MPEG-21: Goals and Achievements

Total Page:16

File Type:pdf, Size:1020Kb

MPEG-21: Goals and Achievements University of Wollongong Research Online Faculty of Engineering and Information Faculty of Informatics - Papers (Archive) Sciences October 2003 MPEG-21: goals and achievements I. Burnett University of Wollongong, [email protected] R. Van de Walle Ghent University, Belgium K. Hill Rightscom, London, UK J. Bormans Interuniversity MicroElectronics Center, Belgium F. Pereira Instituto Superior Tecnico, Portugal Follow this and additional works at: https://ro.uow.edu.au/infopapers Part of the Physical Sciences and Mathematics Commons Recommended Citation Burnett, I.; Van de Walle, R.; Hill, K.; Bormans, J.; and Pereira, F.: MPEG-21: goals and achievements 2003. https://ro.uow.edu.au/infopapers/46 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] MPEG-21: goals and achievements Abstract MPEG-21 is an open standards-based framework for multimedia delivery and consumption. It aims to enable the use of multimedia resources across a wide range of networks and devices. We discuss MPEG-21's parts, achievements, ongoing activities, and opportunities for new technologies. Disciplines Physical Sciences and Mathematics Publication Details This article was originally published as: Burnett, I, Van de Walle, R, Hill, K et al, MPEG-21 Goals and Achievements, IEEE Multimedia, Oct-Dec 2003, 10(4), 60-70. Copyright IEEE 2003. This journal article is available at Research Online: https://ro.uow.edu.au/infopapers/46 Feature Article delivery and consumption by all the players in the delivery and consumption chain. MPEG-21: MPEG-21 context MPEG-21 is the newest of a series of standards being produced by the Moving Picture Experts Group (see http://mpeg.telecomitalialab.com), Goals and more formally known as ISO/IEC JTC 1/SC 29/WG11. MPEG has a long history of producing multimedia standards: MPEG-1 (1993), MPEG-2 (1996), MPEG-4 (1999), and MPEG-7 (2001). Achievements MPEG-1 and MPEG-2 resulted in many suc- cessful commercial products and services, such as video-CD, DVD, digital television, digital audio broadcasting (DAB), and MP3 (MPEG-1/-2 audio Ian Burnett layer 3). University of Wollongong, Australia More recently, MPEG-41 standardized audio– visual coding solutions that address the needs of Rik Van de Walle communication, interactive and broadcasting Ghent University, Belgium services, and many combinations of these mod- els. At the heart of MPEG-4 technology is an Keith Hill object-based representation approach in which a Rightscom, London scene is modeled as a composition of both nat- ural and synthetic objects with which a user may Jan Bormans interact. Through this new coding approach, Interuniversity MicroElectronics Center, Belgium MPEG-4 creates new opportunities for users to play with, create, reuse, access, and consume Fernando Pereira audio–visual content. MPEG-4 is currently used Instituto Superior Técnico, Portugal on the Internet (such as Quicktime 6) and is being adopted in several other communications contexts. he appetite for content consumption Building on MPEG-4’s object-based vision, the MPEG-21 is an open and easier access to information con- MPEG-72 standard concentrates on the descrip- standards-based tinues to increase rapidly. Access tion of multimedia content. It enables quick and framework for devices are also evolving so that we efficient searching, identification, processing, multimedia delivery haveT a wide choice of terminal and network and filtering of multimedia material. This lets and consumption. It capabilities. The result is that people, both in users (both humans and machines) use and inter- aims to enable the their personal and professional lives, are increas- act with non-text-based multimedia content use of multimedia ingly creators as well as consumers of digital directly and efficiently. resources across a media. They thus demand solutions that deliver Together, the MPEG-1, -2, -4, and -7 standards wide range of accessible and advanced multimedia creation and provide a complete, powerful, and successful set networks and consumption on many platforms. These new of tools for multimedia representation. Other devices. In this content providers and the traditional media multimedia-related standards (and proprietary article, we discuss sources share a core set of concerns: management solutions) exist, such as JPEG and JPEG 2000. MPEG-21’s parts, of content, repurposing content based on user However, widespread deployment of multimedia achievements, preferences and device capabilities, protection of applications requires more than this loose col- ongoing activities, rights, protection from unauthorized access/ lection of standards. The problem is that overall and opportunities modification, protection of privacy of providers multimedia consumption and commerce remain for new and consumers, and so on. The MPEG-21 nontransparent and aren’t happening on a large technologies. Multimedia Framework initiative aims to meet scale. In late 1999 and early 2000, MPEG exam- these challenges by enabling the use of multime- ined several questions: Do all existing dia resources across a wide range of networks and multimedia-related standard specifications fit devices. In this article, we discuss MPEG-21, an together? Does anybody know how they fit open standards-based framework for multimedia together? Do we have specifications for all the 60 1070-986X/03/$17.00 © 2003 IEEE Published by the IEEE Computer Society necessary technical elements for multimedia Interoperability is the driving force behind all transactions? Which standard activities are most multimedia standards. It’s a necessary require- relevant? Who is making the “glue” that will let ment for any application that requires guaranteed these standards fit together? communication between two or more parties. Many high-quality multimedia standards are From a more philosophical view, interoperability being created to meet the needs of different com- expresses the user’s dream of easily exchanging munities. However, the result is an array of stan- any type of information without technical barri- dards offering parallel or competitive solutions. ers. To achieve this goal, we must standardize both In contrast to this a transparent multimedia the content structure and a minimum set of com- world requires the creation of a single, big picture munication processes. The key to effective stan- view of multimedia. dardization is to create a minimum standard that Currently, multimedia technology provides normatively defines a minimal (but complete) set the different players in the value and delivery of tools that will guarantee interoperability. Such chain with an excess of information and services. minimum specifications provide space and a foun- However, no complete solutions exist that let dif- dation for competitive, proprietary, and alternate ferent communities—content, financial, com- developments (which wouldn’t be normative) of munication, and computer and consumer tools that don’t need standardization to obtain electronics and their customers (each with their interoperability. This enables the incorporation of own models, rules, procedures, interests, and technical advances—lengthening the lifetime of content formats)—interact efficiently using this the standard—as well as stimulating technical and complex infrastructure. Developing a common product competition. A standard also has impor- multimedia framework would facilitate coopera- tant economic implications because it allows the tion between sectors and support a more efficient sharing of investment costs and the acceleration implementation and integration of the different of application deployment. A further advantage is needs of each community, resulting in an that an open standard reduces consumer reliance enhanced user experience.3 on sole proprietary solutions; this is essential if we One problem, however, is that in the desire to want truly transparent multimedia usage and con- achieve interoperability, the framework may vio- sumption to be a reality. late the requirement to protect the value of the MPEG has been proactive in identifying cur- content and the rights of the rights holders. From rent multimedia initiatives and inviting collabo- the alternate view, digital rights management ration in the context of MPEG-21. Examples of (DRM) systems—which protect those rights—can envisaged collaborations are the Open eBook prevent interoperability if they use nonstan- Forum, International Telecommunications dardized protection mechanisms. Realizing an Union, Open Mobile Alliance, and so on. The open multimedia infrastructure thus requires an aim of this process is to maximize interoperabil- integrated and suitably normative DRM system. ity, minimize the overlap between concurrent Thus, MPEG-21 seeks to create the big picture activities, and share common technologies. of multimedia standards. It aims to guarantee To ensure that the standardization of a big interoperability by focusing on how the elements picture encompassed both technological and user of a multimedia application infrastructure should demands, MPEG established a formal develop- relate, integrate, and interact. Finally, where ment process as follows: open standards for elements are missing, MPEG is creating new MPEG-21 parts to fill the gaps. 1. Define a framework supporting the MPEG-21 vision statement. October–December 2003 MPEG-21 objectives A key assumption of MPEG-21 is that every 2. Identify the multimedia framework’s critical human is
Recommended publications
  • MPEG-21 Overview
    MPEG-21 Overview Xin Wang Dept. Computer Science, University of Southern California Workshop on New Multimedia Technologies and Applications, Xi’An, China October 31, 2009 Agenda ● What is MPEG-21 ● MPEG-21 Standards ● Benefits ● An Example Page 2 Workshop on New Multimedia Technologies and Applications, Oct. 2009, Xin Wang MPEG Standards ● MPEG develops standards for digital representation of audio and visual information ● So far ● MPEG-1: low resolution video/stereo audio ● E.g., Video CD (VCD) and Personal music use (MP3) ● MPEG-2: digital television/multichannel audio ● E.g., Digital recording (DVD) ● MPEG-4: generic video and audio coding ● E.g., MP4, AVC (H.24) ● MPEG-7 : visual, audio and multimedia descriptors MPEG-21: multimedia framework ● MPEG-A: multimedia application format ● MPEG-B, -C, -D: systems, video and audio standards ● MPEG-M: Multimedia Extensible Middleware ● ● MPEG-V: virtual worlds MPEG-U: UI ● (29116): Supplemental Media Technologies ● ● (Much) more to come … Page 3 Workshop on New Multimedia Technologies and Applications, Oct. 2009, Xin Wang What is MPEG-21? ● An open framework for multimedia delivery and consumption ● History: conceived in 1999, first few parts ready early 2002, most parts done by now, some amendment and profiling works ongoing ● Purpose: enable all-electronic creation, trade, delivery, and consumption of digital multimedia content ● Goals: ● “Transparent” usage ● Interoperable systems ● Provides normative methods for: ● Content identification and description Rights management and protection ● Adaptation of content ● Processing on and for the various elements of the content ● ● Evaluation methods for determining the appropriateness of possible persistent association of information ● etc. Page 4 Workshop on New Multimedia Technologies and Applications, Oct.
    [Show full text]
  • Mpeg-21 Digital Item Adaptation
    ____________________M____________________ MPEG-21 DIGITAL ITEM ADAPTATION Christian Timmerera, Anthony Vetrob, and Hermann Hellwagnera aDepartment of Information Technology, Klagenfurt University, Austria bMitsubishi Electric Research Laboratories (MERL), USA Synonym: Overview of Part 7 of the MPEG-21 Multimedia Framework; Interoperable description formats facilitating the adaptation of multimedia content; ISO standard enabling device and coding format independence; ISO/IEC 21000-7:2007 Definition: MPEG-21 Digital Item Adaptation (DIA) enables interoperable access to (distributed) advanced multimedia content by shielding users from network and terminal installation, management, and implementation issues. Context and Objectives Universal Multimedia Access (UMA) [1] refers to the ability to seamlessly access multimedia content from anywhere, anytime, and with any device. Due to the heterogeneity of terminals and networks and the existence of various coding formats, the adaptation of the multimedia content may be required in order to suit the needs and requirements of the consuming user and his/her environment. For enabling interoperability among different vendors, Part 7 of the MPEG-21 Multimedia Framework [2], referred to as Digital Item Adaptation (DIA) [3], specifies description formats (also known as tools) to assist with the adaptation of Digital Items. Digital Items are defined as structured digital objects, including standard representation, identification and metadata, and are the fundamental units of distribution and transaction
    [Show full text]
  • Security Solutions Y in MPEG Family of MPEG Family of Standards
    1 Security solutions in MPEG family of standards TdjEbhiiTouradj Ebrahimi [email protected] NET working? Broadcast Networks and their security 16-17 June 2004, Geneva, Switzerland MPEG: Moving Picture Experts Group 2 • MPEG-1 (1992): MP3, Video CD, first generation set-top box, … • MPEG-2 (1994): Digital TV, HDTV, DVD, DVB, Professional, … • MPEG-4 (1998, 99, ongoing): Coding of Audiovisual Objects • MPEG-7 (2001, ongo ing ): DitiDescription of Multimedia Content • MPEG-21 (2002, ongoing): Multimedia Framework NET working? Broadcast Networks and their security 16-17 June 2004, Geneva, Switzerland MPEG-1 - ISO/IEC 11172:1992 3 • Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s – Part 1 Systems - Program Stream – Part 2 Video – Part 3 Audio – Part 4 Conformance – Part 5 Reference software NET working? Broadcast Networks and their security 16-17 June 2004, Geneva, Switzerland MPEG-2 - ISO/IEC 13818:1994 4 • Generic coding of moving pictures and associated audio – Part 1 Systems - joint with ITU – Part 2 Video - joint with ITU – Part 3 Audio – Part 4 Conformance – Part 5 Reference software – Part 6 DSM CC – Par t 7 AAC - Advance d Au dio Co ding – Part 9 RTI - Real Time Interface – Part 10 Conformance extension - DSM-CC – Part 11 IPMP on MPEG-2 Systems NET working? Broadcast Networks and their security 16-17 June 2004, Geneva, Switzerland MPEG-4 - ISO/IEC 14496:1998 5 • Coding of audio-visual objects – Part 1 Systems – Part 2 Visual – Part 3 Audio – Part 4 Conformance – Part 5 Reference
    [Show full text]
  • Resolutions of 98Th Meeting Status
    INTERNATIONAL ORGANISATION FOR STANDARDISATION ORGANISATION INTERNATIONALE DE NORMALISATION ISO/IEC JTC 1/SC 29/WG 11 CODING OF MOVING PICTURES AND AUDIO ISO/IEC JTC 1/SC 29/WG 11 N12254 Geneva, CH – December 2011 Source: Leonardo Chiariglione Title: Resolutions of 98th meeting Status Resolutions of 98th meeting 1 Reports ............................................................................................................................... 3 1.1 Meeting reports ............................................................................................................ 3 2 Resolutions related to MPEG-2........................................................................................... 3 2.1 Part 1 Systems............................................................................................................. 3 2.2 Part 2 Video ................................................................................................................ 3 2.3 Part 4 Conformance testing ......................................................................................... 4 3 Resolutions related to MPEG-4........................................................................................... 4 3.1 Part 4 Conformance testing ......................................................................................... 4 3.2 Part 5 Reference Software ........................................................................................... 4 3.3 Part 10 Advanced Video Coding .................................................................................
    [Show full text]
  • A Study of MPEG Series S.Vetrivel 1 and G.Athisha 2 1Mother Terasa College of Engineering 2PSNA College of Engg & Tech
    15793 S.Vetrivel et al./ Elixir Comp. Sci. & Engg. 59A (2013) 15793-15797 Available online at www.elixirpublishers.com (Elixir International Journal) Computer Science and Engineering Elixir Comp. Sci. & Engg. 59A (2013) 15793-15797 A study of MPEG series S.Vetrivel 1 and G.Athisha 2 1Mother Terasa College of Engineering 2PSNA College of Engg & Tech. ARTICLE INFO ABSTRACT Article history: The applications of audio and video compression are limitless and the ISO has done well to Received: 11 December 2012; provide standards which are appropriate to the wide range of possible compression products. Received in revised form: MPEG coding embraces video pictures from the tiny screen of a videophone to the high- 10 June 2013; definition images needed for electronic cinema. Audio coding stretches from speech-grade Accepted: 14 June 2013; mono to multichannel surround sound. This paper presents an overview of the video compression standards related to the MPEG family. MPEG-7 and MPEG-21 are specially Keywords covered including its latest standards. MPEG-7 is mainly used for object descriptions and MPEG-1, ISO, IEC, DCT, MPEG-21 is for DRM (Digital Rights Management). MPEG-2, © 2013 Elixir All rights reserved. MPEG-4, MPEG-7, MPEG-21, MPEG-A, MPEG-D. Introduction combined with the DCT information, and coded using variable MPEG is the “Moving Picture Experts Group”, working length codes. under the joint direction of the international Standards Organization (ISO) and the International Electro Technical Commission (IEC). This paper will provide an overview of the recent standards in the MPEG family. MPEG-1 is used to deliver video and audio at the same bit rate as a conventional audio CD.
    [Show full text]
  • Digital Item Processing
    Digital Item Processing Rui Filipe Santos Rocha [email protected] Supervisors: Maria Teresa Andrade (DEEC, FEUP) Pedro Carvalho (INESC) January 2008 Abstract Abstract MPEG‐21 is a standard still under specification, which aims to establish a platform capable of distributing multimedia content enabling access and consumption in a flexible and interoperable way, protecting owner’s rights. This dissertation will have as main objective, implement Digital Item Processing (which is Part 10 of MPEG‐21 standard) in a way that a client application, which is an application developed to allow a user to interact with MPEG‐21 multimedia contents, won’t need to process the basic operation (e.g. play, execute, and others) defined by the standard. After the implementation this will be integrated in an existing application to be validated viewing Digital Items and running associated operations. Digital Item Processing 1 Resumo Resumo O MPEG‐21 que é uma norma emergente ainda em fase de normalização, que pretende definir uma plataforma capaz de distribuir conteúdos multimédia de forma a poderem ser acedidos e consumidos de forma flexível e interoperável protegendo os direitos de autor. Esta dissertação terá como principal objectivo, implementar Digital Item Processing (que corresponde a Parte 10 da norma MPEG‐21) de maneira a que a aplicação cliente, que é uma aplicação desenvolvida para permitir a um utilizador interagir com conteúdos multimédia baseados na norma MPEG‐21, processe o menor número possível de operações básicas (p.ex. Play, execute, entre outras) definidas pela norma. Após a implementação integrar‐se‐á numa aplicação de forma a validar a implementação consumindo Digital Items e correndo operações associadas aos mesmos.
    [Show full text]
  • Real-Time DVB Based MPEG-21 Digital Item Adaptation For
    REAL-TIME DVB-BASED MPEG-21 DIGITAL ITEM ADAPTATION FOR LIVE UNIVERSAL MULTIMEDIA ACCESS Martin Prangl, Christian Timmerer and Hermann Hellwagner Department of Information Technology (ITEC), Klagenfurt University {firstname.lastname}@itec.uni-klu.ac.at Department of Information Technology (ITEC) Klagenfurt University Technical Report No. TR/ITEC/06/1.04 June 2006 Real-time DVB-based MPEG-21 Digital Item Adaptation for live Universal Multimedia Access Martin Prangl, Christian Timmerer and Hermann Hellwagner Department of Information Technology (ITEC), Klagenfurt University, Klagenfurt, Austria E-mail: {firstname.lastname}@itec.uni-klu.ac.at Abstract - In order to enable transparent and augmented use of multimedia content across a wide range of networks and devices, content adaptation is an important issue within multimedia frameworks. In this paper, we present a prototype application that receives Digital Video Broadcast (DVB) TV streams on a PC, transcodes the streams on the fly according to the individual User requirements and packs the adapted content together with available metadata into a standard compliant MPEG-21 Digital Item (DI). In this form, the framework enables the live Universal Multimedia Access (UMA) scenario where the DVB content can be transparently accessed by clients such as PCs and PDAs, anytime and anywhere. Keywords - DVB, MEPG-2, MPEG-4, MPEG-7, MPEG-21, Digital Items, metadata 1. INTRODUCTION informative experience; in other words, the “end point” of universal multimedia consumption is the Television (TV) content is usually broadcasted end user and not the terminal. Therefore, enabling by air and consumed with special purpose devices the vision of Universal Multimedia Experience such as TV sets which are connected to special (UME) [2] might include, e.g., insertion of subtitles antennas in order to receive this broadcast service.
    [Show full text]
  • The Semantics of MPEG-21 Digital Items Revisited
    The Semantics of MPEG-21 Digital Items Revisited Christian Timmerer Maria Teresa Andrade and Pedro Carvalho Klagenfurt University, Austria INESC Porto, Porto, Portugal Universitätsstrasse 65-67 Rua Dr. Roberto Frias 378 A-9020 Klagenfurt P-4200-465 Porto +43 (0)463 2700 3621 +35 (0)122 2094000 [email protected] {maria.andrade,pedro.carvalho}@inescporto.pt Davide Rogai Giovanni Cordara Comm.it Telecom Italia Lab Via M. Deʼ Bernardi, 65 Via Reiss Romoli, 274 50145, Firenze. Italy 10148, Torino. Italy +39 (0)55 3434277 +39 (0)11 2286389 [email protected] [email protected] ABSTRACT A Digital Item (DI) is a structured digital object with a standard The MPEG-21 standard forms a comprehensive multimedia representation and metadata, i.e., it is the fundamental unit of framework covering the entire multimedia distribution chain. In transaction and distribution within the MPEG-21 multimedia particular, it provides a flexible approach to represent, process, framework. In other words, it enables the aggregation of and transact complex multimedia objects which are referred to as multimedia resources together with metadata, licenses, identifiers, Digital Items (DIs). DIs can be quite generic, independent of the intellectual property management and protection (IPMP) application domain, and can encompass a diversity of media information, and methods within a standardized structure. With resources and metadata. This flexibility has an impact on the level this definition in mind one can create Digital Items that are very of interoperability between systems and applications, since not all generic and independent of the application domain. Furthermore, the functionality needs to be implemented.
    [Show full text]
  • MPEG-21 Content
    MPEG-21 Content Introduction Multimedia framework Seven elements of Mpeg-21 * Digital Item Declaration * Digital Item Identification * Content Handling and Usage * Intellectual Property Management and Protection * Terminals and Networks * Content Representation Introduction The aim for MPEG-21 many elements exist to build an infrastructure for the delivery and consumption of multimedia content. The aim for MPEG-21 is to describe how these various elements fit together. MPEG-21 will recommend which new standards are required.( ISO/IEC JTC 1/SC 29/WG 11 (MPEG) ) MPEG-21 Multimedia Framework ISO/IEC 21000 Situation: No complete solutions exist that allow different communities (content, financial, communications etc.), each with their own models, rules, procedures and content formats to interact efficiently. The multimedia content delivery chain encompasses different “players” (content creation, production, delivery etc.). To support this, the content has to be identified, described, managed and protected. Purpose: MPEG-21 MM-Framework shall enable interoperability in this situation. What is Mpeg-21 An open Framework for multimedia delivery and consumption Vision: Integration of the critical technologies enabling transparent and augmented use of multimedia resources across a wide range of networks and devices to support functions such as: content creation, content production, content distribution, content consumption and usage, content packaging, intellectual property management and protection, content identification and description, financial management, user privacy, terminals and network resource abstraction, content representation and event reporting Multimedia Framework The multimedia content delivery chain: * Content Creation * Production * Delivery * Consumption. The content has to be identified, described, managed and protected. The delivery require reporting include reliable delivery, the management of personal data and preferences taking user privacy into account and the management of (financial) transactions.
    [Show full text]
  • Glossary&Acronymsrelating to Interactivetv-V6
    Acronyms and Glossary of Terms Relating to Digital TV Systems, DVB, Interactive TV & Multimedia Home Platform (MHP) Ver. 6.2 25. DIFFERENTIAL LATENCY ...................................... 18 Introduction 26. DIGITAL TRANSMISSION CONTENT PROTECTION DTCP, 5C & 4C ENTITY .................................... 19 For acronyms, consult the "List of Acronyms and 27. DIGITAL VIDEO BROADCAST (DVB).................... 19 Abbreviated Terms" commencing on page 3 first and 28. DIGITAL VIDEO INTERFACE (DVI) ...................... 19 then the "Description of Technical Terms" if a more 29. DIGITAL VISUAL INTERFACE (DVI/HDCP).......... 19 detailed explanation is required. 30. DOLBY SUROUND PRO-LOGIC™.......................... 19 31. DOLBY® ............................................................. 19 Contents: 32. DOM - (DOCUMENT OBJECT MODEL) ................. 20 33. DSM-CC ............................................................ 20 34. DVB-J ................................................................ 20 1. LIST OF ACRONYMS AND ABBREVIATED 35. DVB-J API......................................................... 20 TERMS....................................................................... 3 36. DVB-J APPLICATION .......................................... 20 Numbers ......................................................................3 37. DVB-T ............................................................... 21 A..................................................................................4 38. DYNAMIC RANGE................................................
    [Show full text]
  • MPEG-21 Digital Item Declaration WD
    © ISO/IEC 2000 – All rights reserved INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ORGANISATION INTERNATIONALE NORMALISATION ISO/IEC JTC 1/SC 29/WG 11 CODING OF MOVING PICTURES AND AUDIO ISO/IEC JTC 1/SC 29/WG 11 N3971 March 2001, Singapore Source: Multimedia Description Schemes (MDS) Group Title: MPEG-21 Digital Item Declaration WD (v2.0) Status: Approved Editors: Vaughn Iverson, Young-Won Song, Rik Van de Walle, Mark Rowe, Doim Chang, Ernesto Santos, Todd Schwartz ISO/IEC JTC 1/SC 29 N 3971 Date: 2001-03-23 ISO/IEC WD 21000-2:2001 Information Technology — Multimedia Framework — Part 2: Digital Item Declaration Warning This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard. Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation. Document type: Document subtype: Document stage: Document language: E C:\WINDOWS\Desktop\TAKE\wnnnn-did-wd.doc STD Version 1.0 ISO/IEC WD 21000-2:2001 Copyright notice This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO.
    [Show full text]
  • Digital Item Adaptation: Overview of Standardization and Research Activities Anthony Vetro, Senior Member, IEEE, and Christian Timmerer
    418 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 3, JUNE 2005 Digital Item Adaptation: Overview of Standardization and Research Activities Anthony Vetro, Senior Member, IEEE, and Christian Timmerer Abstract—MPEG-21 Digital Item Adaptation (DIA) has recently been finalized as part of the MPEG-21 Multimedia Framework. DIA specifies metadata for assisting the adaptation of Digital Items according to constraints on the storage, transmission and consumption, thereby enabling various types of quality of service management. This paper provides an overview of DIA, describes its use in multimedia applications, and reports on some of the ongoing activities in MPEG on extending DIA for use in rights governed environments. Index Terms—Adaptation, Digital Item, MPEG, multimedia, quality of service, universal multimedia access. I. INTRODUCTION Fig. 1. Concept of MPEG-21 DIA. NIVERSAL multimedia access (UMA) has become the U driving concept behind a significant amount of research and standardization activity [1]. It essentially refers to the ability delivery system, but still more is needed to achieve the stated for any type of terminals to access and consume a rich set of goal. With the dawn of multimedia content description, namely multimedia content. Ideally, this is achieved seamlessly over dy- MPEG-7 [3], several tools have been developed to further sup- namic and heterogeneous networks and devices, independent of port universal accessibility. It should be noted that in the context location or time, and taking into account a wide variety of pos- of this paper, tools mainly refer to description tools, which are sible user preferences. synonymous with metadata. In MPEG-7, there exist tools for Toward this goal of universal accessibility, techniques for describing the summarization of media resources, tools that pro- scalable coding and transcoding were developed.
    [Show full text]