Ecology and the Origin of Species

Total Page:16

File Type:pdf, Size:1020Kb

Ecology and the Origin of Species 372 Review TRENDS in Ecology & Evolution Vol.16 No.7 July 2001 Ecology and the origin of species Dolph Schluter The ecological hypothesis of speciation is that reproductive isolation evolves direct selection on premating isolation ultimately as a consequence of divergent natural selection on traits between (REINFORCEMENT). Distinguishing the ways in which environments. Ecological speciation is general and might occur in allopatry or divergent selection has led to reproductive isolation is sympatry, involve many agents of natural selection, and result from a among the greatest challenges of the empirical study combination of adaptive processes. The main difficulty of the ecological of ecological speciation. hypothesis has been the scarcity of examples from nature, but several potential In what is perhaps the classic scenario for cases have recently emerged. I review the mechanisms that give rise to new ecological speciation (Fig. 1), reproductive isolation species by divergent selection, compare ecological speciation with its between two populations starts to build in allopatry as alternatives, summarize recent tests in nature, and highlight areas requiring populations accumulate adaptations to unique aspects research. of their environments. Premating isolation then evolves to completion by reinforcement after sympatry ECOLOGICAL SPECIATION (see Glossary) occurs when is secondarily established. The timing of SECONDARY DIVERGENT SELECTION on traits between populations or CONTACT is flexible, however, and the extremes of subpopulations in contrasting environments leads possibility lead to departures from this classic model. directly or indirectly to the evolution of REPRODUCTIVE At one extreme is pure ALLOPATRIC SPECIATION, in which ISOLATION. The concept of ecological speciation dates the sympatric phase is entirely absent. New species back to the 1940s, from the time the BIOLOGICAL SPECIES might eventually become sympatric, but this occurs CONCEPT was developed. Dobzhansky1 believed that after reproductive isolation is complete. The other ‘SPECIATION in Drosophila proceeds mainly through extreme is full-blown SYMPATRIC SPECIATION, which evolving physiological complexes which are successful completely lacks the allopatric stage. Although debate each in its environment’. Mayr2 recognized that many about the plausibility of these extremes has long of the accumulated genetic differences between polarized research on speciation, from an ecological populations ‘particularly those affecting physiological perspective, the more fundamental issue concerns the and ecological characters, are potential isolating mechanisms that drive the evolution of reproductive mechanisms’. Acceptance of this perspective by many isolation, which is the focus of this article. evolutionists in the mid-20th century resulted from the inherent appeal and simple plausibility of By-product mechanisms ecological speciation. However, until recently, neither In the simplest models of ecological speciation, was there evidence to support ecological speciation, reproductive isolation builds between populations nor had tests been devised and applied to distinguish incidentally as a by-product of adaptation to ecological speciation from other mechanisms that alternative selection regimes2,3. Reproductive might also cause speciation in the wild, such as isolation is not directly favored by selection, but is a GENETIC DRIFT (BOX 1). secondary consequence of genetic differentiation driven by selection on other traits. This BY-PRODUCT Mechanisms of ecological speciation MECHANISM could lead to premating isolation and to ‘Ecological speciation’ is a concept that unites various forms of postmating isolation. speciation processes in which reproductive isolation Several laboratory experiments with Drosophila evolves ultimately as a consequence of divergent have simulated the early stages of by-product (including DISRUPTIVE) selection on traits between speciation (reviewed in Ref. 4), and these hint at how environments. ‘Environment’ refers to biotic and the process might work in nature. Kilias et al.5 raised abiotic elements of habitat (e.g. climate, resources different lines of Drosophila melanogaster for five and physical structure) as well as to interactions with years in either a cold–dry–dark or a other species (e.g. resource competition, predation, warm–damp–light environment. Dodd6 examined mutualism and various forms of interspecific mating preferences in replicate lines of Drosophila interference). A diversity of evolutionary processes pseudoobscura raised for one year on either starch- might be involved. Ecological speciation might occur based or maltose-based larval medium. In both Dolph Schluter in ALLOPATRY or in SYMPATRY. It might lead to mainly studies, some premating reproductive isolation Zoology Dept and The Center for Biodiversity premating isolation, mainly postmating isolation, or a evolved between lines that had experienced Research, The University combination of both. It includes several (but not all) contrasting environments, but no premating isolation of British Columbia, modes of speciation involving SEXUAL SELECTION. evolved between independent lines raised in the same Vancouver, BC, Canada Ecological speciation might come about indirectly as a environment (Fig. 2). The populations in these V6T 1Z4. e-mail: consequence of natural selection on morphological, experiments were fully allopatric, as in the first part [email protected] physiological or behavioral traits, or it might include of the classic scenario (Fig. 1). http://tree.trends.com 0169–5347/01/$ – see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0169-5347(01)02198-X Review TRENDS in Ecology & Evolution Vol.16 No.7 July 2001 373 Box 1. The major modes of speciation, according to initial causes Speciation modes have been classified mutations arise in separate populations References historically by the geographical occupying similar environments (Turelli et al.e, a Schluter, D. (1996) Ecological speciation in arrangement of populations undergoing the this issue). Reproductive isolation between postglacial fishes. Philos. Trans. R. Soc. London Ser. B 351, 807–814 process (allopatric, sympatric or parapatric), populations brought about by conflict and b Schluter, D. (1998) Ecological causes of a classification that focuses on the inhibitory coevolution between the sexes within speciation. In Endless Forms: Species and effects of gene flow on the evolution of populationsf–h is an example of this second Speciation (Howard, D. and Berlocher, S., eds), reproductive isolation. Some have argued mode. pp. 114–129, Oxford University Press that an alternative classification centering If populations are in contact before the c Orr, M.R. and Smith, T.B. (1998) Ecology and speciation. Trends Ecol. Evol. 13, 502–506 on mechanisms that drive the evolution of evolution of reproductive isolation is d Via, S. (2001) Sympatric speciation in animals: reproductive isolation would be more completed, natural selection might be the ugly duckling grows up. Trends Ecol. Evol. productivea–c (Viad, this issue). TableI breaks involved at a late stage of all four modes of 16, 381–390 modes of speciation events into four speciation, during reinforcement of e Turelli, M. et al. (2001) Theory and speciation. categories according to initial cause, and premating isolation (Turelli et al.e this Trends Ecol. Evol. 16, 330–343 f Palumbi, S.R. (1998) Species formation and the compares some other principal features of issue)i. Similarly, sexual selection might be evolution of gamete recognition loci. In Endless those categories. involved in every speciation mode, Forms: Species and Speciation (Howard, D. and Natural selection is involved at an early depending on the cause of divergence in Berlocher, S., eds), pp. 271–278, Oxford stage of two different modes of speciation. mate preferences. For this reason, the University Press Under ecological speciation, populations in presence of natural or sexual selection g Rice, W.R. (1998) Intergenomic conflict, interlocus antagonistic coevolution, and the different environments, or populations per se is probably not a good basis for evolution of reproductive isolation. In Endless exploiting different resources, experience classifying speciation events. Nevertheless, Forms: Species and Speciation (Howard, D. and contrasting natural selection pressures on the classification in Table I is coarse, and Berlocher, S., eds), pp. 261–270, Oxford traits that directly or indirectly bring about finer subdivisions are necessary to highlight University Press the evolution of reproductive isolation. differences in the roles of natural and sexual h Gavrilets, S. (2000) Rapid evolution of reproductive isolation driven by sexual conflict. However, divergence might also occur selection within each mode, as well as Nature 403, 886–889 under uniform selection, for example, if different roles for genetic drift in speciation i Dobzhansky, T. (1951) Genetics and the Origin different advantageous (but incompatible) initiated by that mechanism. of Species (3rd edn), Columbia University Press Table I.Modes of speciation Mode of speciation Mechanism of initial Initial form of Proximate basis of Examples of the roles of Example roles of divergence reproductive reduced hybrid natural selection sexual selection isolation fitness Ecological speciation Divergent natural Prezygotic or Ecological selection, Initial: Drive divergence in Amplify selection postzygotic genetic incompatibility
Recommended publications
  • Speciation in Heliconius Butterflies: Minimal Contact Followed 2 by Millions of Generations of Hybridisation 3 Simon H
    bioRxiv preprint doi: https://doi.org/10.1101/015800; this version posted March 2, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 1 Speciation in Heliconius Butterflies: Minimal Contact Followed 2 by Millions of Generations of Hybridisation 3 Simon H. Martin*1, Anders Eriksson*1,2, Krzysztof M. Kozak1, Andrea Manica1 and 4 Chris D. Jiggins1 5 1 Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 6 3EJ, United Kingdom 7 2 Integrative Systems Biology Laboratory, King Abdullah University of Science 8 and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia 9 * These authors contributed equally 10 Corresponding Author: S.H. Martin, [email protected] 11 Running Head: Change in the rate of gene flow during butterfly speciation bioRxiv preprint doi: https://doi.org/10.1101/015800; this version posted March 2, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 2 12 Abstract 13 Documenting the full extent of gene flow during speciation poses a challenge, as 14 species ranges change over time and current rates of hybridisation might not reflect 15 historical trends. Theoretical work has emphasized the potential for speciation in the 16 face of ongoing hybridisation, and the genetic mechanisms that might facilitate this 17 process.
    [Show full text]
  • Micro-Evolutionary Change and Population Dynamics of a Brood Parasite and Its Primary Host: the Intermittent Arms Race Hypothesis
    Oecologia (1998) 117:381±390 Ó Springer-Verlag 1998 Manuel Soler á Juan J. Soler á Juan G. Martinez Toma sPe rez-Contreras á Anders P. Mùller Micro-evolutionary change and population dynamics of a brood parasite and its primary host: the intermittent arms race hypothesis Received: 7 May 1998 / Accepted: 24 August 1998 Abstract A long-term study of the interactions between Key words Brood parasitism á Clamator glandarius á a brood parasite, the great spotted cuckoo Clamator Coevolution á Parasite counter-defences á Pica pica glandarius, and its primary host the magpie Pica pica, demonstrated local changes in the distribution of both magpies and cuckoos and a rapid increase of rejection of Introduction both mimetic and non-mimetic model eggs by the host. In rich areas, magpies improved three of their defensive Avian brood parasites exploit hosts by laying eggs in mechanisms: nest density and breeding synchrony in- their nests, and parental care for parasitic ospring is creased dramatically and rejection rate of cuckoo eggs subsequently provided by the host. Parasitism has a increased more slowly. A stepwise multiple regression strongly adverse eect on the ®tness of hosts, given that analysis showed that parasitism rate decreased as host the young parasite ejects all host ospring or outcom- density increased and cuckoo density decreased. A lo- petes them during the nestling period (Payne 1977; gistic regression analysis indicated that the probability Rothstein 1990). Thus, there is strong selection acting on of changes in magpie nest density in the study plots was hosts to evolve defensive mechanisms against a brood signi®cantly aected by the density of magpie nests parasite which, in turn, will develop adaptive counter- during the previous year (positively) and the rejection defences.
    [Show full text]
  • Diversification Under Sexual Selection: the Relative Roles of Mate Preference Strength and the Degree of Divergence in Mate Preferences Rafael L
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Eileen Hebets Publications Papers in the Biological Sciences 2013 Diversification under sexual selection: the relative roles of mate preference strength and the degree of divergence in mate preferences Rafael L. Rodríguez University of Wisconsin–Milwaukee, [email protected] Janette W. Boughman Michigan State University, [email protected] David A. Gray California State University Northridge, [email protected] Eileen A. Hebets University of Nebraska-Lincoln, [email protected] Gerlinde Höbel University of Wisconsin–Milwaukee, [email protected] See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/bioscihebets Part of the Animal Sciences Commons, Behavior and Ethology Commons, Biology Commons, Entomology Commons, and the Genetics and Genomics Commons Rodríguez, Rafael L.; Boughman, Janette W.; Gray, David A.; Hebets, Eileen A.; Höbel, Gerlinde; and Symes, Laurel B., "Diversification under sexual selection: the relative roles of mate preference strength and the degree of divergence in mate preferences" (2013). Eileen Hebets Publications. 71. http://digitalcommons.unl.edu/bioscihebets/71 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Eileen Hebets Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Rafael L. Rodríguez, Janette W. Boughman, David A. Gray, Eileen A. Hebets, Gerlinde Höbel, and Laurel B. Symes This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/bioscihebets/71 Ecology Letters, (2013) 16: 964–974 doi: 10.1111/ele.12142 IDEA AND PERSPECTIVE Diversification under sexual selection: the relative roles of mate preference strength and the degree of divergence in mate preferences Abstract Rafael L.
    [Show full text]
  • Reproductive Isolation of Two Sympatric Louseworts, Pedicularis
    Blackwell Publishing LtdOxford, UKBIJBiological Journal of the Linnean Society0024-4066© 2006 The Linnean Society of London? 2006 90? 3748 Original Article REPRODUCTIVE ISOLATION IN SYMPATRIC LOUSEWORTS C.-F. YANG ET AL . Biological Journal of the Linnean Society, 2007, 90, 37–48. With 4 figures Reproductive isolation of two sympatric louseworts, Pedicularis rhinanthoides and Pedicularis longiflora (Orobanchaceae): how does the same pollinator type avoid interspecific pollen transfer? CHUN-FENG YANG, ROBERT W. GITURU† and YOU-HAO GUO* College of Life Sciences, Wuhan University, Wuhan 430072, People’s Republic of China Received 11 April 2005; accepted for publication 1 March 2006 To study the isolation mechanism of two commonly intermingled louseworts, Pedicularis rhinanthoides and Pedic- ularis longiflora, pollination biology in three mixed populations with the two species was investigated during a 3- year project. The results indicated that higher flowering density could help to enhance pollinator activity, and thus increase reproductive output. Bumblebees are the exclusive pollinator for the two louseworts and are essential for their reproductive success. Reproductive isolation between the two species is achieved by a combination of pre- and postzygotic isolation mechanisms. Although both species are pollinated by bumblebees, the present study indicates they successfully avoid interspecific pollen transfer due to floral isolation. Mechanical isolation is achieved by the stigma in the two species picking up pollen from different parts of the pollinator’s body, whereas ethological isolation occurs due to flower constancy. Additionally, strong postzygotic isolation was demonstrated by non seed set after arti- ficial cross-pollination even with successful pollen tube growth. We describe the hitherto unreported role of variation in the tightness and direction of the twist of the corolla beak in maintaining mechanical isolation between Pedicu- laris species.
    [Show full text]
  • Ecological Character Displacement and the Study of Adaptation
    Commentary Ecological character displacement and the study of adaptation Jonathan B. Losos* Department of Biology, Campus Box 1137, Washington University, St. Louis, MO 63130 he study of adaptation—a central is- Tsue in biology since before the time of Darwin—is currently enjoying a renais- sance. Ridiculed two decades ago as fol- lowing a panglossian paradigm (1) that Fig. 1. (Upper) Two sympatric promulgated ‘‘just so stories’’ rather than species with broadly overlapping distributions of resource use. If re- testing hypotheses, evolutionary biology sources are limiting, then natural has become a vibrant field in which a selection may favor individuals in wide variety of methods—ranging from each species with traits that allow molecular developmental biology to each of them to use that portion of manipulative field experiments—are used the resource spectrum not used by to rigorously test adaptive hypotheses (2). the other species, as indicated by Nowhere is this more evident than in the the arrows. (Lower) The result may study of ecological character displace- be that the species diverge in trait value and resource use, thus mini- ment; a paper by Adams and Rohlf (3) in mizing competition for resources. a recent issue of PNAS is one of a growing number of studies that have used integra- tive, multidisciplinary approaches and have demonstrated that ecological char- placement was seen as a powerful and enon for which few convincing examples acter displacement appears to be an pervasive force structuring ecological could be found (e.g., refs. 14–16). important ecological and evolutionary communities. These interpretations cor- These debates—unpleasant as they COMMENTARY phenomenon.
    [Show full text]
  • Behavioural Mechanisms of Reproductive Isolation Between Two Hybridizing Dung Fly Species
    Animal Behaviour 132 (2017) 155e166 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Behavioural mechanisms of reproductive isolation between two hybridizing dung fly species * Athene Giesen , Wolf U. Blanckenhorn, Martin A. Schafer€ Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland article info Characterization of the phenotypic differentiation and genetic basis of traits that can contribute to Article history: reproductive isolation is an important avenue to understand the mechanisms of speciation. We quan- Received 29 November 2016 tified the degree of prezygotic isolation and geographical variation in mating behaviour among four Initial acceptance 26 January 2017 populations of Sepsis neocynipsea that occur in allopatry, parapatry or sympatry with four populations of Final acceptance 21 June 2017 its sister species Sepsis cynipsea. To obtain insights into the quantitative genetic basis and the role of selection against hybrid phenotypes we also investigated mating behaviour of F1 hybrid offspring and MS. number: 16-01039R corresponding backcrosses with the parental populations. Our study documents successful hybridization under laboratory conditions, with low copulation frequencies in heterospecific pairings but higher fre- Keywords: quencies in pairings of F1 hybrids signifying hybrid vigour. Analyses of F1 offspring and their parental biogeography backcrosses provided little evidence for sexual selection against hybrids.
    [Show full text]
  • Can Secondary Contact Following Range Expansion Be Distinguished from Barriers to Gene flow?
    Can secondary contact following range expansion be distinguished from barriers to gene flow? Johanna Bertl1,2, Harald Ringbauer3,4 and Michael G.B. Blum5 1 Department of Molecular Medicine, Aarhus University, Aarhus, Denmark 2 Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria 3 Department of Human Genetics, University of Chicago, Chicago, IL, USA 4 Institute of Science and Technology Austria, Klosterneuburg, Austria 5 Laboratoire TIMC-IMAG, UMR 5525, Université Grenoble Alpes, CNRS, Grenoble, France ABSTRACT Secondary contact is the reestablishment of gene flow between sister populations that have diverged. For instance, at the end of the Quaternary glaciations in Europe, secondary contact occurred during the northward expansion of the populations which had found refugia in the southern peninsulas. With the advent of multi-locus markers, secondary contact can be investigated using various molecular signatures including gradients of allele frequency, admixture clines, and local increase of genetic differentiation. We use coalescent simulations to investigate if molecular data provide enough information to distinguish between secondary contact following range expansion and an alternative evolutionary scenario consisting of a barrier to gene flow in an isolation-by-distance model. We find that an excess of linkage disequilibrium and of genetic diversity at the suture zone is a unique signature of secondary contact. We also find that the directionality index c, which was proposed to study range expansion, is informative to distinguish between the two hypotheses. However, although evidence for secondary contact is usually conveyed by statistics related to admixture coefficients, we find that they can be confounded by isolation-by-distance. We recommend to account for the spatial repartition of fl Submitted 29 November 2016 individuals when investigating secondary contact in order to better re ect the Accepted 1 July 2018 complex spatio-temporal evolution of populations and species.
    [Show full text]
  • Microevolution: Species Concept Core Course: ZOOL3014 B.Sc. (Hons’): Vith Semester
    Microevolution: Species concept Core course: ZOOL3014 B.Sc. (Hons’): VIth Semester Prof. Pranveer Singh Clines A cline is a geographic gradient in the frequency of a gene, or in the average value of a character Clines can arise for different reasons: • Natural selection favors a slightly different form along the gradient • It can also arise if two forms are adapted to different environments separated in space and migration (gene flow) takes place between them Term coined by Julian Huxley in 1838 Geographic variation normally exists in the form of a continuous cline A sudden change in gene or character frequency is called a stepped cline An important type of stepped cline is a hybrid zone, an area of contact between two different forms of a species at which hybridization takes place Drivers and evolution of clines Two populations with individuals moving between the populations to demonstrate gene flow Development of clines 1. Primary differentiation / Primary contact / Primary intergradation Primary differentiation is demonstrated using the peppered moth as an example, with a change in an environmental variable such as sooty coverage of trees imposing a selective pressure on a previously uniformly coloured moth population This causes the frequency of melanic morphs to increase the more soot there is on vegetation 2. Secondary contact / Secondary intergradation / Secondary introgression Secondary contact between two previously isolated populations Two previously isolated populations establish contact and therefore gene flow, creating an
    [Show full text]
  • 10 What Is a Species? Investigation • 3–4 C L a S S S E S S I O N S
    10 What Is a Species? investigation • 3–4 c l a s s s e s s i o n s OVERVIEW MatERIals and adVanCE PREPaRatIOn In this activity students learn about the biological species For the teacher concept in defining species and how it provides information transparency of Scoring Guide: GROUP INTERACTION (GI) about where new species are in the process of separation transparency of Scoring Guide: UNDERSTANDING from closely related species. Students then investigate the CONCEPTS (UC) factors that lead to reproductive isolation of species. For each group of four students set of 14 Species Pairs Cards KEy COntEnt set of 8 Reproductive Barrier Cards 1. Species evolve over time. The millions of species that live chart paper* (optional) on the earth today are related by descent from common markers* (optional) ancestors. For each student 2. Taxa are classified in a hierarchy of groups and sub- Student Sheet 10.1, “Supporting a Scientific Argument” groups based on genealogical relationships. (optional) 3. The broad patterns of behavior exhibited by animals Scoring Guide: GROUP INTERACTION (GI) (optional) have evolved by natural selection as a result of reproduc- Scoring Guide: UNDERSTANDING CONCEPTS (UC) tive success. (optional) 4. Scientists have found that the original definition of spe- *Not supplied in kit cies as groups of organisms with similar morphology Decide in advance if you will hand out Student Sheet does not reflect underlying evolutionary processes. 10.1,“Supporting a Scientific Argument,” or have students 5. The biological species concept defines a species as a pop- record this information in their science notebooks.
    [Show full text]
  • Coupling, Reinforcement, and Speciation Roger Butlin, Carole Smadja
    Coupling, Reinforcement, and Speciation Roger Butlin, Carole Smadja To cite this version: Roger Butlin, Carole Smadja. Coupling, Reinforcement, and Speciation. American Naturalist, Uni- versity of Chicago Press, 2018, 191 (2), pp.155-172. 10.1086/695136. hal-01945350 HAL Id: hal-01945350 https://hal.archives-ouvertes.fr/hal-01945350 Submitted on 5 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License vol. 191, no. 2 the american naturalist february 2018 Synthesis Coupling, Reinforcement, and Speciation Roger K. Butlin1,2,* and Carole M. Smadja1,3 1. Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa; 2. Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom; and Department of Marine Sciences, University of Gothenburg, Tjärnö SE-45296 Strömstad, Sweden; 3. Institut des Sciences de l’Evolution, Unité Mixte de Recherche 5554 (Centre National de la Recherche Scientifique–Institut de Recherche pour le Développement–École pratique des hautes études), Université de Montpellier, 34095 Montpellier, France Submitted March 15, 2017; Accepted August 28, 2017; Electronically published December 15, 2017 abstract: During the process of speciation, populations may di- Introduction verge for traits and at their underlying loci that contribute barriers Understanding how reproductive isolation evolves is key fl to gene ow.
    [Show full text]
  • Disruptive Sexual Selection Against Hybrids Contributes to Speciation Between Heliconius Cydno and Heliconius Melpomene Russell E
    doi 10.1098/rspb.2001.1753 Disruptive sexual selection against hybrids contributes to speciation between Heliconius cydno and Heliconius melpomene Russell E. Naisbit1*, Chris D. Jiggins1,2 and James Mallet1,2 1The Galton Laboratory, Department of Biology, University College London, 4 Stephenson Way, London NW1 2HE, UK 2SmithsonianTropical Research Institute, Apartado 2072, Balboa, Panama Understanding the fate of hybrids in wild populations is fundamental to understanding speciation. Here we provide evidence for disruptive sexual selection against hybrids between Heliconius cydno and Heliconius melpomene. The two species are sympatric across most of Central and Andean South America, and coexist despite a low level of hybridization. No-choice mating experiments show strong assortative mating between the species. Hybrids mate readily with one another, but both sexes show a reduction in mating success of over 50% with the parental species. Mating preference is associated with a shift in the adult colour pattern, which is involved in predator defence through MÏllerian mimicry, but also strongly a¡ects male courtship probability. The hybrids, which lie outside the curve of protection a¡orded by mimetic resemblance to the parental species, are also largely outside the curves of parental mating prefer- ence. Disruptive sexual selection against F1 hybrids therefore forms an additional post-mating barrier to gene £ow, blurring the distinction between pre-mating and post-mating isolation, and helping to main- tain the distinctness of these hybridizing species. Keywords: Lepidoptera; Nymphalidae; hybridization; mate choice; post-mating isolation; pre-mating isolation Rather less experimental work has investigated mate 1. INTRODUCTION choice during speciation and the possibility of the third Studies of recently diverged species are increasingly type of selection against hybrids: disruptive sexual select- producing examples of sympatric species that hybridize in ion.
    [Show full text]
  • Ecological Speciation in Phytophagous Insects
    DOI: 10.1111/j.1570-7458.2009.00916.x MINI REVIEW Ecological speciation in phytophagous insects Kei W. Matsubayashi1, Issei Ohshima2 &PatrikNosil3,4* 1Department of Natural History Sciences, Hokkaido University, Sapporo 060-0810, Japan, 2Department of Evolutionary Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan, 3Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA, and 4Wissenschaftskolleg, Institute for Advanced Study, Berlin, 14193, Germany Accepted: 7 August 2009 Key words: host adaptation, genetics of speciation, natural selection, reproductive isolation, herbivo- rous insects Abstract Divergent natural selection has been shown to promote speciation in a wide range of taxa. For exam- ple, adaptation to different ecological environments, via divergent selection, can result in the evolution of reproductive incompatibility between populations. Phytophagous insects have been at the forefront of these investigations of ‘ecological speciation’ and it is clear that adaptation to differ- ent host plants can promote insect speciation. However, much remains unknown. For example, there is abundant variability in the extent to which divergent selection promotes speciation, the sources of divergent selection, the types of reproductive barriers involved, and the genetic basis of divergent adaptation. We review these factors here. Several findings emerge, including the observation that although numerous different sources of divergent selection and reproductive isolation can be involved in insect speciation, their order of evolution and relative importance are poorly understood. Another finding is that the genetic basis of host preference and performance can involve loci of major effect and opposing dominance, factors which might facilitate speciation in the face of gene flow. In addition, we raise a number of other recent issues relating to phytophagous insect speciation, such as alternatives to ecological speciation, the geography of speciation, and the molecular signatures of spe- ciation.
    [Show full text]