenous ants in the Pacific? Approx. 30 - 37 species have been labeled “wide-ranging Pacific natives”: Adelomyrmex hirsutus Ponera incerta Anochetus graeffei Ponera loi Camponotus chloroticus Ponera swezeyi Camponotus navigator Ponera tenuis Camponotus rufifrons
    [Show full text]
  • Escovopsis Kreiselii Sp
    RESEARCH ARTICLE New Light on the Systematics of Fungi Associated with Attine Ant Gardens and the Description of Escovopsis kreiselii sp. nov. Lucas A. Meirelles1, Quimi V. Montoya1, Scott E. Solomon2, Andre Rodrigues1* 1 Department of Biochemistry and Microbiology, UNESP Univ Estadual Paulista, Rio Claro, SP, Brazil, 2 Department of Biosciences, Rice University, Houston, TX, United States of America * [email protected] Abstract Since the formal description of fungi in the genus Escovopsis in 1990, only a few studies have focused on the systematics of this group. For more than two decades, only two Escovopsis species were described; however, in 2013, three additional Escovopsis species were formally OPEN ACCESS described along with the genus Escovopsioides, both found exclusively in attine ant gardens. Citation: Meirelles LA, Montoya QV, Solomon SE, During a survey for Escovopsis species in gardens of the lower attine ant Mycetophylax Rodrigues A (2015) New Light on the Systematics of morschi in Brazil, we found four strains belonging to the pink-colored Escovopsis clade. Fungi Associated with Attine Ant Gardens and the Careful examination of these strains revealed significant morphological differences when Description of Escovopsis kreiselii sp. nov.. PLoS ONE 10(1): e0112067. doi:10.1371/journal. compared to previously described species of Escovopsis and Escovopsioides.Basedon pone.0112067 the type of conidiogenesis (sympodial), as well as morphology of conidiogenous cells Academic Editor: Nicole M. Gerardo, Emory (percurrent), non-vesiculated
    [Show full text]
  • ACANTHOMYRMEX Basispinosus
    ACANTHOMYRMEX basispinosus. Acanthomyrmex basispinosus Moffett, 1986c: 67, figs. 8A, 9-14 (s.w.) INDONESIA (Sulawesi). Status as species: Bolton, 1995b: 53; Yamada, Ito, et al. 2018: 10. careoscrobis. Acanthomyrmex careoscrobis Moffett, 1986c: 78, figs. 39A, 40-43 (w.) BORNEO (East Malaysia: Sarawak). Yamada, Ito, et al. 2018: 7, 18 (s. ergatoid q., m.). Status as species: Bolton, 1995b: 53; Pfeiffer, et al. 2011: 44; Yamada, Ito, et al. 2018: 15 (redescription). concavus. Acanthomyrmex concavus Moffett, 1986c: 80, figs. 39B-C, 44-47 (w.) BORNEO (East Malaysia: Sarawak, Sabah). Status as species: Bolton, 1995b: 53; Pfeiffer, et al. 2011: 44; Yamada, Ito, et al. 2018: 10. crassispinus. Acanthomyrmex crassispina Wheeler, W.M. 1930a: 101, fig. 2 (w.) TAIWAN. Moffett, 1986c: 69 (s.). Status as species: Chapman & Capco, 1951: 114; Moffett, 1986c: 69 (redescription); Bolton, 1995b: 53; Lin & Wu, 1998: 86 (redescription); Lin & Wu, 2003: 64; Terayama, 2009: 187; Yamada, Ito, et al. 2018: 10. dusun. Acanthomyrmex dusun Wheeler, W.M. 1919e: 89 (s.) BORNEO (East Malaysia: Sarawak). [Misspelled as dusan by Chapman & Capco, 1951: 115.] Status as species: Chapman & Capco, 1951: 115; Moffett, 1986c: 70 (redescription); Bolton, 1995b: 53; Pfeiffer, et al. 2011: 44; Yamada, Ito, et al. 2018: 10. dyak. Acanthomyrmex dyak Wheeler, W.M. 1919e: 86 (s.w.) BORNEO (East Malaysia: Sarawak). Status as species: Chapman & Capco, 1951: 115. Junior synonym of ferox: Moffett, 1986c: 70; Bolton, 1995b: 53. ferox. Acanthomyrmex ferox Emery, 1893f: 245 (footnote), pl. 6, fig. 11 (w.) WEST MALAYSIA. [Acanthomyrmex ferox Emery, 1893a: cclxxvi. Nomen nudum.] Moffett, 1986c: 72 (s.q.m.). Status as species: Emery, 1900d: 678; Emery, 1924d: 235; Chapman & Capco, 1951: 115; Moffett, 1985a: 165; Moffett, 1986c: 70 (redescription); Bolton, 1995b: 53; Jaitrong & Nabhitabhata, 2005: 10; Pfeiffer, et al.
    [Show full text]
  • Check List 8(4): 722–730, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (Available at Journal of Species Lists and Distribution
    Check List 8(4): 722–730, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check list of ground-dwelling ants (Hymenoptera: PECIES S Formicidae) of the eastern Acre, Amazon, Brazil OF Patrícia Nakayama Miranda 1,2*, Marco Antônio Oliveira 3, Fabricio Beggiato Baccaro 4, Elder Ferreira ISTS 1 5,6 L Morato and Jacques Hubert Charles Delabie 1 Universidade Federal do Acre, Centro de Ciências Biológicas e da Natureza. BR 364 – Km 4 – Distrito Industrial. CEP 69915-900. Rio Branco, AC, Brazil. 2 Instituo Federal do Acre, Campus Rio Branco. Avenida Brasil 920, Bairro Xavier Maia. CEP 69903-062. Rio Branco, AC, Brazil. 3 Universidade Federal de Viçosa, Campus Florestal. Rodovia LMG 818, Km 6. CEP 35690-000. Florestal, MG, Brazil. 4 Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-graduação em Ecologia. CP 478. CEP 69083-670. Manaus, AM, Brazil. 5 Comissão Executiva do Plano da Lavoura Cacaueira, Centro de Pesquisas do Cacau, Laboratório de Mirmecologia – CEPEC/CEPLAC. Caixa Postal 07. CEP 45600-970. Itabuna, BA, Brazil. 6 Universidade Estadual de Santa Cruz. CEP 45650-000. Ilhéus, BA, Brazil. * Corresponding author. E-mail: [email protected] Abstract: The ant fauna of state of Acre, Brazilian Amazon, is poorly known. The aim of this study was to compile the species sampled in different areas in the State of Acre. An inventory was carried out in pristine forest in the municipality of Xapuri. This list was complemented with the information of a previous inventory carried out in a forest fragment in the municipality of Senador Guiomard and with a list of species deposited at the Entomological Collection of National Institute of Amazonian Research– INPA.
    [Show full text]
  • A Guide to the Ants of Sabangau
    A Guide to the Ants of Sabangau The Orangutan Tropical Peatland Project November 2014 A Guide to the Ants of Sabangau All original text, layout and illustrations are by Stijn Schreven (e-mail: [email protected]), supple- mented by quotations (with permission) from taxonomic revisions or monographs by Donat Agosti, Barry Bolton, Wolfgang Dorow, Katsuyuki Eguchi, Shingo Hosoishi, John LaPolla, Bernhard Seifert and Philip Ward. The guide was edited by Mark Harrison and Nicholas Marchant. All microscopic photography is from Antbase.net and AntWeb.org, with additional images from Andrew Walmsley Photography, Erik Frank, Stijn Schreven and Thea Powell. The project was devised by Mark Harrison and Eric Perlett, developed by Eric Perlett, and coordinated in the field by Nicholas Marchant. Sample identification, taxonomic research and fieldwork was by Stijn Schreven, Eric Perlett, Benjamin Jarrett, Fransiskus Agus Harsanto, Ari Purwanto and Abdul Azis. Front cover photo: Workers of Polyrhachis (Myrma) sp., photographer: Erik Frank/ OuTrop. Back cover photo: Sabangau forest, photographer: Stijn Schreven/ OuTrop. © 2014, The Orangutan Tropical Peatland Project. All rights reserved. Email [email protected] Website www.outrop.com Citation: Schreven SJJ, Perlett E, Jarrett BJM, Harsanto FA, Purwanto A, Azis A, Marchant NC, Harrison ME (2014). A Guide to the Ants of Sabangau. The Orangutan Tropical Peatland Project, Palangka Raya, Indonesia. The views expressed in this report are those of the authors and do not necessarily represent those of OuTrop’s partners or sponsors. The Orangutan Tropical Peatland Project is registered in the UK as a non-profit organisation (Company No. 06761511) and is supported by the Orangutan Tropical Peatland Trust (UK Registered Charity No.
    [Show full text]
  • Zootaxa 341: 1–6 (2003) ISSN 1175-5326 (Print Edition) ZOOTAXA 341 Copyright © 2003 Magnolia Press ISSN 1175-5334 (Online Edition)
    Zootaxa 341: 1–6 (2003) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 341 Copyright © 2003 Magnolia Press ISSN 1175-5334 (online edition) A new myrmicine ant genus from Malaysia with uncertain affinities (Hymenoptera: Formicidae) FERNANDO FERNÁNDEZ C. Profesor Asociado, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Apartado 7495, Bogotá D.C., Colombia [email protected] Abstract The new myrmicine genus Tyrannomyrmex is described based on a solitary worker from Negri Sembilam, Malaysia. The principal traits of the ant are mandibles with two teeth, inner modified setae on the ventral margin of mandibles, and mesosoma devoid of any groove or suture. This new genus somewhat resembles the Adelomyrmex genus-group (particularly Baracidris from Africa) especially because of the modified setae; the structure is different, however (cylindric in Tyranno- myrmex, spatulate in Adelomyrmex genus-group) and the similarity may be a convergence. The antennal and clypeal configuration, as well as tooth number, distance the genus from the adelomyr- mecines. The genus is described from a single species, T. rex n. sp., from Malaysia. A discussion of the affinities with Adelomyrmex genus-group is presented. Key words: Ants, Formicidae, Malaysia, Tyrannomyrmex rex Introduction Although there have been advances in the systematics and phylogeny of some ant groups, we are still far from a complete understanding of the taxonomy and phylogeny of the ants (Brown, 2000). This is especially true for the subfamily Myrmicinae, for which there are no modern proposals for the internal classification of its component species. With a few exceptions, we do no know the limits or relationships of most of the proposed supraspe- cific taxa, thus unfortunately the genus described here cannot be placed reliably in a tribe or genus group.
    [Show full text]
  • Digging Deeper Into the Ecology of Subterranean Ants: Diversity and Niche Partitioning Across Two Continents
    diversity Article Digging Deeper into the Ecology of Subterranean Ants: Diversity and Niche Partitioning across Two Continents Mickal Houadria * and Florian Menzel Institute of Organismic and Molecular Evolution, Johannes-Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; [email protected] * Correspondence: [email protected] Abstract: Soil fauna is generally understudied compared to above-ground arthropods, and ants are no exception. Here, we compared a primary and a secondary forest each on two continents using four different sampling methods. Winkler sampling, pitfalls, and four types of above- and below-ground baits (dead, crushed insects; melezitose; living termites; living mealworms/grasshoppers) were applied on four plots (4 × 4 grid points) on each site. Although less diverse than Winkler samples and pitfalls, subterranean baits provided a remarkable ant community. Our baiting system provided a large dataset to systematically quantify strata and dietary specialisation in tropical rainforest ants. Compared to above-ground baits, 10–28% of the species at subterranean baits were overall more common (or unique to) below ground, indicating a fauna that was truly specialised to this stratum. Species turnover was particularly high in the primary forests, both concerning above-ground and subterranean baits and between grid points within a site. This suggests that secondary forests are more impoverished, especially concerning their subterranean fauna. Although subterranean ants rarely displayed specific preferences for a bait type, they were in general more specialised than above-ground ants; this was true for entire communities, but also for the same species if they foraged in both strata. Citation: Houadria, M.; Menzel, F.
    [Show full text]
  • Download PDF File (177KB)
    Myrmecological News 19 61-64 Vienna, January 2014 A novel intramandibular gland in the ant Tatuidris tatusia (Hymenoptera: Formicidae) Johan BILLEN & Thibaut DELSINNE Abstract The mandibles of Tatuidris tatusia workers are completely filled with glandular cells that represent a novel kind of intra- mandibular gland that has not been found in ants so far. Whereas the known intramandibular glands in ants are either epi- thelial glands of class-1, or scattered class-3 cells that open through equally scattered pores on the mandibular surface, the ducts of the numerous class-3 secretory cells of Tatuidris all converge to open through a conspicuous sieve plate at the proximal ventral side near the inner margin of each mandible. Key words: Exocrine glands, mandibles, histology, Agroecomyrmecinae. Myrmecol. News 19: 61-64 (online 16 August 2013) ISSN 1994-4136 (print), ISSN 1997-3500 (online) Received 31 May 2013; revision received 5 July 2013; accepted 16 July 2013 Subject Editor: Alexander S. Mikheyev Johan Billen (contact author), Zoological Institute, University of Leuven, Naamsestraat 59, box 2466, B-3000 Leuven, Belgium. E-mail: [email protected] Thibaut Delsinne, Biological Assessment Section, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium. E-mail: [email protected] Introduction Ants are well known as walking glandular factories, with that T. tatusia is a top predator of the leaf-litter food web an impressive overall variety of 75 glands recorded so far (JACQUEMIN & al. in press). We took advantage of the for the family (BILLEN 2009a). The glands are not only availability of two live specimens to carry out a first study found in the head, thorax and abdomen, but also occur in of the internal morphology in the Agroecomyrmecinae.
    [Show full text]
  • Native and Non-Native Ant Impacts on Native Fungi
    State University of New York College at Buffalo - Buffalo State College Digital Commons at Buffalo State Biology Theses Biology 8-2021 Native and non-native ant impacts on native fungi Chloe Mokadam State University of New York College at Buffalo - Buffalo State College, [email protected] Advisor Robert J. Warren II, Ph.D., Associate Professor of Biology First Reader Christopher Pennuto, Ph.D., Professor of Biology Second Reader Olga Novikova, Ph.D., Assistant Professor of Biology Department Chair Daniel L. Potts, Ph.D., Chair and Associate Professor of Biology To learn more about the Biology Department and its educational programs, research, and resources, go to https://biology.buffalostate.edu/. Recommended Citation Mokadam, Chloe, "Native and non-native ant impacts on native fungi" (2021). Biology Theses. 45. https://digitalcommons.buffalostate.edu/biology_theses/45 Follow this and additional works at: https://digitalcommons.buffalostate.edu/biology_theses Part of the Biology Commons Native and non-native ant impacts on native fungi by Chloe Mokadam An Abstract of a Thesis in Biology Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Arts August 2021 Buffalo State College State University of New York Department of Biology 1 ABSTRACT OF THESIS Non-native ant impacts on native fungi Organisms produce weapons for defense against pathogens and competitors. In response, competitors and pathogens develop resistance to these weapons. However, when a species invades a new range, its “novel weapons” may be more effective against native species that did not co-evolve with them. Via specialized glands and microbial associates, ants produce antifungal weapons for defense against entomopathogenic fungi.
    [Show full text]
  • The Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C
    ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance.
    [Show full text]
  • Ants of the Genus Lordomyrma Emery (2) the Japanese L. Azumai
    Zootaxa 3282: 45–60 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Ants of the genus Lordomyrma Emery (2) The Japanese L. azumai (Santschi) and six new species from India, Viet Nam and the Philippines (Hymenoptera: Formicidae: Myrmicinae) ROBERT W. TAYLOR Research School of Biological Sciences, Australian National University, Canberra, ACT, 2600, Australia. Honorary Research Fellow, CSIRO Ecosystem Sciences, Canberra, ACT, 2601, Australia. E-mail: [email protected] Abstract Lordomyrma is recorded for the first time from India and mainland southeast Asia. The Japanese L. azumai is reviewed and six new worker-based species described: L. lakshmi (Kerala State, India); L. hmong (Lao Cai Province, Vietnam); L. diwata, L. emarginata and L. idianale (Mt Isarog, Luzon, Philippines) and L. limatula (Leyte, Philippines). Gynes are characterized for L. azumai, L. hmong and L. limatula. All taxa are diagnosed, illustrated, and their affinities discussed. Key words: Ants, Formicidae, Lordomyrma, Stenamma, Lasiomyrma, taxonomy, new species, biogeography, Japan, Hon- shu, Shikoku, Kyushu, India, Kerala, Viet Nam, Lao Cai, Philippines, Luzon, Leyte, Mt Isarog Introduction This is the second paper (following Taylor, 2009) of a project seeking to review and name the many known undescribed morphospecies reasonably considered taxonomically congeneric with the somewhat aberrant ant Lordomyrma furcifera Emery (type-species of Lordomyrma Emery 1897) and its more conservative putative relative L. azumai (Santschi). The latter is arguably the least morphologically derived known Lordomyrma species (Taylor, 2009) and its characteristics may thus be very generally considered archetypal for the genus. In this analysis L.
    [Show full text]