<<

Half-lives of Daughter Nuclides of

Emily Wang with Kelley Rivoire

MIT Department of Physics Outline

1. History of Radioactivity

2. Motivations for Experiment

3. Theory: unstable nuclei, nuclide chains

4. Experimental Setup and Procedure

5. Results

6. Conclusions History

• 1896: Becquerel’s photographic plates.

• 1898: Marie Curie’s studies of , discovery of .

• 1899: Rutherford names “alpha rays” and “beta rays”.

• 1900: Rutherford, Soddy discover transmutation of elements.

• 1902: Exponential law of . Motivations

• Observe the decay of different of .

• Measure half-lives of Po218 and Pb211 by observing the de- creasing activity. The Stability of Nuclei

• Most natural elements with atomic number Z = 1 to Z = 82 are stable. Isotopes of elements with Z > 82 will decay.

• Light nuclei w/ equal numbers of protons, neutrons are sta- ble. Heavier nuclei need more neutrons to overcome Coulom- bic repulsion of protons.

• Three kinds of radioactive transmutation:

– Alpha decay: emission of charged He nucleus (2 neutrons, 2 protons) – Beta decay: emission of (e+ + ν) or (e− +ν ¯). – Spontaneous fission: split into two nuclei. The Bateman Equations

• Determine half-life of B, which decays from A.

dA (−t/τA) • Law of radioactive decay: dt = −A/τA,A(t) = A0e • Solve for B(t) using variation of parameters:

dB – dt = A/τA − B/τB,B(t) = Bh(t) + Bp(t) (−t/τ ) τB (−t/τ ) (−t/τ ) – B(t) = B0e B + A0 [e A − e B ] τA−τB

• Special cases of Bateman Eqs.

τB (−t/τ ) – B(t) ≈ A0 [1 − e B ] when τ  τ and t  τ τA A B B (−t/τ ) – B(t) ≈ (A0 + B0)e B when τA  τB and t  τA Experimental Setup +44VDC Detector Bias Supply

Preamplifier Amplifier Oscilloscope barrier detector Multichannel Uraninite rocks Analyzer

Po+   Po+   HV Source            The Silicon Barrier Detector

n-p Junction (with Bias Voltage)                 Bias Voltage Electrons    Holes                      

• Semi-conductor p-n junctions used.

• Creation of “depletion zone” where there are no charge carriers— length of this zone critical. Decay of Radon Isotopes Thorium Series Uraninum Series Series Th-232 U-234 U-235

Rn-220 Rn-222 Rn-219 55.6s 3.82d 3.96s Po-216 Po-218 Po-215 0.145s ?? 1.78ms Pb-212 Po-214 Pb-211 10.6h 163us ?? Bi-212 Bi-214 Bi-211 1.01h 19.9min 2.14min Po-212 Tl-207 0.298us 4.77min Sample MCA Calibration Data

4 x 10 Aged Uranite Energy Spectrum (5/5/05) 4.5 Po−218 4 6.00 Po−214 7.69

3.5

3

2.5

Counts 2

1.5 Bi−211 6.62

1 Po−216 Bi−212 6.78 6.05 Po−212 0.5 8.78 MeV

0 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 Calibrated Energy (MeV) Evolution of Energy Spectrum Uranite Energy Spectrum (5/3/05)

12000

10000

8000 6000 Po−214 Counts 4000 Bi−211 2000

0 5.5 6 6.5 7 7.5 8 8.5 9 9.5 Calibrated Energy (MeV)

4 x 10 Uranite Energy Spectrum (5/5/05)

4

3 Po−214 increases 2 Bi−211 Counts Bi−212 Po−212 emerges increases emerges 1

0 5.5 6 6.5 7 7.5 8 8.5 9 9.5 Calibrated Energy (MeV) Exponential Fit to Po218 Decay 300 Bi211 data fit line χ2 = 1.3 250 ν−1

200 λ Fit model: y = Ae−t/

Average value from two runs: 150 τ = 3.13 ± 0.03 min 1/2

Net Counts per Second 100

50

100 200 300 400 500 600 700 Time Elapsed (sec) Exponential Fit to Bi211 Decay 3.5 Bi211 data fit line 3

χ2 = 1.4 2.5 ν−1

λ Fit model: y = Ae−t/ 2

τ = 37.4 ± 0.5 min 1/2 1.5

1 Net Counts per Second

0.5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Time Elapsed (sec) Error Analysis

• Systematic Error: Equipment?

• Random Error: Poisson error in counts, constant error from uncertainty in ROI determinations. Results

• Half life of Po218

– Expt: 3.13 ± 0.03 min

– Accepted: 3.10 min

• Half life of Pb211

– Expt: 37.4 ± 0.5 min

– Accepted: 36.1 min Conclusions

• Observed decay chains of various isotopes of Rn.

• Achieved reasonable agreement with accepted values for half- lives of Pb211 and Po218.