Evaluation of summer inter-valley water transfers from the Goulburn River

Prepared for the Goulburn-Broken Catchment Management Authority by Peter Cottingham, Mike Stewardson, David Crook, Terry Hillman, Rod Oliver, Jane Roberts and Ian Rutherfurd

June 2007

Evaluation of summer inter-valley water transfers from the Goulburn River

Evaluation of summer inter-valley water transfers from the Goulburn River PreparedbyPeterCottingham&Associatesonbehalfofthe GoulburnBrokenCatchmentManagementAuthority CITATION: Thisreportcanbecitedas: CottinghamP.StewardsonM.,CrookD.,HillmanT.,OliverR. , RobertsJ.andRutherfurdI.(2007).Evaluationofsummer intervalleywatertransfersfromtheGoulburnRiver.Report preparedfortheGoulburnBrokenCatchmentManagement Authority. COPYRIGHT: PeterCottingham&Associateshaspreparedthisdocumentin accordancewiththeinstructionsoftheGoulburnBrokenCMA foritsspecificuse.Thedataandinformationcontainedinthis documentarethecopyrightoftheGoulburnBrokenCMA. Useorcop yingofthedocumentinwholeorinpartwithoutthe expresswrittenpermissionoftheGoulburnBrokenCMA constitutesaninfringementofcopyright. TheGoulburnBrokenCMAdoesnotwarrantthisdocumentis definitivenorfreeoferrorsanddoesnotaccep tliabilityforany losscausedorarisingformrelianceuponinformationprovided hereincausedorarisingfromrelianceuponinformation providedherein. Thisreporthasbeenpreparedonbehalfofandforthe exclusiveuseofGoulburnBrokenCMA,andissubjecttoand issuedinconnectionwiththeprovisionsoftheagreement betweenPeterCottingham&AssociatesanditsClient.Peter Cottingham&Associatesacceptsnoliabilityorresponsibility whatsoeverfororinrespectofanyuseoforrelianceupo nthis reportbyanythirdparty. COVERPHOTOGRAPH: GoulburnriveratMurchison(top)andGoulburnRivernear Kerrisdale(bottom),October2003.PhotographsbyPeter Cottingham.

Peter Cottingham & Associates i Evaluation of summer inter-valley water transfers from the Goulburn River Executive Summary Theexpansionofwatermarketsandresultantintervalleytradehasthepotentialto increasewaterdemandinareassuchastheSunraysiadistrictinnorthwest. TheGoulburnBrokensystemispivotalinmeetinganyincreaseindemandinthis region,givenconstraintsondeliveringadditionalwaterfromLakeHume(e.g.dueto theChoke)andlimitedadditionalstoragecapacityalongtheRiverMurray. InterValleyTransfers(IVTs),whenrequired,aremostlikelytobedeliveredbetween JanuaryandMarchandthereisconcernabouttheriskposedbyhigherthannatural summerandautumnflowstoGoulburnriverassetsandvaluesifIVTsaretobe deliveredsolelyviathelowerGoulburnRiver. Anenvironmentalflowstudyconductedin2003wasusedtoexaminehowwaterthat mightbereleasedfromLakeEildontotheRiverMurrayaspartoftheLivingMurray Initiativecouldbeusedtoprotectorenhancetheecologicalconditionofthe GoulburnRiver.Thestudyrecommendedthatminimumsummerautumnflowscould beincreasedtoabove610ML/dtomaintainhabitatavailabilityfornativefish.No upperboundswereputonthisrecommendation,astheneedforfrequentor increasinglylargeIVTsdeliveredviatheGoulburnRiverwasnotthenidentified.The studywasnotpartofanyformalreviewoftheexistingGoulburnBulkWater Entitlement,andcouldonlymakelimitedassessmentsoffuturescenarios,asthere wasatthattimenoinformationonthevolumeandtimingofwaterthatmightbe requiredfortheRiverMurray.ThequestionofwhetherIVTscanbedeliveredina mannerthatposeslittlerisk,orresultinagaintoecosystemassetsandvalueswas notaddressed. TheScientificPanelthatdevelopedenvironmentalflowrecommendationsin2003 wasreconvenedtoconsidertheimplicationsofIVTsforthelowerGoulburnRiver. Thisworkalsoprovidedtheprinciplesandbasisfromwhichtoassessthe implicationsofIVTsdeliveredvianearbyrivers(i.e.Campaspeandpossiblythe Loddon)inthefuture.Rulesforintervalleywatertradecurrentlyreflectcapacityand deliveryconstraintsandcommercialandcontractualobligations,anddonotyet formallyconsiderpotentialenvironmentaleffects.Thisprojectwillalsohelpinform anyfuturereviewoftradingrulesthatincludesprinciplesandprovisionsfor environmentalprotection. ThestudyareaisthetworepresentativereachesbelowGoulburnWeiridentifiedin thepreviousenvironmentalflowstudyoftheGoulburnRiver: • GoulburnRiver:GoulburnWeirto(Reach4); • GoulburnRiver:SheppartontotheRiverMurray(Reach5). Thisreportdescribes: • ChangestoriverhydrologyandoperationexpectedwiththedeliveryofIVTs (Chapter2), • EcologicalprinciplesandcriteriabywhichIVTsareassessedintermsofpotential risktoecosystemassetsandvalues(Chapter3), • TheconceptualbasisofecosystemresponsetoIVTs(Chapter4), • WaysinwhichIVTsmaybereleasedinordertoprotectorenhanceecosystem assetsandvalues(Chapter5),

Peter Cottingham & Associates ii Evaluation of summer inter-valley water transfers from the Goulburn River

• Previousenvironmentalflowrecommendationsandpresentstheminawaythat enablesDSEtoundertakewatersystemmodelling(Chapter6),and • Elementsthatshouldbeconsideredaspartofamonitoringandevaluation program(Chapter7). ThePaneladoptedanumberofguidingprincipleswhendeliberatingon recommendationsinrelationtosummerIVTs: • IVTsmust,wherepossible,beconsistentwiththeintentionsofprevious environmentalflowrecommendationsandconsiderations. • IVTsmustnotleadtoadeclineinecosystemcondition,structureorfunction,and beusedtoimproveconditionsifpossible. • IVTsmustnotbetothedetrimentofexistingregional,Stateornationalprograms orstrategiesforriverprotectionandrehabilitation. • IVTswillbeconsideredintermsoftheirpotentialimpactsoncomponentsofthe naturalflowregimethatareconsideredimportantforecosystemfunctionandthe protectionorrehabilitationofassetsandvalues. • IVTswillbeconsideredintermsofreintroducingmissingcomponentsofa naturalflowregime,fromtheperspectiveofthetotalflowregime(includingintra andinterannualvariability),andintermsofpotentialnegativeecosystem impactsduetotheinversionofthenaturalseasonalpatternofflow. ThePanelwasappointedtoprovideanecosystemperspectiveoftheimplicationsof futureIVTs.WhileitisrecognisedthatIVTshavepotentialeconomicandsocial implications,consideringthesewasbeyondthescopeofthisproject. ThePanelconsidereditspreviousrecommendations,andthepotentialforachieving ecologicalbenefitsaswellaspotentialproblemsthatmightarisewithIVTs.Flow relatedecologicalobjectivesfromtheperspectiveofvariousriverineattributes(river geomorphology,riverineproductivity,aquaticandbanksidevegetation, macroinvertebratesandnativefish)wereconsideredinrelationtochangestothe flowregimeasaresultofIVTs.Thisprovidedtheconceptualbasisforidentifying flowstressorsorelementsofecologicalsignificance(e.g.flowsthataffectthe amountandtimingofhabitatavailabletoriverineplantsandanimals).Theseflow stressorsandelementsweremodelledandthePanelthenidentifiedlimitsthat(i) wereconsideredtoposelittlerisktoachievingflowrelatedecosystemobjectivesand (ii)thatrepresentedtheboundaryofamoderaterisktoecologicalobjectives;beyond thisboundaryandtheflowelementswereconsideredtoposeahighriskto achievingecosystemobjectives.The26flowelementsconsideredbythePanel relatedtoissuessuchas: • Meanresidencetime; • Euphoticdepthinrelationtomeandepth; • Shearstress; • Variabilityinwaterlevelfluctuations; • Periodsofinundationatvariousstageheights; • Ratesofriseandfall.

Peter Cottingham & Associates iii Evaluation of summer inter-valley water transfers from the Goulburn River

Insummary: • Foreachecologicalobjective,relevantflowstressors(characterisedbyoneor moreflowelements)wereidentifiedandanalysedforoneormoreseasons;and • Interannualvariabilityintheseflowstressors/elementswascharacterisedbyfive percentilesoftheannualseriesplustheminimumandmaximumvaluesand thesepercentilesarecalculatedforthepreandpostregulationseries. TheenvironmentflowmethodusedinthisprojectisadevelopmentoftheFLOWS methodadoptedformanyenvironmentalflowstudiesacrossVictoria.Thefourmain improvementsareasfollows. • PreviousstudiesusingtheFLOWSmethodhaveoftenrecommendeda changestoasingleflowcomponentinordertoachievemultiple environmentalobjectives.Whileapragmaticapproach,thereisoftenlittle transparencyaroundthespecificationofandindividualflowcomponentand howitrelatestoeachobjective.Thisstudytooktheapproachof recommendingtheflowsbelievednecessarytoachieveindividual environmentalobjective. • Previousstudieshaverecommendedstaticenvironmentalflowsthatallowed forlittlevariationbetweenyears.Thisstudyexplicitlydealswithinterannual variability,allowingmoreflexibleoperationofthewaterresourceandthe protectionofimportantinterannualvariationinflows. • Thisprojecthasalsoprovidedtwolevelsofenvironmentalflow recommendation(i)therecommendedenvironmentalflowtoachievethe environmentalflowobjectivewithahighdegreeofconfidence(lowrisk)and (ii)aflowthatrepresentsa"moderaterisk"toachievingtheenvironmental flowobjective.Thesetwolevelsareprovidedinrecognitionoftheinherent uncertaintyinflowecologylinkagesandtheneedtotradeoffenvironmental riskswithconsumptivewateruse.Theboundsassociatedwiththesetwo levelsarebasedonbestavailablescientificinformationandtheopinionof ScientificPanelmembers. Thesedevelopments,whileanadvanceinconsideringflowvariability,meanthat thereisanincreasednumberofflowrecommendationsforeachreach.These recommendationsareexpressedintableswithinthisreportandarealsopresented inanaccompanyingdecisionsupporttool(DST),whichcanbeusedtoevaluatethe complianceofanyproposedflowregimewiththeregimerecommendedbythe Panel.Panelrecommendationswerebasedondeviationsfrommodelledpre regulationconditionsandprovideanenvelopewithinwhichwaterauthoritiescan operatetheriverwhilststillachievingenvironmentalflowobjectives. TheDSTisintheformofaMicrosoftExcelspreadsheetthathasbeendevelopedto helpassesstheimplicationofvariousIVTscenarios.AseparateDSThasbeen establishedforeachstudyreach,containingtherelevantecologicalobjectives,the flowstressorsandelements,andboundsforindividualflowelementstobeachieved duringtherelevantseason.Thespreadsheetsautomaticallyupdateandpresent resultsascolourcodesthatindicatecomplianceagainsttheflowrecommendations ofthePanel: • Greenindicatescomplianceagainsttherecommendedbounds; • Yellowindicatescomplianceagainstthemoderateriskbounds;and

Peter Cottingham & Associates iv Evaluation of summer inter-valley water transfers from the Goulburn River

• Redindicatestheflowscenariodoesnotcomplywiththemoderaterisk bounds. EnvironmentalflowrecommendationsmadebythePanelapplytothreedifferent aspectsoftheflowregime: • thefrequencydistributionofflows, • flowspells,and • theratesofriseandfallinstage InapplyingtheDST,itissuggestedthatattentionbepaidfirstlytorecommendations forthemedianyearasameansofconsidering‘typical’conditions(although recognisingthepotentialforyeartoyearvariability).Recommendationsmaybe expressedintermsofthemagnitudeorthedurationofaparticularflowevent,or eveninthemagnitudeofahabitatmetric(whichmighthaveaninverserelationwith flow).Afterconsideringresultsformedianyears,considerationmaybegiventothe examinationofabsolutemaximumandminimumrecommendations(themaximum andminimumvaluesforthemetricovertheperiodofrecord,19752000)andthe recommendationsforother“percentileyears”toprovidemoredetailontheinter annualdistributionfortheparticularflowelement. Giventhevariabilitythathasbeenconsidered,asimplesummaryofresultsis difficult.Asanexamplehowever,examinationoftheupperandlowerboundsforflow durationrelevanttoecologicalobjectivesforReach4providesomeinteresting observationsforamedianyear: • Recommendedlowerlimitstoachievemacroinvertebrateandnativefish objectivesaresuchthatdischargeintherange310856ML/dshouldbe exceededforbetween95%and100%ofthetimeallyearround.Thisis consistentwiththepreviousPanelrecommendationofaminimumflowof610 ML/dornatural. • Summerflowsupto1,500ML/dcanoccurfor90%ofthetimewithlittleriskto ecologicalobjectives,butshouldonlyexceed1,660ML/dfor63%ofthetime, 2,220ML/dfor40%ofthetime,and3,140ML/dfor20%ofthetime.Should watermanagerschoosetoadoptamoderatelevelofrisk,thentheproportionof timeeachofthesedischargesmaybeexceededcanbeincreased. • Shortdurationpeakflowsofapproximately4,500ML/d(for5%ofthetime)over summerarealsoconsideredtoposelittlerisktoecologicalobjectives,subjectto otherconstraintssuchasappropriateratesofriseandfallinriverlevels. • Floweventsaboveapproximately6,500ML/dinsummerwouldnotbeexpected tooccurinamedianyearbutareconsideredtoposelittlerisktoecological objectivesinwetyears. • Shortdurationeventsexceeding24,000ML/dinspringareconsideredtopose littlerisktoecologicalobjectives(e.g.fornativefish). AsimilarpatterntothatdescribedaboveisevidentforReach5. Itshouldbenotedthatthedischargesandassociateddurationstatedaboveare indicativeofhowIVTscanbemanaged.TheinformationinChapter5andthe accompanyingDSTprovidesalargedegreeofflexibilityandbetteraccountsfor

Peter Cottingham & Associates v Evaluation of summer inter-valley water transfers from the Goulburn River climaticvariabilitythanwouldarelativelystaticexpressionofaflowrecommendation (e.g.asingleupperorlowerlimit). OngoingIVTsinsummerimposesanewflowregimeonthelowerGoulburnRiver.It will be important to monitor and evaluate ecosystem changes that result from this withinthecontextofanadaptivemanagementprogram,particularlyifthepermanent transfer of water entitlements from the Goulburn system continues to expand as predicted. Thebasisofamonitoringandevaluationprogramtomeasureecosystemresponse toenvironmentalflowrecommendationsfortheGoulburnRiverhasbeenconsidered indetailaspartoftheVictorianEnvironmentalFlowMonitoringandAssessment Program(VEFMAP).However,thisprogram,aswellasthepreviousenvironmental flowstudyfortheGoulburnRiveronwhichitwasbased,didnotconsiderupper limitsonsummerflows,asthecallforIVTswerenotthenaprominentmanagement issue.ThePanelhas,therefore,identifiedadditionalvariablesthatshouldbe consideredinordertoevaluateecosystemresponsestoIVTs.

Peter Cottingham & Associates vi Evaluation of summer inter-valley water transfers from the Goulburn River Contents 1 INTRODUCTION ...... 1 1.1 PROJECT OBJECTIVES ...... 2 1.2 SCIENTIFIC PANEL APPROACH ...... 2 1.3 STUDY AREA ...... 2 1.4 PROJECT TASKS ...... 3 2 OUT-OF-VALLEY WATER DEMAND AND POTENTIAL CHANGES TO THE HYDROLOGY OF THE LOWER GOULBURN RIVER ...... 5 2.1 WATERDEMANDINTHE SUNRAYSIAREGION ...... 5 2.2 LIVING MURRAYINITIATIVE ...... 6 2.3 SNOWY RIVER ENVIRONMENTAL FLOWS ...... 7 2.4 IMPLICATIONOF IVT SONWATERMANAGEMENTINTHE GOULBURNSYSTEM ...... 7 2.4.1 Current release patterns...... 7 2.4.2 Recent IVT release pattern...... 11 3 GUIDING PRINCIPLES...... 14 3.1 GUIDINGPRINCIPLES ...... 14 3.2 IMPORTANTASSETSANDVALUESOFTHELOWER GOULBURN RIVER ...... 15 3.3 POTENTIALBENEFITSANDDIFFICULTIESASSOCIATEDWITHIVT S...... 15 4 ECOSYSTEM OBJECTIVES AND CONCEPTUAL UNDERSTANDING OF ECOSYSTEM RESPONSES TO A CHANGED SUMMER FLOW REGIME ...... 17 4.1 FLOWS METHOD ...... 17 4.2 FLOW RELATEDECOSYSTEMOBJECTIVES ...... 21 4.2.1 Geomorphic processes...... 23 Geomorphic processes...... 23 4.2.2 In-channel Primary Production ...... 29 4.2.3 River Bank Vegetation ...... 41 4.2.4 Macroinvertebrates ...... 47 4.2.5 Native Fish...... 54 4.3 SUMMARYOFFLOWSTRESSORS ...... 58 5 SUMMER IVT REGIME FOR THE LOWER GOULBURN RIVER...... 62 5.1 GENERALAPPROACH ...... 62 5.2 DECISION SUPPORT TOOL ...... 63 5.2.1 Assessing Compliance against Panel Recommendations ...... 64 5.3 IVT BOUNDSTOACHIEVEENVIRONMENTALFLOWOBJECTIVES ...... 75 5.3.1 Duration of flow exceedence ...... 75 5.3.2 Duration within a flow range ...... 79 5.3.3 Habitat Conditions – mean habitat availability over a season ...... 81 5.3.4 Flow Spells – flood frequency...... 84 5.3.5 Duration of the Longest Spell ...... 85 5.3.6 Persistent Spells of Stable Flow ...... 86 5.3.7 Rates of Rise and Fall ...... 88 5.4 SUMMARYPATTERNOFRECOMMENDEDRELEASES ...... 89 5.5 OTHERCONSIDERATIONS ...... 90 5.5.1 Operational considerations – formation of an advisory group...... 90 5.5.2 Unseasonal flow regime (inversion of the seasonal flow regime) ...... 90 5.5.3 Potential cold water issues ...... 90 5.5.4 Social and economic considerations ...... 91 5.5.5 Implications of the Goulburn Interceptor project...... 91 6 CLARIFICATION OF PREVIOUS ENVIRONMENTAL FLOW RECOMMENDATIONS ...... 93

7 MONITORING AND EVALUATION REQUIREMENTS...... 96

8 REFERENCES ...... 98

Peter Cottingham & Associates vii Evaluation of summer inter-valley water transfers from the Goulburn River

9 APPENDIX 1: FLOW-RELATED ECOSYSTEM OBJECTIVES...... 103

10 APPENDIX 2: MACROINVERTEBRATE RESPONSE TO WET AND DRY CONDITIONS.....120

11 APPENDIX 3: TEMPERATURE MODELLING ...... 122 Figures:

FIGURE 1: MAPOFIRRIGATIONDISTRICTSINTHE GOULBURN MURRAYREGION (FROM GOULBURN MURRAY WATERWWW .GMWATER .COM .AU ) ...... 6 FIGURE 2: COMPARISONOFREGULATEDANDPRE REGULATEDSUMMERANDAUTUMNFLOWSINTHE GOULBURN RIVERAT MURCHISON (19752000)...... 8 FIGURE 3: MEDIANMONTHLYFLOWSINTHE GOULBURN RIVERAT MURCHISON (19752000)...... 9 FIGURE 4: COMPARISONOFREGULATEDANDPRE REGULATEDSUMMERANDAUTUMNFLOWSINTHE GOULBURN RIVERAT MCCOY ’S BRIDGE (19752000)...... 9 FIGURE 5: COMPARISONOFSPELLDURATIONGREATERTHAN1,000 ML/ DAND 2,000 ML/ DAT MURCHISONFORREGULATEDANDMODELLEDPRE REGULATIONCONDITIONS (19752000)..10 FIGURE 6: GENERALHYDROLOGICALPATTERNOF IVT RELEASESFROMTHE GOULBURNSYSTEM ...... 11 FIGURE 7: PATTERNOFFLOWAT MURCHISONAND MCCOY ’S BRIDGEDURINGTHESUMMERANDAUTUMN OF 2005/05. DURATIONOFEVENTSABOVE 1,000 ML/ DAND 2,000 ML/ DAT MURCHISONARE INDICATED ...... 12 FIGURE 8: RELEASEPATTERNSASSOCIATEDWITHMODELLEDDSE TRADESCENARIOS (B ARRY JAMES , DSE, PERS .COMM .). THEDOTTEDLINESREPRESENTTHEMINIMUMRELEASESREQUIREDTO MEETALMONDCROPDEMANDUNDEREACHSCENARIO ...... 13 FIGURE 9: TIMESERIESSHOWINGDIFFERENTCOMPONENTSOFANATURALFLOWREGIME ...... 17 FIGURE 10: FLOWCOMPONENTSCANAFFECTECOSYSTEMRESPONSESDIRECTLYORINDIRECTLY ,FOR EXAMPLEVIAGEOMORPHICPROCESSES .THISCONCEPTUALDIAGRAMSUMMARISESTHE INTERACTIONSOFMOSTINTERESTTOTHE SCIENTIFIC PANEL ,GIVENTHEPOTENTIALEFFECT OF IVT S (SEESECTION 4.2)...... 18 FIGURE 11: POTENTIALINTERACTIONOFSHEARSTRESSWITHSEDIMENTMOBILISATIONPROCESSESAND BIOFILMPRODUCTIONANDEFFECTS (DIRECTAND *INDIRECT )ONMACROINVERTEBRATE COMMUNITIES ...... 19 FIGURE 12: OVERVIEWOFPOTENTIALLINKSBETWEENFLOWCOMPONENTS ,FLOWSTRESSORSANDBIOTIC RESPONSERELATEDTOSUMMER IVT S...... 20 FIGURE 13: SANDYPOINTBARIN REACH 4. NOTETHAT ,INHEIGHT ,THESANDEXTENDSTOWARDTOPOF THEBANKTHATISEVIDENTATTHEBACKOFTHEPHOTO (FLOWTOWARDOBSERVER )...... 24 FIGURE 14: POINTBENCHAT CABLE HOLE (R EACH 4). THESESURFACESWILLBEFULLYINUNDATEDAT HIGHER IVT S (FLOWIS 400 ML/ D,FLOWAWAYFROMOBSERVER )...... 24 FIGURE 15: CONCAVEBENCHONTHELEFTBANKOFTHE GOULBURN RIVER (R EACH 4)...... 25 FIGURE 16: REACH 5OFTHELOWER GOULBURN RIVER . NOTETHESIMPLEPARABOLICCROSS SECTION . THEMAJORSOURCEOFPHYSICALDIVERSITYINTHISCHANNELISTHELARGEWOODINTHEBED OFTHECHANNEL ...... 25 FIGURE 17: CONCEPTUALISATIONOFTHECHANGEINSEDIMENTANDFLOWREGIMESDOWNSTREAMOF DAMS (FROM CHEEETAL .2006). THE XAXISREPRESENTSDISTANCEDOWNSTREAMFROM THERESERVOIR ,WITHZONE 1BEINGIMMEDIATELYDOWNSTREAM .SOLIDLINE :REGULATED FLOWCONDITIONS ;DASHEDLINE :WITHENVIRONMENTALFLOWALLOCATION ...... 26 FIGURE 18: NOTCHINGATTHETOEOFTHEBANKPOSSIBLYRELATEDTOTHELONG DURATION IVT OF SUMMER 2006 (R EACH 5, VIEWDOWNSTREAM )...... 28 FIGURE 19: GRASSESONTHEBANKFACEWILLBEKILLEDBYHIGHER ,LONG DURATIONFLOWS ,LEADINGTO BANKNOTCHING . PHOTOGRAPHWASTAKENIN REACH 5ATFLOWOF 400 ML/ D...... 28 FIGURE 20: VERTICALATTENUATIONCOEFFICIENTASAFUNCTIONOFTURBIDITY ...... 31 FIGURE 21: AVERAGEWETTEDPERIMETERWITHINTHEEUPHOTICZONEAT MURCHISON ...... 32 FIGURE 22: AVERAGEWETTEDPERIMETERWITHINTHEEUPHOTICZONEAT MCCOY ’S BRIDGE .THEUPPER TH TH ANDLOWERBOUNDSREPRESENTTHE 20 AND 80 PERCENTILES ,RESPECTIVELY ...... 33 FIGURE 23: MEANDEPTHAT MURCHISON ...... 34

Peter Cottingham & Associates viii Evaluation of summer inter-valley water transfers from the Goulburn River

FIGURE 24: MEANDEPTHAT WYUNA ...... 34 FIGURE 25: MAXIMUMPOTENTIALGROWTHANDNETPRODUCTIONIN REACH 4...... 35 FIGURE 26: MAXIMUMPOTENTIALGROWTHANDNETPRODUCTIONIN REACH 5...... 36 FIGURE 27: AVERAGEVELOCITYVERSUSFLOWIN REACH 4...... 37 FIGURE 28: AVERAGEVELOCITYVERSUSFLOWIN REACH 5...... 37 FIGURE 29: CONCEPTUALISATIONOFVEGETATION ,MACROINVERTEBRATEANDFISHHABITATRESPONSES TOFLOWCOMPONENTS (FROM CHEEETAL .2006)...... 44 FIGURE 30 : CONCEPTUALMODELOFAQUATICANDRIPARIANVEGETATIONRESPONSESTO SPRINGAND SUMMERFLOWS .ZONE A: FROMMID CHANNELTOSTREAMMARGIN (ORTHEAREACOVERED BYWATERDURINGTIMESOFBASEFLOW ); ZONE B: FROMSTREAMMARGINTOAPOINTMID WAY UPTHEFLANKOFTHEBANK (ORTHEAREATHATISINFREQUENTLYINUNDATED ): ZONE C: FROMMID WAYUPTHEFLANKOFTHEBANKTOJUSTBEYONDTHETOPOFTHEBANK (FROM CHEEETAL .2006)...... 45 FIGURE 31: OCCURRENCEOF “TERRESTRIAL EXCLUDING ”INUNDATIONEVENTSBASEDONTHECONCEPTUAL UNDERSTANDINGTHATINUNDATIONEVENTSINTHEWARMERMONTHS (D ECEMBERTO APRIL INCLUSIVE )THATARE 50 CMDEEPANDLASTAMINIMUMOF 15 DAYSCANBEEXPECTEDTO CAUSEMORTALITYIN 50% OFTERRESTRIALPLANTS .THEPLOTSHOWSOCCURRENCEOF SUCHEVENTSUNDERREGULATEDFLOWS (A BOVE )ANDNON REGULATEDFLOWS (B ELOW )AT 0.6 M,1M ,1.8 MAND 4MONGAUGEAT MURCHISON ,EQUIVALENTTO 90 TH ,75 TH ,50 THAND 25 THPERCENTILEOFNATURALFLOWS ...... 46 FIGURE 32: CONCEPTUALISATIONOFMACROINVERTEBRATE ,VEGETATIONANDFISHHABITATRESPONSES TOFLOWCOMPONENTS (FROM CHEEETAL .2006)...... 50 FIGURE 33: IDEALISEDFLOWPATTERNLIKELYTOPROMOTESPAWNINGANDMIGRATIONCUESFORNATIVE FISH ...... 57 FIGURE 34: EXAMPLEOUTPUTOFTHE DST FOR REACH 4UNDERANUNREGULATEDFLOWREGIME , IDENTIFYINGTHERELEVANTECOLOGICALOBJECTIVES ,FLOWCOMPONENTS ,FLOWSTRESSORS ANDRISKLEVELS (GREEN =LOWRISKTOOBJECTIVES ,YELLOW =MODERATERISKTO OBJECTIVES ,RED =HIGHRISKTOOBJECTIVES )...... 72 FIGURE 35: EXAMPLEOUTPUTOFTHEDST FOR REACH 4UNDERTHEMOSTRECENT IVT REGIME ,2005 2006 (GREEN =LOWRISKTOOBJECTIVES ,YELLOW =MODERATERISKTOOBJECTIVES ,RED = HIGHRISKTOOBJECTIVES )...... 73 TH TH FIGURE 36: UPPERANDLOWERBOUNDSANDEXCEEDENCELEVELSFORFLOWDURATIONFOR 10 ,30 , TH TH MEDIAN ,70 ,90 PERCENTILEYEARSANDALLYEARS (19752000) FORTHEPRE REGULATEDFLOWREGIME .SOLIDSHAPESANDSOLIDLINESREPRESENTUPPERBOUNDSFOR EACHPERCENTILEYEAR ,WHILEOPENSHAPESANDBROKENLINESREPRESENTLOWER BOUNDS ...... 89 FIGURE 37: BENCHAREAAT MURCHISON (USINGMODELRESULTSFROMTHE 2003 ENVIRONMENTALFLOW STUDY )...... 94 FIGURE 38: REGULATEDANDMODELLEDNATURAL (PARTIALDURATION )FLOODFREQUENCYPLOTSFOR MURCHISON ...... 95 FIGURE 39: RELATIONBETWEENFRESHPEAKMAGNITUDEANDDURATIONABOVEATHRESHOLDOF 2,000 ML/ DAY ...... 95 FIGURE 40: SCHEMATICOF GOULBURN RIVERSYSTEM .YELLOWCIRCLESDENOTESTREAMFLOWGAGING

STATIONS .HODENOTESCHANNELBEDELEVATIONATGAGINGSTATION .ALSOSHOWNARE TYPICALTRAVELTIMESALONGVARIOUSREACHES ...... 124 FIGURE 41: MEANMONTHLYFLOWSDURING 1JAN 1995 30 JUNE 2000 BELOW EILDON DAM (BLUE )AND AT MOLESWORTH (RED )AND TRAWOOL (GREEN )...... 127 FIGURE 42: MEANMONTHLYFLOWSDURING 1JAN 1995 30 JUNE 2000 BETWEEN GOULBURN WEIRAND SHEPPARTON (R EACH 4, BLUE )AND SHEPPARTONTOTHE RIVER MURRAY (R EACH 5, RED )...... 127 FIGURE 43: MEANMONTHLYNETHEATFLUXESCOMPUTEDFROMON SITEHIGHRESOLUTION METEOROLOGICALMEASUREMENTSAT CHAFFEY DAMAND HUME DAM ...... 129 FIGURE 44: COMPARISONBETWEEN EILDON DAMAND HUME DAMSHORTWAVERADIATIONANDWIND SPEEDOBSERVATIONS ...... 130 FIGURE 45: MONTHLYWATERLEVELSIN LAKE EILDON .GREYBARDENOTESOFFTAKELEVEL .DASHED LINESDENOTE ±1STANDARDDEVIATIONFROMTHEMEANMONTHLYWATERLEVELS ...... 131 FIGURE 46: MEANMONTHLYTEMPERATUREFOR GOULBURN RIVERAT TRAWOOLDURING 1995 2001. 134 FIGURE 47: OBSERVEDMONTHLYMEANTEMPERATURESINTHEGOULBURN RIVERDOWNSTREAMOF GOULBURN WEIR (SITE 405259)...... 136

Peter Cottingham & Associates ix Evaluation of summer inter-valley water transfers from the Goulburn River

FIGURE 48: OBSERVEDMONTHLYMEANTEMPERATURESINTHEGOULBURN RIVERAT MCCOY ’S BRIDGE (SITE 405232)...... 137 FIGURE 49: OBSERVEDTEMPERATURESDOWNSTREAMOF GOULBURN WEIR (405259), AT MURCHISON (405200), ANDAT MCCOY ’S BRIDGE (405232) COMPAREDTO ETMPREDICTED TEMPERATURESFOR REACH 4(G OULBURN WEIR SHEPPARTON )FORWATERDEPTHSOF1.3 M (CURRENTCONDITIONS )AND 5M (350 GL IVT SCENARIO )...... 139 FIGURE 50: MEANAIRTEMPERATUREAT TATURA (FROM SILO DATA )ANDPREDICTEDEQUILIBRIUM (VIOLET ) ANDWATERTEMPERATURESFORMEANWATERCOLUMNDEPTHSOF 1.3 M (BLUE ), 3M (GREEN )AND 5M (RED )IN REACH 4(L AKE SHEPPARTON )...... 141 FIGURE 51: PREDICTEDTIMEFORWATERTEMPERATURETOREACHEQUILIBRIUMTEMPERATURE ...... 141 FIGURE 52: OBSERVEDMONTHLYMEANTEMPERATURESALONGTHE GOULBURN RIVER ...... 143 FIGURE 53: OBSERVEDTEMPERATUREINCREASESINTHE GOULBURN RIVERBETWEEN TRAWOOLAND MCCOY ’S BRIDGE ...... 143 Tables:

TABLE 1: ANOPTIMISED IVT RELEASEPATTERNUSEDINSCENARIOS 1TO 3TOMINIMISE MURRAY SHORTFALLINSUPPLYOVERTHEMODELLEDPERIODFROM 1975 TO 2000...... 12 TABLE 2: PRINCIPLESAIMEDATPROTECTINGRIVERS (FROM PHILLIPSETAL .2001)...... 15 TABLE 3: POTENTIALBENEFITSANDDIFFICULTIESARISINGFROMTHEDELIVERYOF IVT SVIATHELOWER GOULBURN RIVER ...... 16 TABLE 4: FLOWSTRESSORSANDTHEIRCOMPONENTS ...... 58 TABLE 5: SUMMARYOFRELATIONSHIPSBETWEENFLOW RELATEDOBJECTIVESANDFLOWSTRESSORS (SEE APPENDIX 1AND 2FORFURTHERDETAILSOFFLOWOBJECTIVES )...... 60 TABLE 6: LISTOFFLOWSTRESSORSANDELEMENTSCONSIDEREDBYTHE SCIENTIFIC PANEL ...... 65 TABLE 7: FLOWDURATIONBOUNDSIDENTIFIEDFOR REACH 4ECOLOGICALOBJECTIVES .THEVALUESIN THETABLEREPRESENTTHEPROPORTIONOFTIMETHATDISCHARGEMAYEXCEEDA PARTICULARBOUND (E.G.0.85 =85%). THEVARIOUSPERCENTILEYEARSPROVIDE OPPORTUNITIESFORINTER ANNUALVARIABILITY ,PROVIDINGDIFFERENTEXCEEDENCELEVELS FORDRY (MIN ,10 THAND 30 THPERCENTILEYEARS )MEDIANANDWETYEARS (70 TH ,90 THAND MAXYEARS )...... 76 TABLE 8: FLOWDURATIONBOUNDSIDENTIFIEDFOR REACH 5ECOLOGICALOBJECTIVES .THEVALUES REPRESENTTHEPROPORTIONOFTIMETHATDISCHARGEMAYEXCEEDAPARTICULARBOUND (E.G.0.85 =85%). THEVARIOUSPERCENTILEYEARSPROVIDEOPPORTUNITIESFORINTER ANNUALVARIABILITY ,PROVIDINGDIFFERENTEXCEEDENCELEVELSFORDRY (MIN ,10 THAND 30 THPERCENTILEYEARS )MEDIANANDWETYEARS (70 TH ,90 THANDMAXYEARS )...... 77 TABLE 9: UPPERANDLOWERBOUNDSFORTHEDURATIONOFECOLOGICALLYSIGNIFICANTFLOWEVENTS FOR REACH 4 ...... 79 TABLE 10: UPPERANDLOWERBOUNDSFORTHEDURATIONOFECOLOGICALLYSIGNIFICANTFLOWEVENTS FOR REACH 5 ...... 80 TABLE 11: UPPERANDLOWERBOUNDSFORHABITATMETRICSRELEVANTTO REACH 4. SEE TABLE 5FOR THEUNITSASSOCIATEDWITHEACHMETRIC ...... 81 TABLE 12: UPPERANDLOWERBOUNDSFORHABITATMETRICSRELEVANTTO REACH 5. SEE TABLE 5FOR THEUNITSASSOCIATEDWITHEACHMETRIC ...... 83 TABLE 13: RETURNFREQUENCYOFFLOODSALONG REACH 4.VALUESREPRESENTUPPERLIMITSOF FLOODFREQUENCYPERYEAR ...... 85 TABLE 14: RETURNFREQUENCYOFFLOODSALONG REACH 5...... 85 TABLE 15: SPELLDURATIONTOACHIEVEVEGETATIONOBJECTIVESFORTHELOWERANDUPPERSECTION OFTHERIVERBANK ...... 86 TABLE 16: PERSISTENTSTABLEFLOWSEXCEEDINGSIXWEEKSTOACHIEVETHEMACROPHYTESOBJECTIVE ...... 87 TABLE 17: PERSISTENTSTABLEFLOWSEXCEEDING 2WEEKSTOACHIEVETHEPERIPHYTICALGAE OBJECTIVE ...... 87 TABLE 18: OPERATIONALBOUNDARIESONTHEDISTRIBUTIONOFDAILYRISEANDFALLIN REACH 4STAGE (M)TOCOMPLYWITH PANELRECOMMENDATIONS .THETABLEPROVIDESUPPERLIMITSFOR THEVARIOUSPERCENTILESONTHEDISTRIBUTIONOFDAILYCHANGES .LOWERLIMITSARE SHOWNINBRACKETS ...... 88

Peter Cottingham & Associates x Evaluation of summer inter-valley water transfers from the Goulburn River

TABLE 19: COMPLIANCEOFTHEREGULATEDFLOWREGIMEINTHELOWER GOULBURNWITHAMINIMUM FLOWRECOMMENDATIONOF 610 ML/ D...... 93 TABLE 20: DRAFTCRITERIAFORDETERMININGPRIORITYREACHES (FROM SKM 2005)...... 93 TABLE 21: DRAFTRISKCATEGORIES(SKM 2005)...... 94 TABLE 22: FLOWRELATEDISSUESANDECOSYSTEMOBJECTIVESRELATEDTORIVERGEOMORPHOLOGY ...... 104 TABLE 23: ECOLOGICALFEATURESANDFLOWCOMPONENTSTOBEASSESSEDFORRIVERINEPRODUCTION INTHE GOULBURN RIVER ...... 106 TABLE 24: ECOLOGICALFEATURESANDFLOWCOMPONENTSTOBEASSESSEDFORBANKSIDEVEGETATION ALONGTHE GOULBURN RIVER ...... 113 TABLE 25: ECOLOGICALFEATURESANDFLOWCOMPONENTSTOBEASSESSEDFORMACROINVERTEBRATE POPULATIONSALONGTHE GOULBURN RIVER ...... 117 TABLE 26: GOULBURN RIVERSTUDYREACHES .REACHLENGTHWASDERIVEDFROM 1:250000 CONTOUR MAP .GAUGEZERODEPTHFOR LAKE NAGAMBIE (G OULBURN WEIR )ISTHEFULLSUPPLYLEVEL (FSL). REACH ID INDICATESTHEDOWNSTREAMENDOFAREACH .SHADEDROWSDENOTE STATIONSWITHINAREACH .REACH 4AISMEASUREDFROM 405259 TO 405200 ANDREACH 5A ISMEASUREDFROM 405204 TO 405232...... 126 TABLE 27: DISCHARGESCENARIOSFOR GOULBURN RIVERBELOW GOULBURN WEIR .INTERVALLEY TRANSFER (IVT) SCENARIOSAREADJUSTEDTOREFLECTACROPDEMANDFACTOR ...... 128 TABLE 28: ASSUMEDMEANMONTHLYNETHEATFLUXEXPERIENCEDBY GOULBURN RIVER ...... 130 TABLE 29: CHARACTERISTICDEPTH ,VELOCITYANDTRAVELTIMEFORREACHES 13AND LAKE NAGAMBIE FORTHEASSUMEDMONTHLYMEANDAILYDISCHARGEFOR EILDON LAKE NAGAMBIEAND CORRESPONDING (V OL =25000 ML, MEANDEPTH =2.2 M )...... 133 TABLE 30: PREDICTEDTEMPERATURECHANGESALONGREACHES 13ANDDURINGPASSAGETHROUGH LAKE NAGAMBIE .OBSERVEDCHANGEWASCOMPUTEDFROM 15MINUTETEMPERATUREDATA AT TAWOOL (405201) ANDDOWNSTREAMOFTHE GOULBURN WEIR (405259)...... 133 TABLE 31: PREDICTEDTEMPERATURESAT MURCHISON .OBSERVEDTEMPERATURESAT LAKE NAGAMBIE AND MURCHISON (405200)...... 134 TABLE 32: PREDICTEDTEMPERATUREAT MCCOYS BRIDGE ...... 134 TABLE 33: PREDICTEDDISTANCEDOWNSTREAMOF GOULBURN WEIRFORRIVERTEMPERATURETOREACH 25°C. OBSERVEDTEMPERATUREAT MCCOY ’S BRIDGE (19952001) MAYBECONSIDEREDAN UPPERLIMITFORANACHIEVABLETEMPERATUREDURINGSUMMER.NOTETHATOBSERVATIONS SHOWADECREASEINTEMPERATUREBETWEEN GOULBURN WEIRAND MCCOY ’S BRIDGE DURING APRIL ...... 136 TABLE 34: WATERTEMPERATUREPREDICTIONSUSINGEQUILIBRIUMTEMPERATUREMETHOD .AVERAGE TEMPERATUREAT MURCHISONAND MCCOYS BRIDGE (19952001). AVERAGETEMPERATURE DOWNSTREAMOF GOULBURN WEIR (20002001). EQUILIBRIUMTEMPERATURECALCULATIONS WEREPERFORMEDFORTHEPERIOD 1JAN 1990 3APR 2006...... 140 TABLE 35: DISCHARGESCENARIOSFOR OCT APRINCLUDEACROPFACTOR ...... 143 TABLE 36: PREDICTEDFLOWINGDEPTHFORREACHES 4AND 5DETERMINEDFROM MANNING ’SEQUATION ...... 144 TABLE 37: PREDICTEDMEANVELOCITIESINREACHES 4AND 5...... 144 TABLE 38: PREDICTEDTRAVELTIMESFORREACHES 4AND 5...... 144 TABLE 39: PREDICTEDDAILYTEMPERATURECHANGEINREACHES 4AND 5...... 145

Acknowledgments WayneTennant(GoulburnBrokenCatchmentManagementAuthority),GeoffEarl (GoulburnBrokenCatchmentManagementAuthority),PauloLayandBarryJames (DepartmentofSustainabilityandEnvironment),andBrianLawrence(MDBC)have providedconsiderableadviceandinformationthatwasinvaluablefortheworkofthe Panelandincompilingthisreport.BradSherman(CSIRO)providedvaluableinsight onthelikelyresponseofwatertemperaturetoIVTs.Ourthanksareextendedto eachofthem.

Peter Cottingham & Associates xi Evaluation of summer inter-valley water transfers from the Goulburn River 1 INTRODUCTION Theexpansionofwatermarketsandresultantintervalleytrade,alongwith commitmentstoprogramssuchastheLivingMurrayInitiative,increasesthepotential requirementforintervalleytransfers(IVTs)fromtheGoulburnBrokensystemto downstreamareas.Forexample,currentandfutureexpansionofirrigationindustries intheSunraysiadistrictinnorthwestVictoriahasthepotentialtogreatlyincreasethe volumeofwaterrequiredtomeetbothpermanentwaterrightsanddemandfor temporarysaleswater.TheGoulburnBrokensystemispivotalinmeetingany increaseindownstreamdemand,givenconstraintsondeliveringadditionalwater fromLakeHume(e.g.duetotheBarmahChoke)andlimitedadditionalstorage capacityalongtheRiverMurray. Currently,minimumpassingflowsof250350ML/darereleasedfromGoulburnWeir andflowisusuallybetween350600ML/datMcCoy’sBridgeduringsummer autumn.Basedontheexperienceofthepasttwosummerautumnperiods(2005and 2006),dailyflowsanticipatedwithIVTsarelikelytobeintherange1,000–2,500 ML/d.In2006,atotalof111,000MLwastransferredfromtheGoulburnSystemto theMurraySystemastheresultofwatertradingandthetransferofwatersavings (GeoffEarl,GBCMA, pers. comm .).Thiswasthefirstyearthatsuchlargevolumes havebeentransferredinthiswayandthevolumewasunusuallylargebecauseit includedtradewaterthathadbeen‘banked’frompreviousyears.However,itis likelythattransfersofsimilarorgreatermagnitudewillberequiredinfutureyearsas waterentitlementscontinuetotradeoutoftheGoulburnsystem. IVTs,whenrequired,aremostlikelytobedeliveredbetweenJanuaryandMarchand thereisconcernabouttheriskposedbyhigherthannormalsummerandautumn flowstoriverassetsandvaluesifIVTsaretobedeliveredsolelyviathelower GoulburnRiver.Anenvironmentalflowstudyconductedin2003(Cottinghametal. 2003)recommendedthatminimumsummerautumnflowscouldbeincreasedto above610ML/d(ornatural)tomaintainhabitatavailabilityfornativefish.Noupper boundswereputonthisrecommendation,astheneedforfrequentorincreasingly largeIVTswasnotthenidentified.The2003environmentalflowstudywasusedto examinehowwaterthatmightbereleasedtotheRiverMurrayaspartoftheLiving MurrayInitiativecouldbeusedtoprotectorenhancetheecologicalconditionofthe GoulburnRiver.ThestudywasnotpartofanyformalreviewoftheexistingGoulburn BulkWaterEntitlement,andcouldonlymakelimitedassessmentsoffuture scenarios,astherewasatthattimenoinformationonthevolumeandtimingofwater thatmightberequiredfortheRiverMurray.ThequestionofwhetherIVTscanbe deliveredinamannerthatposeslittlerisk(orresultinagain)toecosystemassets andvalueswasnotaddressed. Theissueofincreasedsummerflowsisalsorelevanttosystemsotherthanthe GoulburnRiver.Theprinciplesbywhichchangestothesummerflowregimeinthe lowerGoulburnRiverareassessedcanprovideabasisfromwhichtoconsider potentialimpactsandthedeliveryofIVTsinotherlowlandsystems(e.g.thelower CampaspeRiver). TheScientificPanelthatdevelopedenvironmentalflowrecommendationsin2003 hasbeenreconvenedtoconsidertheimplicationsofIVTsforthelowerGoulburn

Peter Cottingham & Associates 1 Evaluation of summer inter-valley water transfers from the Goulburn River

River.TheGoulburnBrokenCatchmentManagementAuthority(GBCMA)andthe DepartmentofSustainabilityandEnvironment(DSE)regardthisprojectasapilot fromwhichtoconsiderthescienceandprinciplesrequiredtoensurethatIVTsare deliveredinanenvironmentallysensitivemanner.Lessonlearntwillbecapturedso thatIVTsdeliveredvianearbyrivers(i.e.CampaspeandpossiblytheLoddon)canbe consideredinaconsistentmannerinthefuture.Rulesforintervalleywatertrade currentlyreflectcapacityanddeliveryconstraintsandcommercialandcontractual obligations,butdonotyetformallyconsiderpotentialenvironmentaleffects.This projectwillalsohelpinformanyfuturereviewoftradingrulesthatincludesprinciples andprovisionsforenvironmentalprotection. 1.1 Project Objectives Theobjectivesstatedintheprojectproposalareto: • Undertakeadditionalinvestigationsthatbetterquantifytheimportanceoffactors, suchaschangestoecologicalprocessesandplantandanimalcommunity structure,potentiallyaffectedbyseasonalflowinversions • EstablishecologicalprinciplesforsummerflowsinGoulburnRiverandusethese asthebasisforassessingpriorityriversystems(DSEmaywishtoapplythe principlesdevelopedfortheGoulburnRivertosystemssuchastheCampaspe RiverandLoddonRiver). • Developcriteriaandanapproachtoassessingtheimplicationsofincreased seasonalflowthatcanbeappliedinothersystems. • Refine,ifnecessary,existingenvironmentalflowrecommendationsforthe GoulburnRiverbelowGoulburnWeir. 1.2 Scientific Panel Approach TheprojectadoptedsimilarmethodstothatusedbythepreviousGoulburnScientific Panel(Cottingham et al .2003),butwithafocusoninchannelflowsbetween GoulburnWeirandtheRiverMurray.Particularattentionisbepaidtoassessingthe ecologicalrisksassociatedwithincreasingsummerlowflowsinthechannel. Unseasonablyhighandlongerdurationsummerflowsareknowntoposearisktothe riverconditionandecologicalprocesses(e.g.Bergkampetal.2000,McAllisteretal. 2001).Theapproachwasthereforeto: • ConsiderthecurrentconditionofthelowerGoulburnRiver; • Provideaseriesofquestions(hypotheses)abouttheinteractionoftheriver ecosystemanditssummerflowregime; • Considerthepotentialecosystemrisksandbenefitsposedbyincreasedsummer flowsintheriver; • Recommendasummerflowregimethatwillprotectorimprovetheecological conditionoftheGoulburnRiverbelowGoulburnWeir. • Recommendtheprinciples,criteriaandapproachthatcanbeappliedtosummer flowsinotherpriorityriversystemswherethisissueisrelevant. 1.3 Study Area Thestudyareaisbasedonthetworepresentativereachesestablishedforthe previousenvironmentalflowstudyoftheGoulburnRiver(Cottingham et al .2003):

Peter Cottingham & Associates 2 Evaluation of summer inter-valley water transfers from the Goulburn River

• GoulburnRiver:GoulburnWeirtoShepparton; • GoulburnRiver:SheppartontotheRiverMurray. ThesetworeacheswereReaches4and5inthepreviousenvironmentalflowstudy. 1.4 Project Tasks Theprojectbriefidentifiedthefollowingmajortasks: 1. Developmentofprinciplesandcriteriabywhichanupperlimitonsummerautumn flowsbelowGoulburnWeircanbeidentified.Theseprincipleswillbeappliedto flowstoprotecttheintegrityoftheriver’senvironmentalassetsinthestudyarea. 2. Clarificationofexistingrecommendationstoconfirmtheobjectives,assumptions, rationalandcomponentsoftherecommendations.Thiswillincludespecification ofthetiming,magnitudeanddurationofflowcomponentsinamannerthatwill allowstakeholderstomodelwaterreleasesfromLakeEildontomeetcurrentthe demandsoftheNorthernSustainableWaterStrategyandtheLivingMurray Initiative. 3. Analysisofregimes(recommended)toprotecttheriver’senvironmentalassets. Thiscanincludeanalysisofimpactsofsummerflowswithinanumberof scenarios(e.g.X=250ML/day,X+500,X+1000,etc.)toexploreflow benefit/disbenefitrelationships. 4. Presentaflowbenefit/disbenefitcurveforacceptablelowflowsuptohighin channelflowsthatareclearlyunacceptablefromanecosystemperspective. Considerationwillbegiventohowwatermaybetransferredinafashionthat wouldincreasethebenefitsoratleastreducethepotentialdisbenefits(e.g. pulsing,higherflowlimitsforspring/lateautumn).Maximumratesofriseandfall willalsobeconsidered. Theintentionoftheflowbenefit/disbenefitcurvesistoidentifyanenvelopproviding upperandlowersummerflowlimits,withinwhichassetsandvalueswouldbe protectedorimproved.Forexample,“610ML/dislikelytobebetterthanthecurrent 350400ML/d,butbeyond2,000ML/dtherearerisksassociatedwith….”However, itwasrecognisedindiscussionswiththeCMAandDSEthatstatingflow ecology/geomorphologyrelationshipsforthelowerGoulburnRiverinthiswaymay notbepossible,andthatinsuchcircumstancesrelationshipswillbepresentedasa setofrulestoguidefuturedecisions. Theprojectwasundertakenasa3stageprocess: • Stage1involvedestablishingthescientificprinciplesbywhichriskstotheriver ecosystemwillbeconsidered.Thisstepmadeuseoftheadvancesinscientific understandingoftheroleoftheflowregimeinmaintainingecologicalprocesses gainedsincethepreviousScientificPaneldevelopeditsrecommendations.Stage 1activitiesincluded:  Thereviewofrecentscientificinformationrelevanttotheproject;

Peter Cottingham & Associates 3 Evaluation of summer inter-valley water transfers from the Goulburn River

 Afieldvisitandworkshoptoshareinformationandinsightsonhowproposed changestotheflowregimemightimpactontheecosystemassetsandvalues ofthestudyarea.  Confirmationofthehydrologicalandhydraulicmodellingrequiredtoexplore scenariosinStages2and3. • Stage2involvedthedevelopmentofamethodandcriteriabywhichsummer autumnlowflowscanbeassessedasbeneficialordetrimentaltoecosystem assetsandvalues.ThisallowedthePaneltoconsiderthemeritsofalternative flowscenariosprovidedbytheCMAandtheDSEWaterSectorGroup.Stage2 alsoconsideredhowtheprinciples,criteriaandassessmentofsummerreleases intheGoulburncouldbeappliedtoother,similarlyaffectedsystems. • Stage3providedthepreferredalternativefordeliveringIVTsandstatedthemain featuresofmonitoringandevaluationactivitiesfromwhichtoassessecosystem responsetoanewflowregime.Themonitoringandevaluationactivitiesaretobe integratedintoVictorianEnvironmentalFlowMonitoringandAssessment Program(VEFMAP),whichincludesprovisionsfortheGoulburnRiver. Thisreportdescribes: • ChangestoriverhydrologyandoperationexpectedwiththedeliveryofIVTs (Chapter2), • EcologicalprinciplesandcriteriabywhichIVTsareassessedintermsofpotential risktoecosystemassetsandvalues(Chapter3), • TheconceptualbasisofecosystemresponsetoIVTs(Chapter4), • WaysinwhichIVTsmaybereleasedinordertoprotectorenhanceecosystem assetsandvalues(Chapter5), • Previousenvironmentalflowrecommendationsandpresentstheminawaythat enablesDSEtoundertakewatersystemmodelling(Chapter6),and • Elementsthatshouldbeconsideredaspartofamonitoringandevaluation program(Chapter7).

Peter Cottingham & Associates 4 Evaluation of summer inter-valley water transfers from the Goulburn River 2 OUT-OF-VALLEY WATER DEMAND AND POTENTIAL CHANGES TO THE HYDROLOGY OF THE LOWER GOULBURN RIVER TheGoulburnsupplysystemharvestswateratLakeEildonandGoulburnWeir,with mostwaterdivertedfromtheriveratGoulburnWeir.GoulburnRiverflowsduring summerbetweenGoulburnWeirandtheconfluencewiththeRiverMurrayhave usuallybeenrelativelylowandsteady,governedbymeetingprescribedminimum flowsandsomewaterusefromtheriverinthisreach.Inrecenttimes,the requirementfortheGoulburnsupplysystemtotransferwatertotheRiverMurrayhas increasedsignificantly. ThethreemostlikelysourcesofdemandresultinginIVTscomefrom(i)expansionof irrigationindustriesintheSunraysiaregion,(ii)releasestomeetcommitments relatedtotheLivingMurrayInitiative,and(iii)releasestoprovideSnowyRiver environmentalflows. 2.1 Water demand in the Sunraysia region FactorssuchastheCapondiversionsintheMurrayDarlingBasin,andtheadventof marketinstrumentsassociatedwithwatertrade(EnvironmentandNaturalResources Committee2001)havecontributedtoanincreaseinthevalueofirrigationwaterover thelastdecade.Inthattime,thescopeofwatertradehasalsoexpandedfromwithin valleytransferstotransfersbetweenriversystems.IntheSunraysiaregion, increasedwatertradehasbeendrivenbytheactivationofsleeperlicences,more intensiveuseofavailablesaleswater,andchangingcrops(SKM2006).Thishas resultedina9%increaseinentitlementsintheSunraysiaregionoverthelastdecade (DSE2003,citedinSKM2006),predominantlyfromtheTorrumbarryandGoulburn systems(Figure1).MuchoftheirrigationintheSunraysiaregionisassociatedwith highvalue,highsummerusessuchashorticultureandviticulture. TherecontinuestobeconsiderabledevelopmentpressureintheSunraysiaregion, aslandandinfrastructurecostsarelowerthaninupstreamirrigationareas,suchas theGoulburnValley,andtheclimateispredictable.Atthestartofthe2004/05water year,65GLofwaterhadbeenpermanentlytradedintodevelopmentsinSunraysia (SKM2006)andincreasedtoapproximately70GLduringthe2005/06wateryear (GeoffEarl,GBCMA, pers. comm .).Anadditional90GLofdevelopmentisexpected overthenextfiveyears(SKM2006)andDSEiscurrentlyconsideringthe implicationsofthepermanenttradeofuptoanadditional500GLoverthenextfiveto fifteenyears(PauloLay,DSE, pers. comm .).TheGoulburnsystemispivotalin meetingfuturedemandintheSunraysiaregionbecauseofconstraintsrelatedtothe BarmahChokeandlimitedadditionalstoragecapacityintheTorrumbarrysystem. ApproximatelytwothirdsofanyincreaseindemandfromSunraysiawouldbemetby releasesfromtheGoulburnsystem.ThiswouldresultintheGoulburnsupplysystem beingrun‘harder’,potentiallyincreasingriskstoenvironmentalassetsandvalues.

Peter Cottingham & Associates 5 Evaluation of summer inter-valley water transfers from the Goulburn River

Figure 1: Map of irrigation districts in the Goulburn-Murray region (from Goulburn Murray Water www.g-mwater.com.au ) 2.2 Living Murray initiative InJune2004,FirstMinistersofNewSouthWales,Victoria,Souththe AustralianCapitalTerritoryandtheCommonwealthGovernmentsignedthe Intergovernmental Agreement on Addressing Water Overallocation and Achieving Environmental Objectives in the Murray-Darling Basin (theIntergovernmental Agreement)(MDBC2004).TheIntergovernmentalAgreementgaveeffecttothe ‘FirstStep’decisionofAugust2003bysouthernMurrayDarlingBasinjurisdictionsto commit$500millionoverfiveyearstoaddresswateroverallocation,withaninitial focusonachievingspecificenvironmentaloutcomesforsixsignificantecological assetsalongtheRiverMurray: • BarmahMillewaForest; • GunbowerandKoondrookPerricootaForests; • HattahLakes; • ChowillaFloodplain(includingLindsayWallpolla); • TheMurrayMouth,CoorongandLowerLakes;and • TheRiverMurraychannel. TheecologicalobjectivesassociatedwiththeFirstStep(e.g.topromoterecruitment offish,birds,vegetationandavarietyofotherriverandfloodplainplantsand animals)aretobeachievedthroughrecoveryandaccumulationofwaterovera periodoffiveyearstoanestimatedaverage500GLperyearof‘new’water(MDBC 2005).Releasestoenhancenaturalfreshesorfloodsarelikelytobethemajor

Peter Cottingham & Associates 6 Evaluation of summer inter-valley water transfers from the Goulburn River opportunitiesinanygivenseasonformeetingtheobjectivesforecologicalassets listedabove.Thisisunlikelytoimpactonthesupplyofirrigationwateralongthe Murrayduringpeakdemandperiods(SKM2006).Anexceptionmaybetheproposed ‘RiverMurrayestuaryenvironmentalentitlement’ofapproximately180GLinevery year,whichhasbeenproposedtomeetobjectivesfortheMurrayMouth,Coorong andLowerLakesinSouthAustralia.Indryyears,thiscouldbereleasedas approximately2,000ML/dduringsummerandautumn.Inwetormoderatelywet years,theentitlementcouldbereleasedat4,000ML/dtotopupflowsfor1.5months inspring(oradifferenttemporalpattern)(SKM2006). Securingthevolumerequired tosupplytheseflowsisproposedfromwatersavingsprojectsorthepurchaseof existingentitlementscurrentlysuppliedbelowtheChoke.Theprovisionofthese flowsduringthepeakdemandperiodcouldreducetheavailablechannelcapacityin theMurrayfromwhichtosupplyexistingirrigationentitlements. 2.3 Environmental Flows TheVictorianandNSWGovernmentshavecommittedtoincreaseenvironmental flowsintheSnowyRiver.Thisiscurrentlybeingachievedbyundertakingwater savingsprojectsinwatersupplysystemsinbothStates.Wherethesesavingsareon tributariesoftheRiverMurray,suchasintheGoulburnsupplysystem,thesaved wateristhensuppliedtotheRiverMurrayinsummertomeetwaterusedemand, allowingareductioninthesupplytotheRiverMurrayfromtheSnowysystem. Hence,someSnowyenvironmentalflowswillresultinanincreasedneedtotransfer waterfromtheGoulburnsystemtotheMurraysysteminsummer,inthesameway aswatertradingfromtheGoulburnsupplysystemtotheSunraysiaregiondoes. 2.4 Implication of IVTs on water management in the Goulburn system

2.4.1 Currentreleasepatterns Comparisonofthecurrentregulatedandthemodelled‘preregulation’regime(1975 2000)suggeststhatmanagementanddiversionofwaterfromGoulburnWeirhas greatlyreducedthesmalltomediumsizedfloweventsinthelowerGoulburnRiver fromthepreregulatedstate(Figures25).Forexample,mediansummerflows underthecurrentregulatedflowregimeatMurchisonareanorderofmagnitude belowthatwhichwouldhaveprevailedinanunregulatedflowregime(Figure2).The durationoffloweventshasalsobeengreatlyreduced(Figure4).Forexample,flow eventsgreaterthat1,000ML/datMurchisonthatwouldnaturallyhavelastedforup to80dayspriortoregulationwouldlastupto4daysunderthecurrentregulated regime.Similarly,a2,000ML/dorgreatereventatMurchisonthatwouldhavelasted 15daysunderpreregulatedconditionsnowlastsforonly2days.

Peter Cottingham & Associates 7 Evaluation of summer inter-valley water transfers from the Goulburn River

100000 Murchison(Summer) Dec JanRegulated FebRegulated DecPreregRegulated 10000 JanPrereg FebPrereg

1000 Discharge (Ml/day)

100 1251020304050607080909598 99 Percent of days flow exceeded 10000 Murchison(Autumn) MarRegulated AprRegulated MayRegulated MarPrereg AprPrereg MayPrereg Ml/day) 1000 Discharge (

100 125102030405060708090959899

Percent of days flow exceeded

Figure 2: Comparison of regulated and pre-regulated summer and autumn flows in the Goulburn River at Murchison (1975-2000).

Peter Cottingham & Associates 8 Evaluation of summer inter-valley water transfers from the Goulburn River

40000 (a) 35000 Regulated 30000 Ml/day) Preregulation 25000 20000 15000 10000 5000 Median discharge Median ( discharge 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 3: Median monthly flows in the Goulburn River at Murchison (1975- 2000). 100000 McCoysBr(Summer) DecRegulated JanRegulated FebRegulated DecPrereg 10000 JanPrereg FebPrereg

1000 Discharge(Ml/day)

100 125102030405060708090959899

Percent of days flow exceeded 10000 McCoysBr(Autumn) MarRegulated AprRegulated MayRegulated MarPrereg AprPrereg MayPrereg 1000 Discharge(Ml/day)

100 125102030405060708090959899

Percent of days flow exceeded

Figure 4: Comparison of regulated and pre-regulated summer and autumn flows in the Goulburn River at McCoy’s Bridge (1975-2000).

Peter Cottingham & Associates 9 Evaluation of summer inter-valley water transfers from the Goulburn River

Spells>1000ML/dayatMurchison

postregulation(19752000) Preregulation

90

80 70 60

50 40 30 20

10 Duration >1000 ML/day (days) 0 1 0.1 10 100 Average recurrence interval (years)

postregulation(19752000) Preregulation 90 80 70

60 50 40

30 20 10 Duration>2000 ML/day (days) 0

0.1 1 10 100 Average recurrence interval (years)

Figure 5: Comparison of spell duration greater than 1,000 ML/d and 2,000 ML/d at Murchison for regulated and modelled pre-regulation conditions (1975-2000).

Peter Cottingham & Associates 10 Evaluation of summer inter-valley water transfers from the Goulburn River

2.4.2 RecentIVTreleasepattern IVTsaremostlikelytoimpactonsummerautumnflowsintheGoulburnRiverbelow GoulburnWeir.ThemanagementofwinterandspringflowsfromLakeEildonand LakeNagambiewouldremainlargelyunchanged.However,theproposed decommissioningofLakeMokoanisexpectedtoincreasewinterspringflowsinthe GoulburnRiverbelowSheppartonbyupto2,400ML/dinthefuture(GeoffEarl,GB CMA, pers. comm ). AspermanenttradefromtheGoulburnsystemtoSunraysiacontinues,thepatternof summerautumndemandisalsolikelytochange.Largevolumesarelikelytobe spreadacrosstheirrigationseason,withsmallervolumesdeliveredasshorter duration,buthighermagnitudepeaks(Figure6).Transmissiontimefromthelower GoulburntoSunraysiaisapproximately34weeks,sowherepossible,smaller volumesofwaterarelikelytobedeliveredinshortdurationpeakstomeetshortterm demandpeaks. Shorterduration,larger magnitudepattern becomingmoreprevalent Broaderpattern commoninthepast July June Figure 6: General hydrological pattern of IVT releases from the Goulburn system In2005/06,IVTsweredeliveredasasingleblock(albeitwithdistinctpeaks)(Figure 7),butdeliveryasbothlargeandsmall(i.e.shortduration)blocksarepossibleinany oneyear.ExpectationsarethatwatertradeswillresultintypicalIVTsof1,000– 2,000ML/d,withpeaksofupto4,000ML/d.However,shortdurationpeaksofupto 8,000ML/dareconsideredpossible(GeoffEarl,GBCMA, pers. comm .).Also, deliveryofthe70GLofpermanenttradeisdependentonwateravailability.For example,ifonly20%ofentitlementisavailableintheGoulburnsystem,thenonly 20%ofthe70GLcanbetransferred.

Peter Cottingham & Associates 11 Evaluation of summer inter-valley water transfers from the Goulburn River

3000 3days(Murchison) Murchison(Ml/day) 14days(Murchison) McCoysBridge(Ml/day) 2500

2000

1500 Flow(Ml/day) 1000 81days(Murchison)

500

0 Dec Jan Feb Mar Apr eb Figure 7: Pattern of flow at Murchison and McCoy’s Bridge during the summer and autumn of 2005/06. Duration of events above 1,000 ML/d and 2,000 ML/d at Murchison are indicated. DSEhasrecentlymodelled3tradescenarios(BarryJames,DSE, pers. comm .)to meetincreasingMurraydemands: 1. 200GLfromGoulburn+100GLfromTorrumbarry=300GL 2. 300GLfromGoulburn+150GLfromTorrumbarry=450GL 3. 350GLfromGoulburn+200GLfromTorrumbarry=550GL Thepreferredreleasepatternfromtheperspectiveoftransferringwaterwitha minimumoflossesandlowestrisktosecurityofsupplyispresentedinTable1. Table 1: An optimised IVT release pattern used in scenarios 1 to 3 to minimise Murray shortfall in supply over the modelled period from 1975 to 2000. Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun % 0 0 0 0 5 25 25 25 20 0 0 0 MinimumflowrequirementsspecifiedintheGoulburnBulkEntitlementatMcCoy’s Bridgeare350ML/dfromNovembertoJuneand400ML/dfromJulytoOctober.The releasepatternsassociatedwiththeDSEtradescenariosarepresentedinFigure8.

Peter Cottingham & Associates 12 Evaluation of summer inter-valley water transfers from the Goulburn River

Average Goulburn River Flow (ML/day) Minimum Flow 200 GL/year Trade 300 GL/year Trade 350 GL/year Trade 200 GL/year Trade With Montlhy Pattern From Crop Factor 300 GL/year Trade With Montlhy Pattern From Crop Factor 350 GL/year Trade With Montlhy Pattern From Crop Factor 3500

3000

2500

2000

Flow (ML/day) Flow 1500

1000

500

0 Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr Month

Figure 8: Release patterns associated with modelled DSE trade scenarios (Barry James, DSE, pers. comm.). The dotted lines represent the minimum releases required to meet almond crop demand under each scenario.

Peter Cottingham & Associates 13 Evaluation of summer inter-valley water transfers from the Goulburn River 3 GUIDING PRINCIPLES 3.1 Guiding principles ThePaneladoptedthefollowingprinciplesasaguidewhendeliberatingonupper limitstosummerIVTsviathelowerGoulburnRiver: • IVTsmust,wherepossible,beconsistentwiththeintentionsofprevious environmentalflowrecommendationsandconsiderations. • IVTsmustnotleadtoadeclineinecosystemcondition,structureorfunction,and beusedtoimproveconditionsifpossible. • IVTsmustnotbetothedetrimentofexistingregional,Stateornationalprograms orstrategiesforriverprotectionandrehabilitation. • IVTswillbeconsideredintermsoftheirpotentialimpactsoncomponentsofthe naturalflowregimethatareconsideredimportantforecosystemfunctionandthe protectionorrehabilitationofassetsandvalues. • IVTswillbeconsideredintermsofreintroducingmissingcomponentsofa naturalflowregime,fromtheperspectiveofthetotalflowregime(includingintra andinterannualvariability),andintermsofpotentialnegativeecosystemimpacts duetotheinversionofthenaturalseasonalpatternofflow. Theaboveprinciplesareconsistentwithprinciplesandtoolsproposedforriver protectioninAustralia(Bennettetal.2002,Phillips2001)(Table2),andtherelevant principlesthatguidetheLivingMurrayWaterPlan(MDBC2005).Thelatteraddress thegeneralprincipleofseekingtoensurethatthedeliveryofenvironmentalwater shouldbecomplementaryamongdifferentenvironmentalwaterallocations,withthe followingconsiderations: • Donoharmtothetributariesinimplementingactionsatthesignificantecological assets; • Managersofenvironmentalwaterallocationstomaximisecomplementaryuse wherepossible;and • Minimiseimpactsonexistingusers. ThePanelalsorecognisedtheaspirationsoftheGoulburnBrokenRegionalRiver HealthStrategy(GBCMA2005a),whichaimstoachievefourmainobjectivesforthe riversandstreamsoftheGoulburnBrokenbasin: • Enhanceandprotecttheriversthatareofhighestcommunityvalue (environmental,socialandeconomic)fromanydeclineincondition; • Maintainingtheconditionofecologicallyhealthyrivers; • Achievingan‘overallimprovement’intheenvironmentalconditionofthe remainderofrivers; • Preventingdamagefrominappropriatedevelopmentandactivities.

Peter Cottingham & Associates 14 Evaluation of summer inter-valley water transfers from the Goulburn River

Table 2: Principles aimed at protecting rivers (from Phillips et al. 2001). Principles Thattheecologicalfunctionofriversbeprotected. Thatriversbemanagedinanecologicallysustainablemanner. Thatriversbemanagedtoensuretheirbenefitstofuturegenerations. ThatState,nationalandinternationalagreementsthataffectrivermanagementbereflectedinriver managementstrategies. Thatthebiological,hydrologicalandgeomorphologicaldiversityofriversbemaintained. Thattheecologicalstructureandfunctioning(ecologicalintegrity)ofriversbemaintained. Thatnaturalstreamflowcharacteristicsbemaintainedormimickedthroughtheprovisionofwaterfor theenvironment. Thatthelongitudinal,lateralandverticaldimensionofriversbeincorporatedintomanagement processes. Thatthenonsubstitutablenatureofriversberecognisedinrivermanagementprocesses. 3.2 Important assets and values of the lower Goulburn River Thestudyareaisthe195kmstretchoftheGoulburnRiverfromGoulburnWeirtothe confluencewiththeRiverMurraynear.Thiscoincideswithmanagementunit L1identifiedintheGoulburnBrokenRegionalRiverHealthStrategy(GBCMA2005b), whichisratedhighlyforitsenvironmentalassetsandvalues,including: • HeritageRiverlisting, • Presenceofsignificant(e.g.EPBCActlisted)faunaandflora, • Presenceofwetlandsofnationalsignificanceandrarewetlandtypes, • Presenceofselfsustainingnativefishcommunities, • Nativefishmigration, • Riparianwidthandlongitudinalconnectivity. ThestudyarealieswiththeLandConservationCouncildesignatedHeritageRiver corridor,whichextendsfromEildonReservoirtotheconfluencewiththeMurray River.Ecosystemrelatedheritagevalues(LCC1991)relevanttothestudyarea include: • AreaswithintactunderstoreyinRiverredgumopenforest/woodland,andyellow boxandgreyboxwoodland/openforestcommunities,particularlydownstreamof Murchison; • AreasofsignificanthabitatforvulnerableorthreatenedwildlifeincludingSquirrel gliders,Largefootedmyotis,Barkingmarchfrogs,BarkingowlsandBrushtailed phascogales; • NativefishdiversityandMurraycodhabitatbelowGoulburnWeir; • Fishingopportunities–nativespeciesbelowGoulburnWeir; • Sceniclandscapes–frombelowSeymourtoEchuca. 3.3 Potential benefits and difficulties associated with IVTs Fromtheabove,itcanbeseenthatthelowerGoulburnRivercontainsmanyhigh valueassetsandvalues.WhilethedeliveryofIVTs,ifmanagedappropriately,hasthe potentialtomaintainorimprovesuchvalues,thePanelidentifiedanumberof potentialdifficultiesassociatedwithchangingtheflowregimemanagementofthe river(Table3).Thepotentialbenefitsanddifficultiesprovidedastartingpointinterms offlowrelatedecosystemobjectivesandrelevantflowcomponentsthatwere reviewedbythePanel.

Peter Cottingham & Associates 15 Evaluation of summer inter-valley water transfers from the Goulburn River

Table 3: Potential benefits and difficulties arising from the delivery of IVTs via the lower Goulburn River.

Potential Benefits Potential Difficulties Potentialtoreturnsummerlowflowstowithin Itisdifficulttoidentifyabenchmarkortargetcondition thenaturalrange. formanyriverattributes. IVTsmayresetbiofilm,potentiallyincreasing Increasedsummerflowsmayresultinmoreuniform biofilmproductionandmobilisefine seasonalflowpatternsandpossiblyaninversionof sedimentsthatreducehabitatqualityfor theseasonalpatternofflow.Thismayaffect macroinvertebrates. processessuchasbreedingandmigrationcuesfor nativefish. IVTsmayserveasanattractantfornative fishfromtheMurrayRiver. IVTsmayresultindecreasedprimaryproduction:less benthicareaintheeuphoticzoneanddecreased IVTsmayprovideincreaseddeepwater retentiontimeintheriver. habitatandspawningcuesfornativefish IVTsmayserveasanattractantforcarpfromthe IVTsmayincreasetherecruitmentorsurvival MurrayRiver. ofriparianvegetation(e.g.wattlesandriver redgum)incertainpartsofriverchannel. Increaseddepthforprolongedperiodsmayresultin diebackofbankvegetation(e.g.Poaspp.).Prolonged IncreasedflowvariabilitywithIVTsmay deepflowsmay,ifturbid,adverselyimpactgrowthof increaseplantbiodiversityonthebanks. someaquaticoramphibiousspecies. Highersummerflowsmayrestoresome Longerdurationofhigherflowsmayincreasebank geomorphicprocesses(e.g.disturbanceof erosion. lowlyingbenches). Increasedratesofriseandfallmayincreasebank Deeppoolsareunlikelytobeaffected,asthe erosion. riverissedimentstarved. IVTswhenLakeEildonisathigherlevelsmayresult intemperaturedepression,whichmayinturnaffect primaryproductionandthedistributionofnativefish.

Peter Cottingham & Associates 16 Evaluation of summer inter-valley water transfers from the Goulburn River 4 ECOSYSTEM OBJECTIVES AND CONCEPTUAL UNDERSTANDING OF ECOSYSTEM RESPONSES TO A CHANGED SUMMER FLOW REGIME 4.1 FLOWS Method PreviousenvironmentalflowrecommendationsfortheGoulburnRiver(Cottinghamet al.2003)werederivedusingtheFLOWSmethod,whichwasdevelopedtoassess theflowrequirementsofriversandstreamswhensettingstreamflowmanagement plansorbulkentitlementsinVictoria(DNRE2002).TheFLOWSmethodisbasedon thenaturalflowparadigm,whichsuggeststhatdifferentpartsoftheflowregimehave differentecologicalfunction(Poffetal.1996,Richteretal.1997),andexamines changestocomponentsoftheflowregimeinordertoarriveatrecommendations (Figure9). FlowrecommendationsfortheGoulburnRiverweregiveninecologicalterms,rather thanasoperationalspecifications.OrganisationssuchasGoulburnMurrayWater(as theresponsibleauthority)andtheDSEarebestplacedtoeffectthetranslationof ecologicaladviceintooperationalrules,especiallyassomehydrologicanddemand modellingmayberequired.

Flood

Bankfull Flow

Summerfresh Winter/spring baseflow

Summerbase flow

Ceasetoflow Time Figure 9: Time series showing different components of a natural flow regime Flowcomponentscanacteitherdirectlyorindirectlyonbiotaandecosystem processes(Figure10).Forexample,flowsthatalterstressorssuchasshearstress andsedimentmobilisationpattenscanaffectmacroinvertebratecommunitiesdirectly bydepositingsedimentsandsmotheringsusceptibletaxa(Figure11).Alternatively, shearstresscanactindirectlybyremovingthebiofilmthatisafoodsourcefor grazingtaxa.Ecosystemresponsemay,therefore,bearesultofoneormanyflow componentsactingviatheeffectsofvariousflowstressors(Figure12).

Peter Cottingham & Associates 17 Evaluation of summer inter-valley water transfers from the Goulburn River

Flow Components Biotic Responses CommunityComposition Phytoplankton PrimaryProduction Geomorphic CommunityComposition Responses Vegetation PrimaryProduction PhysicalHabitat Macroinvertebrates CommunityComposition Biomass NativeFish CommunityComposition Figure 10: Flow components can affect ecosystem responses directly or indirectly, for example via geomorphic processes. This conceptual diagram summarises the interactions of most interest to the Scientific Panel, given the potential effect of IVTs (see section 4.2).

Peter Cottingham & Associates 18 Evaluation of summer inter-valley water transfers from the Goulburn River

Figure 11: Potential interaction of shear stress with sediment mobilisation processes and biofilm production and effects (direct and *indirect) on macroinvertebrate communities.

Peter Cottingham & Associates 19 Evaluation of summer inter-valley water transfers from the Goulburn River

Flow Components Flow Stressors Biotic Responses • Hydraulicresidencetime Flow seasonality • Shearstress Community • Waterlevelfluctuations Composition • Maximumriseinstageheight Phytoplankton • Dailychangeinstageheight PrimaryProduction • Illuminatedvolumeofwater Rate of rise and • Ratioofeuphoticdepthtomeanwater fall depth • Ratiooffallvelocitytomeanwater Community depth Composition • Illuminatedareaofbenthos • Timebenthoshasbeenintheeuphotic Vegetation PrimaryProduction Summer low flow: zone (amphibiousand riverbank) •minimum • Eventswhenbenthosisineuphotic •variability zone StructuralHabitat • Irradianceofthewatercolumn • Ratiooftimebenthosisineuphotic zonetotimeinundatedbeloweuphotic Community Summer -autumn zone • Ratiooftimebenthosisineuphotic Composition Macroinvertebrate freshes zonetotimestrandedabovewater s surfacelevel Biomass • Durationofinundationeventsat variousbankheights Flood frequency, • Availabilityofslow,shallowwater habitat Community duration, timing NativeFish • Availabilityofdeepwaterhabitat Composition • Numberofoverbankevents Figure 12: Overview of potential links between flow components, flow stressors and biotic response related to summer IVTs.

Peter Cottingham & Associates 20 Evaluation of summer inter-valley water transfers from the Goulburn River

4.2 Flow-related ecosystem objectives ThepreviousScientificPanel(Cottinghametal.2003)identifiedanumberofflow relatedecosystemobjectivesfromwhichitdevelopedenvironmentalflow recommendations.Theobjectivesrelevanttothisproject(i.e.thosewithafocuson inchannelandriparianprocesses)arelistedinAppendix1,andrelatetomaintaining orreturningimportantecosystemprocessesandelementsofcommunitystructure (diversityanddynamicsofbiotasuchasmacroinvertebrates,plantsandnativefish). ThePanelisoftheopinionthattheflowrelatedobjectiveslistedinAppendix1are stillrelevantfortheevaluationofecosystemresponsestoachangedsummerflow regime.ThePanelalsoconsideredanumberofadditionalissuesandobjectives basedoninvestigations,informationandinsightsgainedsincetheoriginal recommendationsof2003.Theseincludeobjectivesrelatedto: • Maintainedorimprovedriverineproductivity, • Theencroachmentofterrestrialvegetationdownthebanksoftheriver, • Potentialgeomorphologyissuesassociatedwiththedisturbanceofbank vegetationwithhighersummerflows. Insummary,flowrelatedobjectives 1consideredrelevantwhenexploringthe implicationsofIVTsinclude: Geomorphology • Sedimentdynamics:  Naturalratesoferosionanddeposition  Maintenanceofnaturalpatternsofgeomorphicdiversitywithinreaches. In-channel Primary Production • Planktonicalgae:  Biomasslevelsresemblingsitesunimpactedbyflowregulation;  Productivityresemblingsitesunimpactedbyflowregulation;  Communitycompositionresemblingsitesunimpactedbyflowregulation; • Periphyticalgaeandbiofilms:  Biomasslevelsresemblingsitesunimpactedbyflowregulation;  Productivityresemblingsitesunimpactedbyflowregulation;  Communitycompositionresemblingsitesunimpactedbyflowregulation; • Submergedmacrophytes:  Biomasslevelsresemblingsitesunimpactedbyflowregulation;  Productivityresemblingsitesunimpactedbyflowregulation;  Communitycompositionresemblingsitesunimpactedbyflowregulation. Macroinvertebrates Diversity: • Fullrangeofhabitattypespresentandfunctional–supportingarangeofaquatic macroinvertebratesthatwouldoccurwithouttheimpactofflowregulation:  Aquaticvegetation(especiallyemergentoramphibiousplants)habitaton banksandbarsvariableoveryearsbutsimilar(insum)tonatural;  Rangeofsnaghabitatsavailable,withnaturalinterandintrayeardistribution notsignificantlydiminished; 1Note:specificecologicalobjectivesforwetlandswerenotincludedastheIVTsbeingconsideredfall wellbelowcommencetofilllevelsalongthestudyreaches.

Peter Cottingham & Associates 21 Evaluation of summer inter-valley water transfers from the Goulburn River

 Lowflowandslackwaterzonesavailabilitysimilartounregulatedconditions;  Litterpacksavailable,augmentedandfreeofexcesssediment;  Habitatheterogeneityovertime(i.e.interannualvariabilitysimilarto unregulatedconditions). Biomass: • Maintainquantityandqualityoffoodandhabitatresources. River Bank Vegetation • Persistentcoverofterrestrialgrassyvegetation(floodsensitive)maintainedover theupperpartoftheriverbank(equivalenttonaturalflowpercentileswherebank inundationfrequencyanddurationhavenotchangedunderthecurrentorhistoric flowregime). • Reducedcoverofterrestrialgrassyvegetation(floodsensitive)forlowerpartsof bankthatfallbelowthethreshold(flowpercentilewherenaturaldurationof inundationisapproximatelyequaltohistoric). • Maintainvegetationcoverandflowrefuge(fishandmacroinvertebrate?)habitat acrossaflowrangeandacrossseasons. • Maintaincommunitycompositionthatispredominantlynativespecies(notionally atleast75%bycover). • Avoidconditionsthatfavoursignificantriparianandaquaticweedsknownto occurinthearea(e.g.Arrowhead Sagittaria ). • Preventfurtherencroachmentofterrestrialshrubsandtrees(i.e.distributionof plantsbeyondtheirnormalrange). • Reverseencroachmentofterrestrialshrubsandtrees. • ProtectvigouroftreesinexistingRiverRedGumwoodlandestablishedoninset benches. Native Fish • Suitablethermalregimeforspawning,growthandsurvivalofalllifestages; • Suitableinchannelhabitatforalllifestages; • Suitableoffchannelhabitatforalllifestages; • Floodplaininundationforexchangeoffoodandorganicmaterialbetween floodplainandchannel; • Passageforalllifestages; • Cuesforadultmigrationduringspawningseason; • Lowflowsforspawningandrecruitment; • Benchinundationforexchangeoffoodandorganicmaterialbetweenfloodplain andchannel. Muchofourconceptualunderstandingofflowecosystemresponseshasbeen describedinthe2003report(Cottinghametal.2003)andsummarisedaspartofthe VictorianEnvironmentalFlowMonitoringandAssessmentProgram(VEFMAP,Chee etal.2006).Thisworkisexploredinthefollowingsections,withanemphasison thoserelationshipsmostlikelytobeaffectedbyIVTs.Thisprovidesthebasisfor identifyingandmodellingrelationshipsbetweenthehydrologicalregimeandflow stressorsfromwhichrecommendationsformanagingIVTsweredeveloped(see Chapter5).

Peter Cottingham & Associates 22 Evaluation of summer inter-valley water transfers from the Goulburn River

4.2.1 Geomorphicprocesses

Geomorphicprocesses ThegeomorphichistoryofthelowerGoulburnwasdescribedintheprevious environmentalflowstudy(Cottinghametal.2003b).Ofrelevancetothepresent studyisthattheGoulburnRiverbelowGoulburnWeiremergesasalowgradient rivertypicaloftheRiverinePlains,andcutsintotheresistantalluvialsedimentsof theSheppartonFormation(Bowler1978).Thesizeandbedloadoftheriverhas changedoverthelast40,000yearsinresponsetoclimatechangeandchangesto thecourseoftheriverduetochannelavulsion.BetweenGoulburnWeirandLoch Garry,thepresentGoulburnRiverhascutasinuouschannelwithinthebroadtrench ofalarger,broader‘ancestral’river.BelowLochGarry,channelavulsionshaveseen thepresentGoulburnRivermigratetothesouthandbecomenarrower,presumably becausethisyoungersectionoftheriverhashadlesstimetocutalargertrench. EvaluationofLIDARdata,crosssectiondataandaerialphotographsheldbythe GBCMAandDSEhaveconfirmedthatthecrosssectionalandhydraulic characteristicsofthetwosamplereachesinReach4and5arerepresentativeofthe morphologyofthesetworeaches. Theupstreamreachofthestudyarea(LakeNagambietoLochGary)correspondsto Reach4oftheenvironmentalflowstudies(44kmlong).Becausethisreach occupiesthe‘ancestraltrench’oftheGoulburnRiver,ithashadlongertodevelop laterally.Asaresult,ithasmorecomplexgeomorphologythanthelonger(100km) Reach5fromLochGarytotheMurrayJunction.Reach4ischaracterisedbythree distinctivegeomorphicfeatures(Figure13toFigure15): 1. Sandypointbars.Theseareclassicallateralmigrationfeaturesdevelopedat theinsideofbends.Theyareassociatedwithridgeandswaletopography thatisbuilttotheheightofthebankfullchannel. 2. Point benches .Attheinsideofseveraltightbendsthesandypointbaris replacedbyasmall,sandyplatform.Unlikethepointbar,thepointbenchis flat,andonlyrisesabout1mabovethelowsummerflowof400Ml/d.The benchdoesnotextendtothetopofthebank. 3. Concave benches .Whereerosionoftheouterbankmovesthebankdown valley,aconcavebenchformsinthedeadwaterzoneattheupstreamedge ofthebend(therecirculationzone).Thesebenchesareactivelyaccreting, buryingthebaseoftrees. Becauseofthelimitedperiodthathasbeenavailableforlateralmigrationofbendsin Reach5,therearenowelldevelopedpointbars,andnoconcavebenches(Figure 16).Themaindepositsarethevestigialpointbenches.ThechannelofReach5is characterisedbyaregularandfeaturelessparaboliccrosssection.

Peter Cottingham & Associates 23 Evaluation of summer inter-valley water transfers from the Goulburn River

Figure 13: Sandy point bar in Reach 4. Note that, in height, the sand extends toward top of the bank that is evident at the back of the photo (flow toward observer).

Figure 14: Point bench at Cable Hole (Reach 4). These surfaces will be fully inundated at higher IVTs (flow is 400 ML/d, flow away from observer).

Peter Cottingham & Associates 24 Evaluation of summer inter-valley water transfers from the Goulburn River

Figure 15: Concave bench on the left bank of the Goulburn River (Reach 4).

Figure 16: Reach 5 of the lower Goulburn River. Note the simple parabolic cross-section. The major source of physical diversity in this channel is the large wood in the bed of the channel. Coarse Sediment supply AnimportantpointtonoteaboutthelowerreachesoftheGoulburnRiveristhelack ofsedimentsources.Theonlysourceofsandandbedloadsedimentintothelower

Peter Cottingham & Associates 25 Evaluation of summer inter-valley water transfers from the Goulburn River

GoulburnRiverisfromafewminortributaries,andfrombankerosion.The combinationofEildonandNagambieWeirstrapsessentiallyallofthecoarserload enteringtheriver.WhilsttheSevenCreekstributaries(Castle,Creightonsetc.)have abundantsandload,thatsandistrappedupstreaminslowmovingslugsthathave notyetreachedtheGoulburnRiver.Asaresult,changesinsedimenttransport associatedwithnewregulationregimesofthelowerGoulburnRiverrelatemoreto redistributionofsand,thantonewsand.Fineclayswillremaininsuspension,and areunlikelytobeinsufficientvolumestoalterdepositionofthefinefraction. Geomorphic changes associated with summer regulated flows Cheeetal.(2006)describethechangesingeomorphicprocessesthatmightbe expectedinthreefunctionalzonesinregulatedrivers,suchastheGoulburnRiver belowLakeEildon(Figure17).Thefirstzone,immediatelybelowmajorstorages,is onecharacterisedbysedimentstarvationduetotrappingwithinthereservoir,and erosionalprocessesastheriverhasthecapacitytoentrainsediments.Thesecond zoneisonecharacterisedbysedimentdepositionwheretributaryinputsdeliver sedimentslargerthantheriveriscapableoftransporting.Thethirdzoneisusually bufferedbylargeinstreamsedimentstores.

Figure 17: Conceptualisation of the change in sediment and flow regimes downstream of dams (from Chee et al. 2006). The X-axis represents distance downstream from the reservoir, with zone 1 being immediately downstream. Solid line: regulated flow conditions; dashed line: with environmental flow allocation. Themaindriversofmorphologicalchangeare(i)floodmagnitude,(ii)durationand frequencyofhighinchannelflowsand(iii)totalsedimentload.Inaregulatedriver, thesewillbeafunctionofunregulatedtributaryflowsandtheinfluenceofupstream impoundmentsanddiversions.Nospecificenvironmentalflowrecommendations relatedtogeomorphicprocesseswereproposedinthe2003study(Cottinghametal.

Peter Cottingham & Associates 26 Evaluation of summer inter-valley water transfers from the Goulburn River

2003),astheflowsrequiredtowaterfloodplainwetlandswerealsosufficientto generategeomorphicresponses. TheSummerIVTsintheGoulburnRiver,however,mayincreasesummerflowsto thepointwheregeomorphicprocesseswillchange.Theflowsaremostlikelyto influencefeaturessuchasriparianvegetationandbankroughness,andpossibly resultinincreasederosionduetopersistenthighflowsandhigherthannormalrates offallinstageheight.Theseprocessescanresultinnotchingofthebank(Figure 18),bankslumping,andpossiblyincreasedtransportofsandintopools. LongdurationsummerregulatedflowsontheMurrayRiverhaveledtodramatic bankerosionduetonotchingandwaveerosion.Themajorissuehereistheduration oftheflowatasinglestage.Thehighertheflow,themorecriticaltheperiodof stableflowbecomes,becausethehighertheaverageflowvelocitythaterodesthe banks.Thus,thehighertheflow,thelessdeviationfromnaturaldurationisdesirable. Thiserosionalsorelatestolossofprotectivebankvegetation.Ifgrassesarelost fromthebankface,theresultwillalmostcertainlybenotching,increasedbank erosion,andincreasedturbidity. Incohesivestreambanks,rapiddrawdownoftherivercanleadtobankslumping. Again,thehighertheflowthemorecriticaltherateofdrawdownbecomes. TheotherpossibleeffectofIVTsisonredistributionofsandintopools(lossof habitatdiversityatlargescale).Thepremiseisthatflowstowardbankfull(asonthe Murray)transportthemajorityofsedimentthroughbendsandsoareabletokeep poolsopen.OntheGoulburnRivertheIVTmaybeincreasingexactlythoseflows thattransportmostsandintothepools,buttransportleastthroughthepools (becauseofincreasedresistanceatmediumflows,andlesssecondarycirculation). Ourpremiseisthatincreaseindurationofsummerflowsabove4000ML/dupto 8000ML/dbecomesprogressivelylessdesirableasitmovesmoresandintopools (thusmoredeviationathigherflowsisworse). Macrophytesinthebedoftheriverreducesedimenttransportinthechannel.Itis likelythatatflowvelocitiesabove0.3m/sthesemacrophytes(Figure19)willbe eroded(withthelikelihoodincreasingasthedurationofflowincreases).Velocities exceed0.3m/satflowsof2,500ML/dor3.4mstageinReach4.

Peter Cottingham & Associates 27 Evaluation of summer inter-valley water transfers from the Goulburn River

Figure 18: Notching at the toe of the bank possibly related to the long-duration IVT of summer 2006 (Reach 5, view downstream).

Figure 19: Grasses on the bank face will be killed by higher, long-duration flows, leading to bank notching. Photograph was taken in Reach 5 at flow of 400 ML/d. InconsideringtheimplicationsofIVTs,theecosystemobjectivefromageomorphic perspectiveistomaintainnaturalratesofsedimentdynamics(erosionand deposition)andnaturalpatternsofgeomorphicdiversity(objectivesGeo1,Geo2,

Peter Cottingham & Associates 28 Evaluation of summer inter-valley water transfers from the Goulburn River

Geo3andGeo6inAppendix1).Relevantflowstressorsconsideredwhen establishingIVTrecommendationsthereforeinclude: • Thedistributionofdailyfallsinstagecharacterisedbythen th percentilevalues (m)forflowbandsdefinedbytheflows QiML/day (to assess the occurrence of rapid falls in stage that may contribute to increased bank slumping ); • Proportionoftimewaterleveliswithinarangedefinedbywatersurfacelevels correspondingtothe m%exceedenceflows(inthepreregulationregime ) (to assess extended periods of stable flow at different stage heights, which may contribute to increased rates of bank notching ).

4.2.2 InchannelPrimaryProduction

Discharge regulates riverine productivity Riverinefoodwebsaresupportedbytwomajorsourcesoforganicmaterials:that generatedwithintheriver(i.e.primaryproductionbyphytoplankton,periphytonand submergedandemergentmacrophytes)andthatgeneratedbyexternalsourcesand transportedbywindandwaterintothechannelfromthesurroundinglandscape. Washinofterrestrialorganicmaterialcanresulteitherfromrainfallrunoffor,ona muchlargerscale,floodplaininundation. Asdifferentorganismshavedifferentrequirementsfororganicmaterialandmany arehighlyselectiveaboutwhatisuseableasafoodresource,thesourcesoforganic materialplayanimportantpartindeterminingtheconditionofariversystem. Variationinthe type oforganicmaterialavailableinfluencesthediversityand communitystructureofsecondaryproducers,whilethe quantity ofuseableorganic materialdeterminesthebiomassofsecondaryproducersthatcanbesupported.The organismsofthemicrobiallooparesimilarlyaffectedbythecharacteristicsofthe organicmaterialsupply.Thishassignificantimplicationsfortherelativeextentof energyrepackagingcomparedtoenergydispersionandsothedegreeoflinking betweenthemicrobialloopandhighertrophiclevels. Therelativesupplyofinternaltoexternalorganicmaterialisinfluencedbyarangeof environmentalconditions,ofwhichriverdischargeisanimportantone.Changesin riverdischargealterseveralelementsoftheflowregimethataffectthegrowthof plantswithintheriverchannel,particularlywaterdepthandvelocityandthedegree ofconnectivitybetweentheriverchannelanditssurroundingfloodplain.An understandingoftheseinteractionsisrequiredinordertoassesstheeffectonthe deliveryoforganicmaterialtotheGoulburnRiverofchangesindischargeresulting fromdeliveringIVT’s.Thefollowingsectionsprovideasynopsisofthemajoreffects ofchangesindischargeonriverineproduction.Theanalysisattemptstoquantify theseinteractionsfromgeneralprinciplesinordertoprovideindicatorvariablesthat mightbeusedasabasisforassessmentandthedevelopmentofenvironmentalflow recommendations.Achallengeistoprovideabasisforrecommendationsinlightof themultiplesourcesofriverineproductionthatmayoperatetodifferentdegreesat variousstagesoftheflowregime.Forexample,recommendationsmightbesetto maximisetheproductionofonecomponentofthesystem,yettheresultantflow conditionsmightoccuronlyrarelywhenflowwasunregulated.Whilebiotic processesmayoftennotoperateatmaximumratesundermorevariablenatural conditions,thewaythattheyrespondtoenvironmentalfluctuationsdefinesthe

Peter Cottingham & Associates 29 Evaluation of summer inter-valley water transfers from the Goulburn River structureoftheecosystem.Itisforthisreasonthat“natural”regimesareso frequentlyusedasabenchmarkagainstwhichchangeismeasured.Thisdoesnot necessarilysuggestareturntooriginalconditionsasatargetcondition,butdoes servetoindicatehowfarremovedthenewconditionsarefromtheoriginalandto determinewhetherthisshiftisdetrimentaltomaintainingthedesiredecosystem characteristics. Water depth Waterdepthinfluencesriverineplantproductionmainlythroughitseffectonthe underwaterlightclimate.Lightenergypenetratingthewatercolumndeclines exponentiallywithdepth,confiningthegrowthofphotosyntheticorganismstothe wellilluminatedlayers.Forthoseorganismsattachedtothebottomsediments,such asbenthicalgaeandsubmergedmacrophytes,theareaofwettedsediment sufficientlyilluminatedtosupporttheirgrowthisgenerallyestimatedasthearea delimitedbythedepthtowhichatleast1%ofincidentsunlightpenetrates, commonlycalledtheeuphoticdepth(z eu ).Thislimitisusedextensivelyforalgal productionbothplanktonicandbenthicandisbasedonextensivefield measurements(Reynolds1984). Whereotherenvironmentalconditionsaresuitableforgrowth,themaximumdepthof colonizationofthemacrophyte Vallisneria americana hasbeenestimatedusingthe meanlightintensitysupportingzerorelativegrowthrate(Blanchetal1998).This wasfoundtobeca.26moles/m 2/s 1andfallsintherange3.547.3moles/m 2/s 1 reportedforcharophytesandangiosperms(Blanchetal1998).Assumingmean summerirradianceintheGoulburnRiverofca.900moles/m 2/s 1thisrangeof criticallightintensitiesrepresents0.55%ofincidentirradiance,andissimilartothat ofthelimitsofalgalgrowth. However,macrophytesandperiphytonareimpactedbyotherenvironmental conditionsinadditiontolight,includingwatervelocity,andsotheextentoftheir growthmaybelimitedbythesefactorstoshallowerdepths.Similarcriticallight rangeswerefoundbyHudonetal(2000)buttheyreportedthattheorderof significanceofenvironmentalconditionsexplainingbiomassofmacrophyteswere flowforces(current,windandwaves),plantgrowthform(e.g.whethercanopy formingornot),waterdepthandlight(depthenablingplantextension),andseasonal versuspermanentinundation(3cmminimumwaterdepthusedasanindicator). Whenotherconditionsaresuitableitappearsreasonabletouseeuphoticareas delineatedby1%or5%lightpenetrationlevels.

The1%,oreuphoticdepth,isafunctionoftheverticalattenuationcoefficient(k d)for photosyntheticallyactiveradiation(350700nm)andisdescribedbytherelationship: zeu =4.605/k d

Unfortunatelyk dhasnotoftenbeenmeasuredintheGoulburnRiver,butalargeset ofmeasurementstakenacrosstheMurrayandMurrumbidgeeRivers(Figure20) showasignificantrelationshipbetweenk dandwaterturbiditymeasuredin nephelometricturbidityunits(NTU).Ifitisassumedthatscatteringbyturbidityand absorptionbydissolvedcolouraresimilarintheGoulburnRiverthenFigure20can beusedtoestimatetheverticalattenuationcoefficientfromtheregularmonitoringof turbidity.SomesupportforusingtherelationshipinFigure20comesfromaseriesof 25measurementsmadeinNagambieWeirandtheEastChannelbyWebband

Peter Cottingham & Associates 30 Evaluation of summer inter-valley water transfers from the Goulburn River

Chan(2004).TheirWinterSpringmeasurementssupportFigure20whereastheir SummerAutumnvaluesgenerallypredictlowerk dvalues.Moreextensive measurementsintheGoulburnRiverwouldhelptoresolvethesedifferencesbutfor thepresenttherelationshipinFigure20isusedintheanalyses.

Vertical Attenuation Coefficient vs Turbidity

6.000

y=0.0012x 2+0.1519x+0.3914 R2=0.9214 5.000

4.000 ) -1

3.000 (ln units m units (ln d K 2.000

1.000

0.000 0.000 10.000 20.000 30.000 40.000 50.000 60.000 NTU Figure 20: Vertical attenuation coefficient as a function of turbidity. AveragechannelcrosssectionswereestimatedfortworeachesoftheGoulburn Riveranddepthwasrelatedtoflowsothatchangesinareaoftheilluminated benthosatdifferentflowlevelscouldbecalculated. Previousassessment(Cottinghametal.2003b)hashighlightedthedifficultyin establishingclearturbidityflowrelationships.Themajorityofturbidityvaluesat Murchisonrangedbetween0and20NTUandthecorrespondingrangeink dis relativelysmall.Therefore,averageturbidityovertheperiodofrecord(12.7NTU) wasusedtodeterminek d(2.13)andhencez eu (2.16m).Comparisonofeuphotic depthwithdischargeinReach4atMurchison(Figure21)indicatesthattheareaof illuminatedbenthicproductionincreasesrapidlyuptoadischargeof500ML/d, declinesatdischargesbetween500ML/dto1500ML/d,butthenincreasesat dischargesupto6000ML/d.Theareaofilluminatedbenthicproductionthen declinessteeplyatdischargesbetween6000and8000ML/d.

Peter Cottingham & Associates 31 Evaluation of summer inter-valley water transfers from the Goulburn River

35

30 /m) withdepth < Zeu (m) 2 25

20

15

Area of Area wetted perimeter (m 10 0 1000 2000 3000 4000 5000 6000 7000 8000 Flow (ML/d) Figure 21: Average wetted perimeter within the euphotic zone at Murchison. Interestingly,theresultsforReach5atMcCoy’sBridgeareverydifferenttothatof Reach4(Figure22).AsforReach4,theareaofilluminatedbenthosincreases rapidlyindischargesupto500ML/d,butthendropsrapidlytoarelativelysmall illuminatedareaatdischargesbetween1500and2000ML/dandremainssmallat higherdischarge.Thisindicatesthathigherdischargelevelswillleadtogreatly reducedareasofbenthicproductioninthissectionoftheriver. Riverregulationhasaffectedmediandischargealongbothreaches.Forexample, themediansummer(January)flowatMurchisonhasbeenreducedfrom approximately2000ML/dto400ML/d,buttheareaofilluminatedbenthosremains largelyunchanged.However,thereductioninsummerflowsinReach5from2500 ML/dto700ML/dhasgreatlyincreasedtheavailabilityofilluminatedbenthos.Thisis anexamplewhereregulationappearstohaveincreasedtheareaavailablefor benthicproduction.

Peter Cottingham & Associates 32 Evaluation of summer inter-valley water transfers from the Goulburn River

30

Average 25 80thPercentile Zeu (m) Zeu 20thPercentile 20

15

10

5 wettedperimeter with depth <

0 0 1000 2000 3000 4000 5000 6000 7000 8000 Flow (ML/d) Figure 22: Average wetted perimeter within the euphotic zone at McCoy’s Bridge. The upper and lower bounds represent the 20th and 80 th percentiles, respectively. Changesinwaterdepthalsoinfluencethelightclimateencounteredby phytoplanktonsuspendedwithinthewatercolumn,soaffectingplanktonic production.Netphytoplanktonproduction( NP )isafunctionofthedepthofthe euphoticzonerelativetothemeandepthofthewatercolumn.Thisratiodetermines thetimethatcellscirculatingthroughthemixingwatercolumnspendintheupper illuminatedregionwherephotosynthesiscanoccur,relativetothetimespentinthe deeperunilluminatedregionwhererespirationofcellularreservesprovidesthe energyforcontinuedactivity. Modelsdevelopedfromempiricaldatatodescribeintegraldailyphotosynthesisand respirationratescanbeusedtodemonstratethatashiftfromlightsufficiencytolight limitationoccurswhentheratioz eu /z average <0.20.3(Talling,Reynolds1984,Oliveret al.1999)andthisisthepointwherenetproductioniszero.Atlowerratiosthe respirationrequirementsexceedenergyfixedbyphotosynthesisandgrowthisnot possible.Converselythelightintensityincreasesasthez eu /z average ratioincreases andwhenz eu /z average is ≥1thebottomsedimentsareilluminated.Giventhevaluefor zeu of2.16m(seepreviousdiscussion)atMurchison(Reach4)andz eu of1.00mfor reach5andapplyingz eu /z average <0.25,lightsufficiencyoccurswhenthemeandepth islessthanapproximately9mand4mforreach4and5,respectively.Inboth instances,thisrepresentsdischargeabove8,000MLd/(Figure23andFigure24), whichiswellabovetheIVTdischargesbeingconsidered.Thisanalysissuggests

Peter Cottingham & Associates 33 Evaluation of summer inter-valley water transfers from the Goulburn River thatphytoplanktonnetproductionispossibleatmostdischargelevels,butitdoesnot demonstratehowthephytoplanktongrowthratemaydiminishasconditionswithin thewatercolumnapproachthepointwherenetproductioniszero.

Phytoplankton Photosynthesis rating Curve

4.5

4

3.5

3

2.5

2

1.5 Average depth (m) Average

1

0.5

0 0 1000 2000 3000 4000 5000 6000 7000 8000 Flow (ML/d)

Figure 23: Mean depth at Murchison

Phytoplankton Photosynthesis rating Curve

4

3.5

3

2.5

2

1.5 Average depth depth (m) Average 1

0.5

0 0 1000 2000 3000 4000 5000 6000 7000 8000 Flow (ML/d) Figure 24: Mean depth at Wyuna

Peter Cottingham & Associates 34 Evaluation of summer inter-valley water transfers from the Goulburn River

Wheretheaveragedepthoftheriverexceedstheeuphoticdepth(z eu

Murchison Zeu/Zave Ratio GPP as a Maximum Growth Rate NP as Growth Rate 3.5 Sinking rate as +Growth Rate

3

) 2.5 -1 Zeu/Zave 2 GPPMaximum GrowthRate Zeu/Zm 1.5 NPasgrowthrate

Growth Rate (d 1 Sinkingas+Growth Rate 0.5

0 0 2000 4000 6000 8000 Flow (ML/d)

Figure 25: Maximum potential growth and net production in Reach 4.

Peter Cottingham & Associates 35 Evaluation of summer inter-valley water transfers from the Goulburn River

Wyuna Zeu/Zave Ratio GPP as a Maximum Growth Rate 1.6 NP as Growth Rate Sinking rate as +Growth Rate 1.4

1.2

1 ) -1 0.8

0.6 Zeu/Zave

0.4 Zeu/Zm GPPMaximumGrowth 0.2 Rate Growth Rate (d NPGrowthrate 0 0 2000 4000 6000 8000 -0.2 Sinkingas+growthrate

-0.4

-0.6 Flow (ML/d)

Figure 26: Maximum potential growth and net production in Reach 5. Water velocity: Theabilityofparticularorganismstomaintainthemselveswithintheriverchannelis influencedbywatervelocities.PhytoplanktonbiomassproductionintheMurrayRiver hasbeennotedtoincreaseexponentiallyasflowdeclinedbelow0.2ms 1.Similar observationshavebeenreportedforotherlargerivers(Reynolds1988;Bowles& Quennell1971).Itisassumethatthisreflectstheinabilityofphytoplanktonto establishlargepopulationsinriverreacheswithshortretentiontimes.Increasesin theeffectiveretentiontimewithinariverreachcanresultinincreasedphytoplankton production,especiallyifthesezonesareshallowandwellilluminated. Averagevelocityof0.2m/soccursatdischargesof875ML/datMurchisonand1100 ML/datWyuna(Figure27andFigure28).Atdischargeshigherthanthis,the likelihoodofsubstantialphytoplanktonpopulationsdevelopingisreduced,despite therebeingalightclimatesufficienttosupportsignificantphytoplanktonnet production.Phytoplanktoncanberetainedwithinariverreachinthepresenceof slackwaterzones(e.g.crenulatedareasofthebank),ifflowsallowconnectivitywith largerbackwaters,oriftherearelargelowflowpoolspresent.Toeffectivelyretain phytoplankton,thesezoneswouldneedtohaveexchangeratesoftheorder0.01 0.02h 1andsorequire24daysfortheoreticalhydraulicreplacement. Phytoplanktongrowthratesareoftensuchthatdoublingoccursevery34days(or longer),sohydraulicreplacementlessthanthiscanleadtoreducedbiomass.

Peter Cottingham & Associates 36 Evaluation of summer inter-valley water transfers from the Goulburn River

Average Velocity Murchison

0.5 0.45 0.4 0.35 0.3 0.25 0.2

0.15

Average V elocity (m/s) 0.1 0.05 0 0 1000 2000 3000 4000 5000 6000 7000 8000 Flow (ML/d)

Figure 27: Average velocity versus flow in Reach 4.

Average Velocity Wyuna

0.5 0.45 0.4 0.35

0.3 0.25 0.2

0.15

Average V elocity (m/s) 0.1 0.05 0 0 1000 2000 3000 4000 5000 6000 7000 8000 Flow (ML/d)

Figure 28: Average velocity versus flow in Reach 5. Lossfactorssuchassinkingofcellsarenotconsideredinthenetproduction calculationsandthesecanbehigh.Sinkinglossratescanbeestimatedforawell mixedwatercolumnassumingthatitisboundedonthelowersurfacebyanon mixingzoneorsurface,suchthatsedimentedcellscannotberesuspended.The simplestformulationisforawellmixedwatercolumnwheretheconcentrationof

Peter Cottingham & Associates 37 Evaluation of summer inter-valley water transfers from the Goulburn River phytoplankton( N)declinesexponentiallyasafunctionoftheirsinkingrate( v)and thedepthofthewaterlayer(ReynoldsandWiseman1982);

−vt / Zave = N t N 0 e Thediatom Aulacoseira granulata commonlyoccursinriversystemssuchasthe MurrayandGoulburnandhasarelativelyhighsinkingrateofaround0.95m/d (Shermanetal1998).ThedailylossrateofsuchcellsaredepictedinFigure25and Figure26asaspecificgrowthrate(ln(Nt/No)/t=v/Zave,presentedgraphicallyasa positivegrowthrate)toindicatehowsinkingratechangeswithwaterdepthandfor comparisonwithNP.Atbothsitestherelationshipbetweendepthanddischargeare similarandsothesinkinglossratesarealsosimilar.Thelossratedoesnotalter greatlyatdischargesabove1500ML/dbutincreasesdramaticallyatvaluesbelow thisbecauseofthemorerapidreductionindepth.AtMurchisonthenetgrowthrates areofsimilarmagnitudetosinkingrateswhileatWyunasinkingratesforthediatom significantlyexceedtheexpectedproductionrates.Thischangingbalancebetween positiveandnegativenetproductionalongrivershasbeenwidelyreported (ReynoldsandDescy1996;WehrandDescy1998;Leland2003). Asdischargeisreducedthereisalsoagreaterchanceofthermalstratification occurring,especiallyduringsummer.Thishasthepotentialtoimprovethelight climateandsofavourthegrowthofphytoplanktonabletomaintainthemselveswithin theilluminatedlayers(e.g.buoyantcyanobacteria).Theinteractionbetweenflow, waterturbulenceandthermalstratificationhasbeenstudiedinlowlandriversin southeasternAustraliaandpersistentstratificationgenerallyoccursbelowaverage crosssectionalvelocitiesofca.0.05ms 1(Bormans&Webster1997;Mitrovicetal. 2003).ThedischargevelocityrelationshipsatthetwoGoulburnsitessuggestthat problemsofcyanobacterialsurfacebloomsaremostprobablebelowflowsof80 ML/datMurchisonand34ML/datWyuna. Changesinspeciescompositionoccuralongriversinresponsetoflowchangesas wellastoseasonalconditions(ReynoldsandDescy1996;WehrandDescy1998; Bahnwartetal1999;Leland2003).IntheWarnowRiver(Germany)centricdiatoms andcyanobacteriadominatedinsummer,whilesmallcentricdiatomsdominatedthe riverinautumn(Bahnwartetal1999).Downstreamchangesreflectedlongitudinal variationsinflowwithbiomasshighestinslowflow,fluviallakes.Cyanobacteria, cryptophytesanddiatomsshowedlargebiomasslossesinfastflowingshallowriver sections,whereaschlorophyteswerefavouredshowinglessloss.Diatomsand cryptophytesbenefitedfromlowflowvelocityandincreasedwaterdepth(Bahnwart etal1999).Inzoneswherewatervelocitydeclinedduringsummer,greenalgae becamemorenumerous. Watervelocitiesalsoimpingeonthestructureandfunctionofbiofilmsthatgrow attachedtothebottomsedimentsorothersubmergedsurfaces.Studiesof periphytonandbiofilmshaveindicatedsomegeneralcontrollingprinciples.Jowett andBiggs(1997)foundthatchlorophyllcontentsandashfreedrymass(AFDM) weremoredependentontimeofaccrualthanflowvelocity,buttherewasatrendof increasingamountsofbothasvelocitiesdecreased,especiallybelow0.3m/s.Silt accumulationwasstronglyrelatedtoperiphytonbiomass,suggestingatrapping effect,butitwasfoundingeneralthatADFMandsiltaccrualdiminishedasflow increased.IntheTongariroRiver,therewasapronouncedincreaseinAFDMandsilt atvelocitieslessthanc.0.3ms 1(JowettandBiggs1997).Thissupportsthebelief

Peter Cottingham & Associates 38 Evaluation of summer inter-valley water transfers from the Goulburn River thatthereislittlemovementofsedimentofanysizeonthestreambedwhen velocitiesarelessthanabout0.3m/s.Erosionofsandparticlesoccursatca.0.2m/s andalthoughsiltandclayarefiner,highervelocitiesareusuallyrequiredbecauseof theircohesiveness.AclassicstudybyHjulstrom(1935)relatedthemeanvelocityfor initiationofsedimentmovementtoparticlesize.Heandothers(e.g.,Eisma1993) haveshownthatthereisnomovementofsediment(specificgravityc.2.65)ofany sizeonthestreambedwhenvelocitiesarelessthan0.2—0.3ms 1.Thevariationin sedimentmovement,andthusabrasion,withvelocitywasgivenasapossible explanationfortheincreaseinperiphytonaccumulationwherewatervelocitiesinthe TongariroRiverwerelessthan0.3ms 1. Biggsetal(1998)demonstratedthatthegrowthformofbiofilmsisanimportant characteristic,withdenseandcoherentformsofmucilaginousdiatom/cyanobacterial matsresistingflowgeneratedshearstressbetterthantheopenmatrixmatsof filamentousgreenalgae.Measurementsindicatedthatthemucilaginousforms showedmaximumbiomassatnearbedvelocitiesofca.0.2m/swhereasthe maximumofthefilamentoustypeoccurredatnearbedvelocities<0.2m/sbutat fasterflowsbiomassdeclinedexponentiallytolessthan10mg/m 2atvelocities>0.4 m/s.SimilarlyRyder(2006)showedthatatvelocitiesabove0.3m/sthebiofilmson redgumblocksshowedreducedbiomassandspeciesrichness. Inriverswherethephoticdepthislimitedbycolourorturbidity,orwherechanging waterlevelsmovebiofilmstolowlightlevelsthenbenthicalgalproductionislimited andheterotrophicmicrobialdetritalbiofilmsprevail.Incontraststablewaterlevels promotelatesuccessionalbiofilmsfavouringbenthicalgae(SheldonandWalker 1997).Forsomeorganisms,suchassnailsithasbeensuggestedthatmicrobial detritalbiofilmsareabetterfoodsourceandthatthechangesinflowbroughtabout byriverregulationhaveledtothereductionofsomesnailpopulations(Sheldonand Walker1997).Oscillationsinwaterlevelthusaffectthepresenceandcompositionof biofilms. Algalbiomasswasobservedtopeakwhenbiofilmswereexposedforlessthan3 consecutivedaysina90dayobservationperiodprovidedtheywerenotdegradedby desiccationandwaveaction,withtheminimumorganicbiomassconsistentlyatthe surfaceandthemaximumtowardsthebottomoftheeuphoticzone(Burnsand Walker2000).Ryder(2004)reportedthatthemaximumnetprimaryproductivityof biofilmsdevelopingonredgumblocksoccurredafter29daysofsubmersionbut thenfellrapidly.Blocksundergoingahighfrequencyoscillation(5dsubmergedand 9demersed)haddevelopedaheterotrophicfilmafter75dayswithnegativeNPP, whilethoseexposedtoamoderatecycle(11dsubmergedand21demersed)had anautotrophicbiofilmwithhighestNPPrelativetoalgalbiomassandhigherNPP thanthepermanentlyinundatedblocks.Althoughthedrymassremainingonthetwo oscillatingtreatmentsafter79dayswassimilartoeachother,theywereonly10%of thatonthesubmergedblocks,eventhoughalgalbiomasslevelswerecomparable acrossalltreatments.Thiswasthoughttoreflecttheaccumulationofsedimentwithin thesubmergedbiofilmsandcorrespondswiththefindingsofJowettandBiggs (1997).Ryder(2004)concludedthattheregimeofhighinundation/emersion frequencyresultedinabiofilmdominatedbydiatomsandunicellularcyanophytes butwereheterotrophic,whereasassemblagesintheregimeofintermediate inundation/emersionfrequencyweredominatedbyfilamentousdiatomsand chlorophytesandwereautotrophic.Sufficienttimefordevelopmentofdesiccation

Peter Cottingham & Associates 39 Evaluation of summer inter-valley water transfers from the Goulburn River tolerantalgaeorrecolonizationisrequiredinbiofilmsrapidlyoscillatingbetweenwet anddry.” Watervelocityalsoinfluencesthedistributionandconditionofsubmerged macrophytes.Biggs(1996)foundinstreamswithhightemporalhydraulicstabilityat thetimeofpeakbiomass(oftensummer)thatwheremeanreachvelocitiesare<0.2 m/supto75%canbecoveredwithmacrophyteswhereaslessthan10%maybe coveredwherevelocitiesexceed0.9m/s.Madsenetal(2001)suggestthatfor velocitiesbetween00.1m/sphotosyntheticratesincreasewithflow,whileabove thisthebiomassofmacrophytesisnegativelycorrelatedwithflowuptoca.1m/s whentheyarenolongerpresent.SomemacrophytessuchasBryophytesareableto withstandhighervelocitiesbutarespecificallyadaptedforthis. Thepreviousdiscussionhighlightsthattheinfluenceofwaterdepthandvelocityon theoccurrenceandgrowthofthevariousprimaryproducers(submerged macrophytes,benthicalgae,periphyton/biofilms)isnotasdifferentasmighthave beenexpected.Avelocityof0.20.3m/sseemstohaveimportantphysical implicationsthatimpactontheseattachedplants.Inaddition,thissamevelocity marksachangeinchannelretentiontimethatinfluencesthegrowthof phytoplankton.Onereportedeffectisthatthisvelocityingeneralmarkstheinitiation ofsignificantbedmovementwhichisdisruptivetotheattachedorganisms,especially ifnotwellestablished,andincreasesthesedimentinsuspensionandsotheriskof siltation.Ifthisisthecasethenpartoftheimpactonphytoplanktongrowthmightbe relatedtoareductioninlightpenetrationatvelocitiesabovethisrangedueto resuspendedsediment.However,thiswouldnotexplainthecontinuingincreasesin phytoplanktonbiomassasvelocitiescontinuetofall.Itseemslikelythatthisis relatedtoachangeindistributionofwatervelocitiesacrossthechannel. Insummary,flowstressorsrelatedtodepthandvelocitywereexaminedinrelationto theireffectonthephytoplanktonandsubmergedmacrophyteproduction. Insummary,flowstressorstobeassessedfromaninstreamproductionperspective were: • PlanktonicAlgae:  meanresidencetime(hours/km);  meanratiooffallvelocity(0.40m/s)tomeanwater depth (assess sinking losses from the water column of average plankton );  meanratiooffallvelocity(0.95m/s)tomeanwater depth (assess sinking losses of the diatom Aulacoseira granulata );  proportionoftimewheneuphoticdepthislessthan0.3timesthemeandepth (assess when in-channel production exceeds respiration i.e. NPP is zero or negative );  meanratioofeuphoticdepthtomeanwaterdepth(assesslightlimitedGPP and NPP in the channel ); • Periphyticalgae: 2  meanilluminatedareaofbenthos(m permlengthofchannel ) (assess relative area of benthic production ); 2  meanilluminatedareaofbenthoswithvelocitylessthan0.2m/s(m perm lengthofchannel)( assess velocity conditions suitable for benthic production );

Peter Cottingham & Associates 40 Evaluation of summer inter-valley water transfers from the Goulburn River

2  meanilluminatedareaofbenthoswithvelocitylessthan0.3m/s(m perm lengthofchannel)( assess illumination and velocity conditions suitable for benthic production) ; 2  meanilluminatedareaofbenthoswithvelocitylessthan0.4m/s(m perm lengthofchannel)(assessilluminationandvelocityconditionssuitablefor benthicproduction);  proportionoftimethebankhasbeenwithintheeuphoticzoneforatleast14 days,atselectedstagesabovethebedcorrespondingwithvarious exceedenceflowsinthenaturalregime. • Macrophytes: 2  meanilluminatedareaofbenthos(m permlengthofchannel)( assess relative area suitable for macrophyte production) ; 2  meanilluminatedareaofbenthoswithvelocitylessthan0.4m/s(m perm lengthofchannel)( assess velocity conditions suitable for macrophyte production) ; 2  meanilluminatedareaofbenthoswithvelocitylessthan0.9m/s(m perm lengthofchannel)(assessilluminationandvelocitylimitsformacrophyte production);  proportionoftimethebankhasbeenwithintheeuphoticzoneforatleast42 days,atselectedstagesabovethebedcorrespondingwithvarious exceedenceflowsinthenaturalregime.

4.2.3 RiverBankVegetation Summerandautumnlowflowperiodsareimportantformaintainingshallow,low velocityhabitatthatfavoursthegrowthorrecruitmentofaquaticmacrophytes(Chee etal.2006)(Figure29).AlthoughCheeetal.(2006)providedaconceptualmodelto supporttheneedtoincreaseverylowsummerautumnflowsforaquaticand amphibiousmacrophytes,theimplicationsforhigherthannaturalsummerflowsasa resultofIVTswasnotconsidered(Figure30),particularlyintermsoftheirimpacton bankvegetation.Thissectionconsidersecologicalobjectivesandflowstressors relatedtothedynamicsofvegetationoftheriverbank.Ecologicalobjectivesandflow stressorsforaquaticmacrophyteshavebeenaddressedintheprevioussectionon RiverineProduction(section4.2.2)andinthesubsequentsectionon Macroinvertebrates(section4.2.4). ThePanelhasobservedthatvegetationonthebankoftheGoulburnRiverhas becomeincreasinglyterrestrialinnatureoverthelast5years.Thisispresumably duetothereducedfrequencyanddurationofmoderatetohighflowsunderthe currentflowregimethatwouldpreventencroachmentofterrestrialvegetationand provideconditionsfavourableforamphibiousandaquaticspecies.Thefaceofthe bankcommonlycarriesSilverWattle Acacia dealbata andsometimesyoungRiver RedGum .Theunderstoreymaybesedgyorgrassy,with speciessuchasWarregoSummerGrass Paspalidium jubiflorum and Poa labillardieri .Tuftedortussocksofemergentmacrophytesofmediumheight (notionally0.5to1.5mmainlyrushes(Juncaceae)andsedges(Cyperaceae))have arestricted(vertical)distribution,occurringatorclosetothewaterline.Herbsthat arenotfullyaquaticbutrequirewetconditionssuchas Lythrum salicaria alsoare limitedtothewaterline.

Peter Cottingham & Associates 41 Evaluation of summer inter-valley water transfers from the Goulburn River

Thevegetationoccurringonthebanksoflargerivershasbeenlittlestudiedin Australia.Whilstitiswellacceptedthatflowrelatedprocessesareimportantfor maintainingriverbankandriparianvegetation,processessuchaspropagule dispersalandestablishmentarelittleknown.FromthefewAustralianstudies (notablyLowe2002),itisknownthatflowregime(patternofsubmergencethrough time)andsiltationadverselyaffectthegrowthandsurvivalofriverbankspeciesand hencewillalsoinfluencecommunityandvegetationattributessuchasabundance andcomposition.Perennialplantsareanimportantpartofriverbankvegetationand arepresentastrees,shrubs,grassesandherbs.TheAquaticandRiparian VegetationmodelproposedforVEFMAP,withitsemphasisonestablishmentfrom theseedbank,doesconsiderterrestrialandperennialspecies.However,itdoesnot explicitlyconsiderhowterrestrialspeciesgrowingontheriverbanksrespondtoflow regime,inparticulartosubmersion. Insightsonhownonwoodyterrestrialspeciesofriverbanksrespondtochangesin theflowregimecanbedrawnfromoverseasstudies.Initially,thisresearchwas ecophysiological,andfocusedonunderstandingthemechanismsofinundation tolerance,sotendedtoconcentrateonasmallnumberof‘model’species,mostly herbsinthegenus Rumex .Thisgaveasoundunderstandingofadaptationsinplants inthemorefrequentlyfloodedareasorwetdryzones,anunderstandingeffectively summarisedbyVoeseneketal.(2006).Researchontheeffectoffloodsonspecies lackingsuchadaptations,thefloodsensitiveorterrestrialspecies,hasproceededin parallel.Ofparticularinteresttothisstudyisanunderstandingofhowthetiming(or alteredseasonality)ofhighdischargeeventsleavealegacyonthelandscape.This understandingisusefulasamodelforriversandriverbanksinsoutheastern Australiabecausetheecologicalimplicationsofalteredseasonalityandextreme eventsforriverinevegetationarepoorlyunderstood. Theeffectofinundationonnonwoodyterrestrialplants,ieongrasses,forbsand herbs,bringstogethertwothemes:durationofinundation,andcontrolsontheupper andlowerdistributionofspeciesonaverticalelevationgradient.Plantsfrom ‘frequently’floodedriverbanksitesare flood tolerant duetohavingoneormoreof thefollowingresponseswhentheyarepartlyorcompletelyflooded(Voeseneketal. 2006): • rapiddevelopmentofadventitiousaerenchymatousroots,tofacilitatethe downwardtransportofoxygen; • stemhypertrophy,alsotofacilitatethedownwardtransportofoxygen; • elongationofstemorleaves,carryingleavesintoairfollowingflooding;and • underwaterphotosynthesis. Theseadaptationsarenotequallyexpressedbetweenspecies.Thecapacityto elongate,forexample,differsbetweenspeciesandalsodependsonthe developmentalstagereachedwhenfloodingbegins(vanderSmanetal.1993). Adaptationsarenotwithoutsomecost;insomespecies,thereisatradeoffbetween capacitytoelongateandsubsequentreproductiveoutput.‘Frequently’asusedby Blometal.(1994)isnotquantitativelydefinedbutdescriptionsinthetextshowit meansseveraltimes(short)withinagrowingseason,makingitcomparableto ‘fluctuations’andtoZoneBinVEFMAPmodelofAquaticandRiparianVegetation (Cheeetal.2006)(Figure30).

Peter Cottingham & Associates 42 Evaluation of summer inter-valley water transfers from the Goulburn River

Plantsfromhigheruptheriverbank,fromthezonethatisseldomorveryinfrequently flooded,lacktheadaptationsfoundinthefloodtolerantspeciesdescribedabove,so are flood sensitive .Theseareterrestrialplants.Inundationisstressfulfortheseas itimposesmultiplestresses:oxygendepletion(duetosoilwaterlogging),carbon deprivationorstarvation(duetocomparativelylowamountsofavailablecarbonin thewater),andreducedcapacitytophotosynthesise(duetoshadingeffects associatedwithturbidfloodwaters).Withnoadaptationstoeitherdirectly compensateforthesestressesorbypasstheireffects,terrestrialplantscansurvive inundationonlyaslongastheirinternalresourceslast.Durationisthusvery significant.SurvivalexperimentsroutinelyuseLT50 (unitsindays),meaningthe durationatwhich50%ofplantshavedied,tocomparebetweenspeciesorbetween experimentaltreatmentsuchasshadingordepth.Durationofinundationiswidely recognisedasthemostsignificantaspectofwaterregimeforwetlandspecies(eg CasanovaandBrock2000)andisalsosignificantforriverbankspecies.Thispartof theriverbankcorrespondstoZoneCinCheeetal.(2006). Inwetlandandriparianecology,zonationpatternsareinterpretedasdifferential speciesresponsestowaterregime.Ageneralmodeldescribingspeciesdistribution alonganelevationgradientisthatcompetition(bioticfactors)controlstheupperlimit, andthatsomeaspectofwaterregime(abioticfactors)controlsthelowerlimit.Inthe caseoftallemergentmacrophyteswiththecapacitytopressureventilatetheir rhizomes,suchas Typha sp.,thelowerlimitiscontrolledbywaterdepth.Inthecase ofterrestrialspeciesonriverbanks,itisthedurationofunusualorrarefloodsduring thegrowingseason(summer)thatdefinesaspecies’lowerlimitsdownariverbank, ratherthanaveragewinterfloods(egvanEcketal.2006). Forterrestrialspecies,seasonisnowknowntobecriticallyimportant.Growthand survivalexperimentsusing10grasslandspeciesoriginatingfromdifferentelevations ofthefloodplainfoundthatallsurvivedinundationlonger(andsomemuchlonger) whenfloodedinwinterthaninsummer(vanEcketal.2006).Theexperimentsalso showedthatsurvival,asLT 50 ,differedbetweenecologicalgroups.Thussurvivalfor twospeciesconsideredtobefloodtolerant(e.g.Blometal.1994)was38to55days insummer,andincreasedto95to100daysinwinter(vanEcketal.2006).In contrast,survivaloffloodsensitivespecieswasmuchlower,withLT 50 rangingfrom about5to10daysinsummer.

Peter Cottingham & Associates 43 Evaluation of summer inter-valley water transfers from the Goulburn River

Figure 29: Conceptualisation of vegetation, macroinvertebrate and fish habitat responses to flow components (from Chee et al. 2006).

Peter Cottingham & Associates 44 Evaluation of summer inter-valley water transfers from the Goulburn River

Figure 30 : Conceptual model of aquatic and riparian vegetation responses to Spring and Summer flows. ZoneA:frommidchanneltostream margin(ortheareacoveredbywaterduringtimesofbaseflow);Zone B:fromstreammargintoapointmidwayuptheflankofthebank(or theareathatisinfrequentlyinundated):ZoneC:frommidwayupthe flankofthebanktojustbeyondthetopofthebank(fromCheeetal. 2006).

Peter Cottingham & Associates 45 Evaluation of summer inter-valley water transfers from the Goulburn River

Asagroup,however,floodsensitivespecieshadaquitevariablesurvivalresponse towintersubmergence.Somewerequitesensitivewithlowsurvivalrates(anLT 50 of about15days)whilstothersweremuchmoretolerantwithLT 50 rangingfromabout 40to100days.Althoughvariabilityinsurvivalwithinthisgroupcanbeattributed,in part,tospeciesdifferences(vanEcketal.2005b),waterquality(clarity)alsoplaysa role,affectingthelightclimatearoundthesubmergedplantorevensmotheringit throughsedimentation(Mommeretal.2005,vanEcketal.2005a).Theecological effectsofwinterfloodingonterrestrialspeciesappeartobeverylimited,especially comparedwithsummerflooding.StudiesintheNetherlandshaveshownthatwinter floodingandwinteritselfarenotopportunitiesfordownslopecolonisationby terrestrialspecies(egvanEcketal.2005a).Winterfloodingdoesnotexertthe stronginfluenceonspeciesdistributiondownriverbanksthatsummerfloodingdoes (Vervurenetal.2003,vanEcketal.2006),asshownbycorrelationsbetweenflood stageandspeciessurvival,estimatedasLT 50 . Theimportanceofsummerfloodingasa‘resetting’mechanismfortheencroachment ofterrestrialvegetationdowntheriverbankwasusedasthebasisforexploringthe potentialimpactofincreasingIVTs.Underanunregulatedflowregimeinthe GoulburnRiver,summerflowswouldhavebeensufficienttoexcludeterrestrial vegetationfrommuchoftheriverbank(Figure31).

Figure 31: Occurrence of “terrestrial-excluding” inundation events based on the conceptual understanding that inundation events in the warmer months (December to April inclusive) that are 50 cm deep and last a minimum of 15 days can be expected to cause mortality in 50% of terrestrial plants. Theplotshowsoccurrenceofsuch eventsunderregulatedflows(Above)andnonregulatedflows(Below) at0.6m,1m,1.8mand4mongaugeatMurchison,equivalentto90 th , 75 th ,50 th and25 th percentileofnaturalflows. Fourecologicalobjectiveswereconsideredforriverbankvegetationwiththe intentionofreturningtheverticaldiversityanddistributionofvegetation(terrestrial, amphibious,aquatic)towardsthatpresumedforpreregulatedconditions:

Peter Cottingham & Associates 46 Evaluation of summer inter-valley water transfers from the Goulburn River

1. Maintainpersistentcoveroverpartofupperpartofbank(equivalenttonatural flowpercentileswherebankinundationhassame/similardurationundernatural ashistoric–i.e.protectthoseareasofthebankunaffectedbyregulation). 2. Reducecover,iemovetowardsassumednatural,forthosepartsofbankfalling belowthreshold(thresholdisflowpercentilewherenaturaldurationofinundation isapproximatelyequaltohistoric). 3. Maintaincompositionthatismainlynativespecies(notionallyatleast75%by cover) 4. Avoidconditionsthatfavoursignificantriparianandaquaticweedsknownto occurinthearea. However,itisacknowledgedthatfactorsoutsidethestudyreaches(e.g.weed propaguledelivery)orflowcomponentsotherthansummerautumnlowflowwill affectthelattertwoobjectives(objectives3and4above).TheimplicationsforIVTs onbankvegetationarethereforebasedonthefirsttwoobjectiveslistedabove.The flowstressorsrelevanttotheseobjectivesare: • Maximumspellduration(days)atthestage8.64mabovebedcorrespondingto the10%exceedenceflowinthenaturalregime( assess conditions favourable for terrestrial vegetation at the top of the river bank); • Maximumspellduration(days)atthestage6.49mabovebedcorrespondingto the20%exceedenceflowinthenaturalregime( assess conditions favourable for terrestrial vegetation at the top of the river bank); • Maximumspellduration(days)atthestage5.04mabovebedcorrespondingto the30%exceedenceflowinthenaturalregime( assess conditions favourable for terrestrial vegetation at the top of the river bank); • Maximumspellduration(days)atthestage4.24mabovebedcorrespondingto the40%exceedenceflowinthenaturalregime( assess conditions suitable for a dynamic mix of amphibious and terrestrial species ); • Maximumspellduration(days)atthestage3.65mabovebedcorrespondingto the50%exceedenceflowinthenaturalregime( assess conditions suitable for a dynamic mix of amphibious and terrestrial species ); • Maximumspellduration(days)atthestage3.11mabovebedcorrespondingto the60%exceedenceflowinthenaturalregime( assess conditions favourable for amphibious species at the bottom of the river bank); • Maximumspellduration(days)atthestage2.74mabovebedcorrespondingto the70%exceedenceflowinthenaturalregime( assess conditions favourable for amphibious species at the bottom of the river bank); • Maximumspellduration(days)atthestage2.5mabovebedcorrespondingto the80%exceedenceflowinthenaturalregime( assess conditions favourable for aquatic and amphibious species at the bottom of the river bank ); • Maximumspellduration(days)atthestage2.25mabovebedcorrespondingto the90%exceedenceflowinthenaturalregime( assess conditions favourable for aquatic and amphibious species at the bottom of the river bank ).

4.2.4 Macroinvertebrates Macroinvertebratecommunitiesareoftenusedasindicatorsofstreamcondition. Reasonsforthisinclude: • Macroinvertebratesoccupyarangeofpositionsinaquaticfoodwebs grazers,predators,detritivores,andfoodresourcesforother

Peter Cottingham & Associates 47 Evaluation of summer inter-valley water transfers from the Goulburn River

macroinvertebrates,fish,andbirds.Theyarethereforeinvolvedinawide arrayofecosystemprocessesandrespondtochangesinanyofthose processes. • Individualmacroinvertebratetaxaoccupyparticularhabitatnichesin/on sediments,aquaticplants,biofilms,andsnagsandsubjecttoawidevarietyof flowregimes.Themakeupofthemacroinvertebratecommunity(taxonomic compositionandbiomass)islikelytoreflectchangesinthesehabitat componentsoverarangeoftimescales. • Welltestedandrepeatabletechniquesareavailabletosampleandidentify macroinvertebratesandtoanalyseandinterpretcommunitydata. Themacroinvertebratespresentatanypointinariverrepresenttheoutcomesof interactionswithinthemacroinvertebratecommunityandbetweenmembersofthe communityandnumerouscomponentsandprocessesintheirenvironment.A conceptualmodelofflowhabitatinteractionsforaregulatedlowlandriverreachis presentedinFigure32.Itshouldbenoted,however,thattherehasbeenlittleorno researchonmacroinvertebrateresponsespecifictoincreasedsummerflows. Despitethis,theconceptualmodeldoesprovidelinkswitharangeofflowdependent biophysicalcomponentsoftheecosystemthat,inturn,impingeonthe macroinvertebratecommunity. Themacroinvertebratespresentatanypointinariverrepresenttheoutcomesof interactionswithinthemacroinvertebratecommunity,andbetweenmembersofthe communityandnumerouscomponentsandprocessesintheirenvironment. Macroinvertebratecommunitiesarelikelytocontainamixtureof‘generalists’and taxathathavequitespecialistrequirementsregardingfoodsupply,structuralhabitat and/orinteractionswithotherorganisms(e.g.avoidanceofpredation).Whilstthere isalonghistoryofsamplingandanalysingmacroinvertebratecommunities,thereis relativelylittledetailavailableonthespecificenvironmentalrequirementsforthe rangeofmacroinvertebratetaxafoundinAustralianlowlandrivers(andthereforeto describeindetailthedriversformacroinvertebratediversityorbiomass).Prescription ofspecificflowmanagementactionstocreateparticularmacroinvertebrate communitiesiscurrentlynotpossible.Insuchcircumstances,itisreasonabletoseek managementoutcomessuchasmaximisinghabitatheterogeneityintimeandspace ormimicking,wherepractical,‘undisturbed’conditions.Hydraulicandhydrological modellingcanthenbeusedtorefineflowrecommendationsatleastintermsof predictingthespace/timedistributionofmacroinvertebrate habitat –andtherebyan estimatewhethervariousflowmanagementregimesarelikelytobefavourabletothe macroinvertebratecommunityoftheGoulburnRiver.Thisapproachalsoallowsthe useof‘undisturbed’flowregimes–theregimeunderwhichthemacroinvertebrate communityevolvedandpersistedinthepastasareferenceconditionagainst whichtocompareasuiteofmanagedflows.However,thisdoes not implythat ‘undisturbed’conditionisa target forfuturemanagementregimes. Thecompositionofmacroinvertebratecommunitiesvariesbetween substrates foundinlowlandrivers.Thussnags,emergentplants,andbaresediment/bank materialallsupportsomemacroinvertebratetaxaspecificallyadaptedtothem,as wellasasuiteofmorewidelydistributedtaxathatmaybefavouredbyoneorother substratetoagreaterorlesserextent.Likewise, flow velocity atanypoint influencesthemacroinvertebratetaxapresentinlowlandrivers,thoughpossiblynot

Peter Cottingham & Associates 48 Evaluation of summer inter-valley water transfers from the Goulburn River atthefinescaleseeninuplandstreams.Nonethelessbackwaters,slackwater areas,andzoneswithsignificantflowvelocityarelikelytosupportdifferent macroinvertebratecommunities.Theavailability,nature,andqualityof food sources obviouslyinfluencethecompositionandbiomassofmacroinvertebratecommunities. Grazers,dependantonprimaryproduction,arelikelytobelimitedmainlytozonesin whichthelightclimateissufficienttosupportphotosynthesis.Invertebratesinvolved inthebreakdownoflittermaywellbedistributeddifferentlyintheriver.Thus substratetype,flowvelocity,foodsourcetogetherwithotherfactorssuchaswater qualityandintracommunityinteractionsconstituteamultidimensionalmatrixof driversthatintotaldeterminethemakeupandbiomassofthemacroinvertebrate community.Riverregulationinfluencesthemacroinvertebratecommunitythroughits impactonthesedrivers.Theaimofenvironmentalflowregimesistominimise negativeoutcomesofthisimpact. Anadditionalcomplicationarisesfromthetime/spacepatternofchangeamongst theseflowrelateddrivers.TheIntermediateDisturbanceHypothesis(Sousa1979) leadstotheviewthateitherrelativelyunchanging(e.g.aweirpoolorinvariant regulatedflow)orpersistentlyandrapidlychangingconditionsarelikelytosupporta lessdiversemacroinvertebratecommunitythananenvironmentaldynamic somewherebetweentheseextremes.‘Unnatural’trendstowardeitherextremeina managedflowregimerepresentapotentialthreattomacroinvertebratediversity. Thishasparticularrelevancetotheoperationofregulatoryinfrastructureandthe managementofIVTs. Takinghabitatandotherresourcesassurrogatesformacroinvertebratediversityand abundanceitispossibletoassessthelikelyoutcomesformacroinvertebrate communitiesofhighsummerflowsintheGoulburnresultingfromproposedIVTs. In-channel wood (snags) .ObservationsofthePanelindicatethatthequantityof submergedcoursewood(snags)willincreasewithincreaseinflow,thoughtherate ofsnaghabitataccretionmaynotbelinear.FieldobservationsnearWyunaindicate thatthemajorityofsnagmaterialisabovethewatersurfaceatflowsofabout 400ML/day,andalmostallsnagsaresubmergedatflowsof4,000ML/d.The responseofmacroinvertebratetaxadependsontheirindividualautecology.Taxa limitedbytheavailabilityofwoodymaterialwillbefavoured.Taxadependentonnon photosynthesingbiofilmmayalsorespondtotheincreaseinsubmergedsurface area.Grazingmacroinvertebrateswillremainrestrictedtotheeuphoticzoneandwill thereforerespondtoacombinationoftheavailabilityofsurfacesandlight penetration(seediscussiononriverineproductioninSection4.3.2).Dependingon ambientlightpenetration,flowssignificantlyhigherthan4,000ML/dayarelikelyto reducetheamountofsnagsurfaceabletosupportphotosynthesisandtherefore thosemacroinvertebratesdependantonbiofilmprimaryproduction. Aswellasprovidingsubstrate,snagsalsoactascollectionpointsfordecomposing organicmaterial,particularlyfloodplainlitter,carriedbythestream.Asignificant numberofmacroinvertebratetaxa,specialisedin‘processing’thismaterial,are favouredbytheaccumulationoflitteraroundsnags.

Peter Cottingham & Associates 49 Evaluation of summer inter-valley water transfers from the Goulburn River

Flow SummerAutumnLow Flows&Freshes WinterSpring Reinstatementofmorenatural Freshes levelsofWinterSpringBaseflow MaintainInchannel MaintainHabitat IncreaseinChannel Shallow&Slow Increasein StageHeight WaterArea&WQ forSubmerged& Amphibious Inchannel IncreaseinInchannel Macrophytes Shallow&Slow FlowVelocity WaterArea

MaintainAdequate Temporary SustainedInundationof Area,Depth&WQ InundationofHigher IncreaseinArea InchannelMacrophytes, inRiffle/RunHabitat MaintainShallow& ofRiffleand/or ChannelEdge levelChannelEdge SlowWaterHabitatfor RunHabitat Macrophytes,TreeRoots, Macrophytes,Tree Invertebrates&Fish Increasein Roots,BranchPiles, BranchPiles,Woody Micro IncreaseinAbundance WoodyDebris,Bars, Debris,InchannelBars, invertebrate ofSubmerged& Increasein Benches, Abundance Amphbious Volumeof Overhanging/Undercut Banks Overhanging/ Macrophytes PoolHabitat UndercutBanks Replenish&Maintain Maintain‘Refuge’ AdequateVolume, HabitattoEnsure Depth&WQin Persistenceof IncreaseinQuantity& PermanentPools Invertebrates&Fish DiversityofFlow VelocityHabitats FlushAccumulationsofFine Sediments&OrganicMatterfrom CoarseStreambedSubstrate

Maintain IncreaseinQuantity IncreaseAvailabilityof Connectivity &Diversityof InterstitialSpacesinCoarse PhysicalHabitat StreambedSubstrate Increasein AllowPassageto Invertebrate AlternativeHabitats Abundance

IncreaseinFish Recruitment

Invertebrate Community FishAssemblages& Structure PopulationStructure

FishImmigrationtoReach

Figure 32: Conceptualisation of macroinvertebrate, vegetation and fish habitat responses to flow components (from Chee et al. 2006).

Peter Cottingham & Associates 50 Evaluation of summer inter-valley water transfers from the Goulburn River

Aquatic Vegetation .Aquaticplantsprovideacomplexresourcefor macroinvertebrates.Afewinvertebratetaxafeeddirectlyontheplantsthemselves butmanymorebenefitfromtheprovisionofaphysicalsubstrateforbiofilm, protectionfrompredation,andfromtheplants’modifyingeffectonflowandwater quality.Manyspecieslayeggson(orevenintointhecaseofsomeodonates)the plantsandemergentplantspeciesprovidearelativelysafeplatformforthetransition fromaquaticnymphtoterrestrialadultforanumberofaquaticinsects.Increased stabilitythroughtheenhancementoflowflowareasandconcomitantreductionofthe resuspensionofbanksedimentthroughsurfaceturbulencealsoenhance macroinvertebratehabitat.Duringtheirbreedingcycle,atyidprawnscongregate amongstriveredgevegetation.Thefirstdevelopmentalinstarofatyidsispelagicand presumablytheshelteredenvironmentisimportanttotheirsurvivalandfurther development.TheeffectsofIVTflowsonaquaticvegetation(seeSection4.2.3)will alsobeexpressedinchangestomacroinvertebratecommunities. Backwaters .Backwaters(shallowtemporarywaterbodiesattachedtotheriver channelbutwithoutcurrent)arebecomingrecognisedasimportantcomponentsof thelowlandriverecosystem.Theyarehighlyproductive,supportinghighdensitiesof microorganisms(includingmanyzooplanktonspecies)thatcannotpersistinareasof significantflowvelocity.Theyalsosupportdensemacroinvertebratecommunities includinganumberoftaxarareinthemainstreamandprovidefoodandshelterfor fishlarvae. Water Quality .Itisdifficulttodisentangleanypotentialinfluenceon macroinvertebratecommunitiesofwaterqualityparametersintheGoulburnRiver downstreamofGoulburnWeirfromotherenvironmentalfactors.However,in assessingthelikelyaffectsofIVTsitisprobablysufficienttoconcentrateonchanges thatthesemightbringtosignificantwaterqualityparameters.Thereisnoindication ofthelikelihoodofsubstantialchangeinthosesolutescommonlymeasuredand knowntoinfluencemacroinvertebratecommunities(Cottinghametal.2003).These includesalinity,pH,majorionicbalance,andnutrients(whichinfluence macroinvertebratesviamodificationofprimaryproduction).Riskfrompollutantsin returningdrainagewaterislikelytobereducedbydilution. Inrecentfieldvisitsasubstantialdepositofinorganicfinesedimenthasbeen observedoverlayingsubmergedsurfaces(andpresumablythebiofilm).Duringthe EPAmacroinvertebratesamplingin200506atMcLelland’sRoadandMcCoy’s Bridgeitwasnotedthat‘loosesilt’occupied6590%ofthereach.Attwoothersites, 2ChainRoadandatShepparton,thecoverwas1035%.Similarmeasurements werenotmadein199294socomparisonscannotbemade.Howeveritis reasonabletoassumethefollowing: • Suchdepositssuppressprimaryproductivityinaquaticplantsandbiofilmby reducinglightpenetration; • Itprobablyhasadirectadverseaffectonmanyorganismsthatmakeupthe biofilm(andarefoodresourcesforsomemacroinvertebratetaxa); • Prematureburyingofleafpacksmayreduceaccessfordetritivores; • Extendedperiodsoflowflowwillpermitthedeposittopersist.

Peter Cottingham & Associates 51 Evaluation of summer inter-valley water transfers from the Goulburn River

Analysisofrecentmacroinvertebratedatasuggeststhatincreasedfinesediment depositsmighthavecontributedtothedisappearanceof Micronecta sp.(associated withbiofilms)and Cloeon sp.(adetritivorewhichalsobearsexternalgills)fromthe 200506samples(seeAppendix2fordetails).Researchinuplandstreams(Zweig andRabeni2001,HoggandNorris1991)indicateschangesintaxonomic compositionandnumbersinresponsetosedimentloads.HoggandNorris(1991) studiedthefaunaofpools(inrifflepoolsequences)andtheirfindingsofsignificantly reducedbiomassandlossoftaxaareprobablyapplicabletothelowlandriver conditionsexistingintheGoulburnRiver.Finesedimentdepositionhasbeen observedinseveralVictorianriversandinvestigationofitsbiologicaleffectandthe roleofhighsummerflowswouldbevaluable.Monitoringoffinesedimentdynamics shouldalsobeincludedaspartoftheIVTprogram. Sevenecologicalobjectiveshavebeenidentifiedtomaintainorimprovethespecies diversityandbiomassofmacroinvertebrates: 1. Provisionofconditionssuitableforaquaticvegetation,whichprovideshabitatfor macroinvertebrates; 2. Submersionofsnaghabitatwithintheeuphoticzonetoprovidehabitatandfood sourceformacroinvertebrates; 3. Provisionofslackwaterhabitatfavourableforplanktonicproduction(foodsource) andhabitatformacroinvertebrates; 4. Entrainmentoflitterpackstoprovidefoodsourceformacroinvertebrates; 5. Maintenanceofhabitatheterogeneityovertime; 6. Maintenanceofwaterqualitysuitableformacrophytes; 7. Maintenanceofthequalityoffoodandhabitat. Oftheecologicalobjectivesformacroinvertebrateslistedabove,flowelements relatedtoObjectives14areexpectedtoprovidetheconditionsnecessarytofulfil Objective5,whileelementsassociatedwithobjectivesforPrimaryProduction (section4.2.2)wouldprovideconditionssuitableforachievingObjective7.Thus,flow recommendationsformacroinvertebrates(seeChapter5)werebasedonthe assessmentofthestressorelementslistedbelow. StressorsrelatedtoMacroinvertebrateObjective1: • waterlevelfluctuationamphibioushabitatindexfor4.85mstagecorresponding toeuphoticdepthatthe20%exceedenceflowinthenaturalregime( to assess the diversity of macrophyte assemblages ); • waterlevelfluctuationamphibioushabitatindexfor1.54mstagecorresponding toeuphoticdepthatthe50%exceedenceflowinthenaturalregime( to assess macrophyte assemblages); • Proportionoftimewhenthereislessthan1m 2/mslowshallowhabitat(depth< 0.5m,velocity<0.05m/s)( to assess minimum levels of slow, shallow habitat availability ); • Proportionoftimewhenthereislessthan3m 2/mslowshallowhabitat(depth< 0.5m,velocity<0.05m/s)( to assess minimum levels of slow, shallow habitat availability ); • 10thpercentiledailychangeinstage(m)( to assess maximum rates of change in wetted area );

Peter Cottingham & Associates 52 Evaluation of summer inter-valley water transfers from the Goulburn River

• 90thpercentiledailychangeinstage(m)( to assess minimum rates of change in wetted area ). StressorsrelatedtoMacroinvertebrateObjective2: • Proportionoftimewhenshearstressismorethan7N/m2( to assess shear stress required to renew biofilm sources of food for macroinvertebrates ); • Proportionoftimewhenthereislessthan10m 2/mdeepwaterhabitatdefinedas d>1.5m( to assess periods of snag inundation ); • Proportionoftimewhenthereislessthan15m 2/mdeepwaterhabitatdefinedas d>1.5m( to assess periods of snag inundation) ; • Proportionoftimewhenthereislessthan20m 2/mdeepwaterhabitatdefinedas d>1.5m( to assess periods of snag inundation) ; • Proportionoftimewaterleveliswithintherange2.71to2.98mabovebed correspondingtothe80%to70%exceedenceflowsinthenaturalregime(to assess periods of snag inundation) ; • Proportionoftimewaterleveliswithintherange2.46to2.71mabovebed correspondingtothe90%to80%exceedenceflowsinthenaturalregime( to assess periods of snag inundation) . StressorsrelatedtoMacroinvertebrateObjective3: • Proportionoftimewhenthereislessthan1m 2/mslowshallowhabitat(depth< 0.5m,velocity<0.05m/s)( to assess minimum levels of slow, shallow habitat ); • Proportionoftimewhenthereislessthan3m 2/mslowshallowhabitat(depth< 0.5m,velocity<0.05m/s)( to assess minimum levels of slow, shallow habitat ); • 80thpercentiledailyfallinstage(m)( to assess rates of slow, shallow habitat loss ); • 10thpercentiledailyfallinstage(m)forflowslessthan4000ML/day)( to assess rates of slow, shallow habitat loss ); • 50thpercentiledailyfallinstage(m)forflowslessthan4000ML/day)( to assess rates of slow, shallow habitat loss ); • 90thpercentiledailyfallinstage(m)forflowslessthan4000ML/day)( to assess rates of slow, shallow habitat loss ). StressorsrelatedtoMacroinvertebrateObjective4: • Proportionoftimewhenshearstressislessthan2N/m 2 ( to assess conditions suitable for leaf pack formation and biofilm production as habitat and food for macroinvertebrates ); • Proportionoftimewhenshearstressismorethan7N/m 2( to assess conditions suitable for the disturbance and renewal of biofilm as a food source for macroinvertebrates ); • numberoffloodsexceeding32,700ML/day,correspondingtominorflood warninglevelinReach4 (to assess the frequency of external organic matter inputs ); • numberoffloodsexceeding55,000ML/day,correspondingtocommencetoflow atLochGarry (to assess the frequency of external organic matter inputs). StressorsrelatedtoMacroinvertebrateObjective6:

Peter Cottingham & Associates 53 Evaluation of summer inter-valley water transfers from the Goulburn River

• Proportionoftimewhenshearstressislessthan2N/m 2 (to assess conditions suitable for leaf pack formation and biofilm production as habitat and food for macroinvertebrates ).

4.2.5 NativeFish Current condition RecentsurveyshaveshownthatthefishassemblagesofthelowerGoulburnRiver havehighrecreationalanglingandconservationvalue(KosterandCrook2006). However,asdiscussedbyCottinghametal(2003),itisclearthatconditionswithin thelowerGoulburn,includingalterationstothenaturalflowregime,arenegatively impactingonfishpopulationsandlimitingachievementofincreasesintheecological conditionofthefishassemblages.Oftherecreationalanglingspeciespresentinthe lowerGoulburnRiver,Murraycodandgoldenpercharecurrentlythemost widespreadandabundant.Murraycodbreedeachyearoverawidespatialextentin thelowerGoulburn,whereasthereislittleevidenceofnaturalrecruitmentbygolden perch.Giventheapparentlackofnaturalrecruitment,populationsofgoldenperchin thelowerGoulburnappeartobemaintainedeitherbyartificialstockingorvia migratingadultfishenteringthesystemfromtheMurrayRiver.Severalspeciesof fishthatwereonceconsideredanglingspeciesintheGoulburnRiver,mostnotably troutcod,silverperch,Macquarieperch,riverblackfishandfreshwatercatfishare nowrecognisedmorefortheirconservationvaluethanfortheirvaluetoanglers. Troutcod,silverperchandriverblackfisharecurrentlypresentinverylownumbers andarepatchilydistributed,whilstMacquarieperchandfreshwatercatfishappearto belocallyextinctintheGoulburnRiverbelowLakeNagambie. Severalsmallnativespeciesarecurrentlyabundantandwidespreadinthelower GoulburnRiver,includingAustraliansmelt,rainbowfish,carpgudgeonand flatheadedgudgeon(KosterandCrook2006).Othersmallnativefishspeciesthat havepreviouslybeenrecordedinthelowerGoulburnRiverwerenotrecordedinthe 200306surveys,includingtheflatheadedgalaxias,Murrayhardyhead,nonspecked hardyhead,bonybreamandshortheadedlamprey. Anumberofintroducedfishspeciesarecurrentlywidespreadandabundant throughoutthelowerGoulburnRiver,althoughtheproportionofintroducedspecies withintheassemblageshasdeclinedsubstantiallysincethe1980’s(Crookand Koster2006).Insurveysconductedin198283(Brumleyetal.1987),introduced speciescomprised96%respectivelyofalllargebodiedfishcollectedcomparedto 49%in200306.Despitetheirapparentdeclineindominance,carpcontinuetobreed eachyearinthelowerGoulburnRiverandremainveryabundant,particularlyinthe lowerreachesbelowShepparton.Theoncecommonredfinperch,however,isnow rareinthemainriverchannelbelowLakeNagambie.Otherintroducedfishpresentin thelowerGoulburnRiverincludegoldfishandGambusia. Ecological objectives Theecologicalobjectives(seeAppendix1)setforfishinthepreviousenvironmental flowstudyfortheGoulburnRiver(Cottinghametal.2003)wereconsideredtoremain relevanttothepresentstudy.Eachobjectiveisdiscussedinturn,andthepotential forIVTstoaffecttheflowcomponentsarediscussedwithregardstotheecological

Peter Cottingham & Associates 54 Evaluation of summer inter-valley water transfers from the Goulburn River requirementsofnativefish.Potentialwaysofmitigatinganyrisksassociatedwith IVTshavealsobeendiscussed. Suitable in-channel habitat Theavailabilityofsuitablehabitatwithinthemainchanneliscriticaltotheviabilityof nativefishpopulationsinthelowerGoulburnRiver(Figure32).Basedonscientific literature,thepreviousenvironmentalflowstudy(Cottinghametal.2003) recommendedminimumflowstoensuretheavailabilityofadequatedeepwater habitat(definedas>1.5mdepth)forlargenativefishastheprimaryfactortobe consideredwithregardstoinchannelhabitat(GormanandKarr1978;Harveyand Stewart1991; Crooketal.2001).Theavailabilityofshallow,slowflowinghabitatfor smallfish(seeKing2004,Humphriesetal.2006)wasnotconsideredunderthis objective,asitwasaddressedunderanobjectiverelatingtolowflowsforspawning andrecruitment(seebelow).Cottinghametal.(2003)conductedhydrologic modellingtoexaminetheeffectsofdischargeontheavailabilityofdeepwaterhabitat inthelowerGoulburn.Thisanalysisshowedthattheareaofdeepwaterwas drasticallyreducedundercurrentmanagementinallmonthsoftheyearcompared withmodellednaturalconditions,andthattheareaofdeepwaterhabitatalways increasedwithincreasingdischarge.Aminimumflowof610ML/dornatural (increasedfrom350ML/d)wasrecommendedforthelowerGoulburntoprovide increaseddeepwaterhabitatforlargefish,whichcorrespondstoslightlymorethan 10m 2/mofdeepwaterhabitatforreach4.Theflowelementexaminedinthecurrent analysistoaddressthisecologicalobjective,therefore,relatestotheproportionof timethat<10m 2/mofdeepwaterhabitatisavailablethroughouttheyear. Suitable off-channel habitat/floodplain inundation Offchannelhabitatssuchasfloodplainwetlandsarecommonlyusedashabitatbya numberofnativefishspeciesinsoutheasternAustralia(GeddesandPuckridge 1989;Kingetal.2003),andconnectionbetweentheriverchannelanditsfloodplain providesanimportantsourceofcarbontothemainchannel(Robertsonetal.1999). Theenvironmentalflowsreportrecommendedanannualfloodplaininundationevent forthelowerGoulburnrangingfrom15,000to65,000ML/dtoprovideforconnection betweentheriveranditsfloodplain.Theproportionoftimewithdischarges exceedingtheonsetofoutofchannelflowduringspringwasusedasavariable(ie. flowstressor)toanalysethepotentialeffectofIVTreleasesonthedegreeof connectivitybetweenthemainchannelandthefloodplainduringthecriticalperiod leadinguptothespawningseason. Fish passage Themigrationandmovementoffishbetweenhabitatsappearstobeacriticalaspect ofthelifehistoriesofatleastseveralnativefishspeciesthatoccurintheGoulburn River(MallenCooperetal.1995;O’Connoretal.2005).Lossofhabitatconnectivity duetomanmadebarriersinrivershascontributedtothedeclineofseveralnative fishspeciesinAustralia(BunnandArthington2002).Cottinghametal.(2003) examinedthedepthsofcrosssectionsatMurchisonandWyunaandfoundthata largeproportionoftheriverchannelwassuitableforfishpassagebasedondepth criterionof20cm(Tunbridge1988)undertheBulkEntitlementminimumflow.Onthis basis,norecommendationwasmadeinrelationtofishpassage.AsIVTreleaseswill notreducedischargetobelowtheBEminimumflow,itwasconsideredthatsufficient

Peter Cottingham & Associates 55 Evaluation of summer inter-valley water transfers from the Goulburn River depthforfishpassagewillremainandthatIVTreleasesposednopotentialrisktothe achievementofthisobjective. Spawning and migration cues Withinchannelrisesinwaterlevelduringspringandsummerappeartoplayan importantroleascuesforfishmigrationandspawning(MallenCooperandStuart 2003;O’Connoretal.2005).Cottinghametal.(2003)examinedthefrequencyand durationofspringandsummerfreshesundermodellednaturalandcurrentconditions andfoundthatthedifferencesinthelowerGoulburnwerenotsufficienttowarrant specificflowrecommendations.Itwassuggestedthattheretentionofspringand summerfreshesinthelowerGoulburnundercurrentconditionswasduelargelyto rainrejectionflows.Althoughnospecificflowrecommendationsweremade regardingspring/summerfreshes,thePanelrecognisedtheimportanceoffreshes andrecommendedthattheyberetainedshouldmanagementofirrigationreleases change.TheintroductionofIVTreleasesduringsummerhasthepotentialtogreatly affectthefrequencyanddurationoffreshesinthelowerGoulburn. Recentstudieshavefoundthatgoldenperchandsilverperchcanspawnedinlarge numbersintheMurrayRiverduringperiodsofhigh,withinchannelirrigationflows (Kingetal.2005,KosterandCrook2006),whereasspawningbythesespecieswas notdetectedunderthelowsummerflowregimeinthenearbylowerGoulburn. MallenCooperandStuart(2003)alsofoundthatstronggoldenperchrecruitment occurredinyearswherewereflowpulsesof12minstageheightwithinthemain channeloftheMurrayRiver.Smallerincreasesinstageheightof>15cmwere sufficienttoinitiatemigrationoflargenumbersofjuvenilegoldenperchandsilver perch(MallenCooperetal.1995).Fromthesestudies,itappearsthatincreasesin flowassociatedwithIVTreleasesduringspringandearlysummermayincreasethe likelihoodofmigrationandspawningbygoldenperchandsilverperchinthelower Goulburn.ItisalsopossiblethatincreasedflowsintheGoulburnwouldactasan attractanttofishmigratingfromtheMurrayRiver,whichmayhaveabeneficialeffect onfishpopulationsintheGoulburnRiver. Althoughincreasedflowshavepotentialbenefitstoatleastsomenativefishspecies, retentionofvariabilityintheflowregimeisconsideredcriticaltomitigatinganyrisks associatedwiththeIVTreleases.IfIVTreleasesweremanagedasstableflowsover extendedperiods,itislikelythattherewillbedetrimentaleffectsonnativefish populations.However,ifappropriatepatternsofvariabilitywereintroducedtomimic naturalwithinchannelrisesandfallsinstageheight,itislikelythattherewillbea strongbeneficialeffectforatleastseveralnativespecies.Itshouldalsobenotedthat theIVTsmightalsoprovidebenefitsasmigrationandspawningcuesandattractant flowstononnativefish,inparticularcarp.Variablesthatmeasurethepotential effectsofIVTreleasesontheratesofriseandfallinstageheightduringspringand summerhavebeenusedtoassessthepotentialeffectsofIVTscenariosonthis objective.

Peter Cottingham & Associates 56 Evaluation of summer inter-valley water transfers from the Goulburn River

Maximumpossible peakindischarge

15cm+peaks Smalldaily instageheight Smalldailyflow flowvariation variation Stageheight(m)

Oct Nov Dec Jan Feb Figure 33: Idealised flow pattern likely to promote spawning and migration cues for native fish.

Low flows for spawning and recruitment Recentresearchhassuggestedthatperiodsoflowflowduringthesummermonths arecriticalforsuccessfulspawningandrecruitmentofsomenativefishspecies (Humphriesetal.1999).The“lowflowrecruitmenthypothesis”isbasedontheidea thattherewillbesufficientfoodresourcesavailablewithintheriverchannelandthat anabundanceofshallow,slowvelocityhabitatexistsduringlowflowsperiodsto serveasnurseryhabitatforlarvalandjuvenilefish(Humphriesetal.1999;King2004 and2005).Norecommendationsforlowflowperiodsweremadeforthelower GoulburnbyCottinghametal.(2003)becausetheregulatedflowregimehadlower flowsthanwouldoccurinanunregulatedenvironment.However,IVTshavethe potentialtoexceednaturallowflowsduringsummer,andsoreducetheavailabilityof shallow,slowvelocityhabitatatatimecriticalfortherecruitmentoffish.The availabilityofshallow,slowflowinghabitatsuitableforthesettlementandrecruitment oflarvalandjuvenilefishthroughouttheyearwasusedtoassessthepotential effectsofIVTreleasesonthisobjective.BasedonthefindingsofKing(2004), habitatcriteriaforlarvalandjuvenilefishweredefinedasareaswithdepthslessthan 0.5mandvelocitiesoflessthan0.05m/sec. Insummary,fiveecologicalobjectivesfornativefishhavebeenidentifiedas providing: 1. Suitableinchannelhabitatforalllifestages; 2. Suitableoffchannelhabitat/floodplaininundationforexchangeoffoodand organicmaterialbetweenfloodplainandchannel; 3. Passageforalllifestages; 4. Cuesforspawningandmigration; 5. Lowflowsforspawningandrecruitment; However,currentconditionsalreadymeettherequirementsofObjective3above,so furtheranalysisforthisobjectiveisnotrequired.Theflowstressorsanalysedto provideflowrecommendationsfortheaboveobjectivesinclude: • Objective1:Proportionoftimethroughouttheyearwhenthereislessthan10 m2/mdeepwaterhabitatdefinedasd>1.5m( to assess changes to the availability of deep-water habitat for large bodied fish );

Peter Cottingham & Associates 57 Evaluation of summer inter-valley water transfers from the Goulburn River

• Objective2:Proportionofdischargeexceeding24000ML/dayduringspring, correspondingtoanecdotalonsetofoutofchannelflow( to assess changes to connection between in-channel and floodplain habitats and inputs of food materials in Reach 4 ); • Objective3:90thpercentiledailyriseinstage(m)duringspringandsummer( to assess changes in the rates of rise in stage as spawning/migration cues ). • Objective4:90thpercentiledailyfallinstage(m)duringspringandsummer( to assess changes in the rates of fall in stage as spawning/migration cues). • Objective5:Proportionoftimethroughouttheyearwhenthereislessthan2 m2/mslow,shallowhabitat(d<0.5m,v<0.05m/s)( to assess changes in availability of critical habitat for small bodied fish and the recruitment of larvae and juveniles ); 4.3 Summary of flow stressors Thevariousflowstressorsidentifiedintheprevioussectionsaresummarisedin Table4.Therelationshipbetweenflowobjectivesandflowstressorsissummarised inTable5. Table 4: Flow stressors and their components Code Description Elements F001 Meanhydraulicresidencetime(hours/km) Proportionoftimewheneuphoticdepthislessthan ntimesthe F002 n=0.2,0.25,0.3 meandepth Proportionoftimewhenmeanshearstressislessthan n N/m 2 F003 n=1,2,3 leadingtodepositionoffinesediments Proportionoftimewhenmeanshearstressismorethan nN/m 2– F004 n=5,6,7 leadingtopossiblybiofilminstability Waterlevelfluctuationcharacterisedbytheamphibioushabitat F005 indexcalculatedateuphoticdepthforthe n%exceedenceflows n=10,20,30,…,90 (inthepreregulationregime) Maximuminundationdurationatheightsupthebank F006 correspondingtothewatersurfacelevelsforthe n%exceedence n=10,20,30,…,90 flows(inthepreregulationregime) Proportionoftimewhenthereislessthan nm 2/mslowshallow F007 n = 1,2,3,…,5 habitat(d<0.5m,v<0.05m/s). Proportionoftimewhenthereislessthan nm 2/mdeepwater F008 n = 5,10,15,20 habitatdefinedasd>1.5m F009 Maximumcontinuousriseinstage(m) Thedistributionofdailychangeinstagecharacterisedbythen th F010 n=10,90 percentilevalues(m) F011 meanilluminatedvolumeofwater(m 3permlengthofchannel) F012 meanratioofeuphoticdepthtomeanwaterdepth F013 meanratiooffallvelocity( nm/s)tomeanwaterdepth n=0.2,0.4and0.94 F014 meanilluminatedareaofbenthos(m 2permlengthofchannel) - meanilluminatedareaofbenthoswithvelocitylessthan nm/s(m 2 F015 n=0.2,0.3,0.4and0.9 permlengthofchannel) proportionoftimewhenbenthoshasbeenineuphoticzoneforat n=14and42 F016 least ndays,calculatedforwatersurfacelevelscorrespondingto m=10,20,30,…,90 the m%exceedenceflows(inthepreregulationregime) Numberofindependenteventswhenbenthoshasbeenin euphoticzoneforatleast ndays,calculatedforwatersurface n=14and42 F017 levelscorrespondingtothe m%exceedenceflows(inthepre m=10,20,30,…,90 regulationregime)

Peter Cottingham & Associates 58 Evaluation of summer inter-valley water transfers from the Goulburn River

Code Description Elements Meanwaterdepth(m)duringperiodswhenbenthosisineuphotic zoneforatleast n dayscalculatedforwatersurfacelevels n=14and42 F018 correspondingtothe m%exceedenceflows(inthepreregulation m=10,20,30,…,90 regime) proportionoftimebenthosisintheeuphoticzone,calculatedfor F019 watersurfacelevelscorrespondingtothe m%exceedenceflows m=10,20,30,…,90 (inthepreregulationregime) Proportionoftimebenthosisbelowtheeuphoticzone,calculated F020 forwatersurfacelevelscorrespondingtothe m%exceedence m=10,20,30,…,90 flows(inthepreregulationregime) F021 numberofoverbankevents Thedistributionofdailyrisesinstagecharacterisedbythen th F022 n=10,90 percentilevalues(m) Thedistributionofdailyfallsinstagecharacterisedbythen th F023 n=10,90 percentilevalues(m) Thedistributionofdailyfallsinstagecharacterisedbythen th n=10,50,90 F024 percentilevalues(m)forflowbandsdefinedbytheflows Q i =0,4000,100000 ML/day Proportionoftimewaterleveliswithinarangedefinedbywater F025 surfacelevelscorrespondingtothe m%exceedenceflows(inthe m=10,20,30,…,90 preregulationregime) Proportionoftimewaterlevelisaboveaspecifieddepthabove F026 bedcorrespondingtothe m%exceedenceflows(inthepre m=10,20,30,…,90 regulationregime) F027 Proportionoftimeflowexceeds24000Ml/day

Peter Cottingham & Associates 59 Evaluation of summer inter-valley water transfers from the Goulburn River

Table 5: Summary of relationships between flow-related objectives and flow stressors (see Appendix 1 and 2 for further details of flow objectives)

Stressor Ecological Value Code Ecological Objective Seasons Stressor mechanism code(s) Increasedchannelretentionduetoreducedwatervelocity F001 Su,Sp and/orhydraulicretentionzonesallowsaccumulationof biomassifgrowthratesexceedlossrates. Productionrates,biomasslevels Proportionoftimeplanktonicalgaespendintheeuphoticzone Sourceoffoodforfishandinvertebrates andcommunitycomposition F002 Su,Sp determineswhethernetproductionispossibleornot andinfluenceonrivernutrientand Planktonicalgae moreresemblingunimpacted Proportionoftimeplanktonicalgaespendintheeuphoticzone chemicalconditions sitesanddynamicdiversefood F012 Sp multipliedbymeansurfaceirradiancedeterminestherelative webs levelofproduction Waterdepthinfluencestherateofdepostionofplanktonic F013 Su,Sp algae(Ittakeslongerforsettlingindeeperwater) Bethicproductionisrestreictedtowettedperimeterwithinthe F014 Su,Sp euphoticzone(i.e.wherelightpenetratestothechannelbed andbanks) Productionrates,biomasslevels Highvelocitiesinfluencingbiofilmstability.Areaofcolonization Sourceoffoodforfishandinvertebrates, andcommunitycomposition F015 Su,Sp determinedbyextentoflightzoneuseeuphoticdepth,but habitat,andinfluenceonrivernutrient Periphyticalgae moreresemblingunimpacted limitedbyvelocity. andchemicalconditions sitesanddynamicdiversefood webs Establishmentofbiofilmsrequiresthatthewettedsurface remainswetandwithintheeuphoticdepthforaperiodofsome F016 Sp time.Dryingandsubmersionbelowtheeuphoticdepthwill advserselyaffectbiofilms Bethicproductionisrestreictedtowettedperimeterwithinthe F014 Su,Au,Wi,Sp euphoticzone(i.e.wherelightpenetratestothechannelbed andbanks) Productionrates,biomasslevels Highvelocitiesinfluencingbiofilmstability.Areaofcolonization Contributestoprimaryproduction, andcommunitycomposition F015 Su,Au,Sp determinedbyextentoflightzoneuseeuphoticdepth,but habitatformacroinvertebratesandnative Macrophytes moreresemblingunimpacted limitedbyvelocity. fish sitesanddynamicdiversefood webs Establishmentofaquaticmacrophytesrequiresthatthewetted surfaceremainswetandwithintheeuphoticdepthforaperiod F016 Su,Au,Sp ofsometime.Dryingandsubmersionbelowtheeuphotic depthwilladvserselyaffectmacrophytes Maintainnativeterrestrialcover Durationofsubmergence(inundation)haspotentialtodrown attopofbanksandreducecover outterrestrialvegetation,duetocarbonandoxygenstarvation; Naturalgradientofnativeterrestrial Terrestrialbank ofterrestrialvegetationinareas F006 DecApr criticalvaluesfordurationtoleranceexpectedtovarybetween vegetationuptheriverbanks vegetation ofthebankinfluencedbyflow seasons,beingmuchlongerincool(autumnwinter)thanin regulation warmgrowing(springsummer)season. Diverseandresiliantaquatic Provisionofconditionssuitable Slowshallowvelocitiesrequiredforestablishmentofaquatic MI1 F007 Su macroinvertebratefauna foraquaticvegetation,which vegetation provideshabitatfor Shorttermflowfluctionscanadverselyeffectaquatic F010 Wi macroinvertebrates vegetationgrowingalongthechannelmargins Shorttermflowfluctionscanadverselyeffectaquatic F022 Su,Au,Wi,Sp vegetationgrowingalongthechannelmargins

Peter Cottingham & Associates 60 Evaluation of summer inter-valley water transfers from the Goulburn River

Stressor Ecological Value Code Ecological Objective Seasons Stressor mechanism code(s) Shorttermflowfluctionscanadverselyeffectaquatic F023 Su,Au,Wi,Sp vegetationgrowingalongthechannelmargins Quantityandvarietyofsnagsdependantonvolume(possibly Submersionofsnaghabitat F002 Su,Au,Wi,Sp modifiedbybiodiversityandproductivityofsnagbiofilmdepth withintheeuphoticzoneto andvariabilityoflightclimate). MI2 providehabitatandfoodsource F004 Su,Au Highshearstressescanleadtobiofilminstability formacroinvertebrates F008 Su,Au,Wi,Sp Lossofpools F025 DecApr Reductioninflpwresultindryingoflargewoodydenris Provisionofslackwaterhabitat Increasedflowvelocityandrapidratesofriseandfallaffect favourableforplanktonic F007 Su availabilityofshallow,slackwaterhabitatfor MI3 production(foodsource)and macroinvertebrates. habitatformacroinvertebrates F023 Su,Au,Wi,Sp dailyfallinstage (MI3) F024 DecApr dailyfallinstage Shearstressrequiredtodisrupt(refresh)biofilmsandentrain F003 Su,Au,Wi,Sp Entrainmentoflitterpacks organicmatter. Shearstressrequiredtodisrupt(refresh)biofilmsandentrain MI4 availableasfood/habitatsource F004 Su,Au,Sp formacroinvertebrates(MI4) organicmatter. F021 Su,Au,Wi,Sp Overbankeventsmayentrainorganicmatter Temperature,nutrientsandsalinityassumednotsignificant, Maintenanceofwaterquality MI6 F003 Su,Au,Wi,Sp pollutioneffects(toxicants)notknown.Sedimentdeposition suitableformacroinvertebrates notedandknowntoremovesusceptibletaxa. Su,Aut,Wi, Slowshallowhabitatrequiredforlarvae/juvenilerecruitment F007 Suitableinchannelhabitatforall Sp andadulthabitatforsmallbodiedfish lifestages Diversityofnativespecies,naturallyself F008 Su,Au,Wi,Sp Deepwaterhabitatforlargebodiedfish reporducingpopulationsofnativefish, NativeFish Cuesforadultmigrationduring F022 Su,Sp Flowvariationrequiredasacueformigrationandspawning threatenedandiconicnativespecies. spawningseason F023 Su,Sp Flowvariationrequiredasacueformigrationandspawning Suitableoffchannelhabitatfor Inundationoffloodplainrequiredbysomespeciesandfor F027 Sp alllifestages transportofnutrientsandorganicmattertodrivefoodwebs Longdurationofstableflowfollowedbyrapiddrawdown. Geo1 Avoidnotching F025 DecApr Impactlikelytobeexacerbatedbylossofbankside vegetation. Geo2 Avoidslumping F023 Su Excessiveratesoffallinriverlevel. NaturalChannelFormandDynamics Unseasonaleventsthatfillpoolswithsedimentbutdonotflush Geo3 Maintainpooldepth F026 Su them. Maintainnaturalratesof Highvelocitydischargeincreasesdisturbanceofsand Geo6 F006 DecApr geomorphicdisturbance substratesandaquaticmacrophytes.

Peter Cottingham & Associates 61 Evaluation of summer inter-valley water transfers from the Goulburn River 5 SUMMER IVT REGIME FOR THE LOWER GOULBURN RIVER 5.1 General approach Environmentalflowrecommendationsaredesignedtoachieveecologicalobjectives relatedtoadesiredfuturestate.Flowrecommendationsmaybedesignedeitherto affectecosystemresponsesdirectly,ortoensurethatflowstresswillnotbeafactor preventingachievementofecologicalobjectivesifflowrecommendationsaremet(if someotherfactorlimitstheachievementofobjectives,thenothercomplementary workswillberequired). TheenvironmentflowmethodusedinthisprojectisadevelopmentofearlierFLOWS studies.Thethreemainimprovementsareasfollows. • PreviousstudiesusingtheFLOWSmethodhaverecommendedasingleflow componenttoachievemultipleenvironmentalobjectives.Althoughthishas beenapragmaticapproach,thereisoftenlittletransparencyaroundthe specificationoftheseflowcomponentsandhowtheyrelatetoeachobjective. Toovercomethisshortcoming,thisstudyrecommendsflowsforeach individualenvironmentalobjective. • Previousstudiesrecommendedstaticenvironmentalflowsthatallowedfor littlevariationbetweenyears.Recommendationsinthisstudyexplicitlydeal withinterannualvariability,allowingmoreflexibleoperationofthewater resourceandtheprotectionofimportantinterannualvariationinflows. • Previousstudieshaveprovidedasinglerecommendation.Inthisprojectwe providetwolevelsofenvironmentalflow(i)therecommendedenvironmental flowtoachievetheenvironmentalflowobjectivewithahighdegreeof confidence(lowrisk)and(ii)the"moderaterisk"environmentalflowwhichhas amoderatechanceofachievingtheenvironmentalflowobjective.Thesetwo levelsareprovidedinrecognitionoftheinherentuncertaintyinflowecology linkagesandtheneedtotradeoffenvironmentalriskswithconsumptivewater use. Asadirectconsequenceofthesedevelopmentsthereareanincreasednumberof flowrecommendationsforeachreach.Theserecommendationsareexpressedin tablesinthisreportandarealsoprovidedinanaccompanyingdecisionsupporttool, whichcanbeusedtoevaluatethecompliance.Thetaskofcomplyingwiththis increasednumberofrecommendationsmayatfirstseemdaunting.Inparticular, theremaybeaconcernthattheenvironmentalflowsleavetoolittle"roomtomove" forwateruse.However,itshouldberememberedthatinallcaseswehaveusedthe naturalflowregimeasourreferencepoint.Allrecommendationsrepresenta deviationfromnaturalconditions.Thereremainsawideenvelopearoundthenatural flowregimewithinwhichwaterauthoritiescanoperatetheriverwhilstmeetingmany oftheScientificPanel’senvironmentalflowobjectives. ThePanelhasidentifiedanumberof flow stressors (Table4)thatwereassessedin termsoftheirpotentialtoeithercontribute,oradverselyaffectecosystemresponse andthusachievingecologicalobjectivesinthelowerGoulburnRiver.Anecosystem objectivecanbeaffectedbyasingleormultipleflowstressors,whichareidentified byacodenumber(e.g.F001,F002,F003etc.).

Peter Cottingham & Associates 62 Evaluation of summer inter-valley water transfers from the Goulburn River

Eachflowstressorischaracterisedbyoneormoreelements .ForexampleF003is the“proportionoftimewhenmeanbedshearstressislow,leadingtodepositionof finesediment”.Thisflowstressorhasthreeflowelementscorrespondingtothree differentshearstressthresholdsbelowwhichsedimentationmightoccur(1,2and3 N/m 2).Theelementsareidentifiedbyaletterplacedaftertheflowstressorcode(e.g. F003a,F003b,F003c).Flowelementscanbecalculatedforoneormore seasons (Table6).Inmostcasesflowstressors/elementsarecalculatedforthecalendar seasons(somearecalculatedforperiodssuchasthesummerautumnirrigation season–DecembertoApril). Theflowstressorsarecalculatedforeachyearoftheflowrecordwithdailyflowdata (19752000).Thisprovidesan annual series oftheflowstressors/elements.For example,F003a,istheproportionoftimewhenthemeanshearstressislessthan3 N/m 2.Thiselementiscalculatedforeachyearofrecordusing(i)themodelledpre regulationconditionand(ii)theactualrecordedflows.The 10 th , 30 th , 50 th , 70 th , 90 th percentile values inadditiontotheminimumandmaximumvaluesfromthisannual seriesareusedtocharacterisetheinterannualvariabilityinthisflowelement.This providesinformationoverarangeofyearsfromdrytowetyearsandisconsistent withtheapproachusedbyRichteretal.(1996)intheRangeofVariabilityApproach (RVA)andIndicatorsofHydrologicalAlteration(IHA),althoughtheyusedischarge statisticsratherthanhydraulicmetrics. Insummary: • Foreachecologicalobjective,relevantflowstressors(characterisedbyoneor moreflowelements)wereidentifiedandanalysedforoneormoreseasons;and • Interannualvariabilityintheseflowstressors/elementswascharacterisedbyfive percentilesoftheannualseriesplustheminimumandmaximumvaluesand thesepercentilesarecalculatedforthepreandpostregulationseries. Manyoftheflowelementsrelatetothedurationand/orfrequencyofspellsabove particularhydrologicallydefinedflowthresholds.Inmostcases,severalflow elementsarepresented,eachusingadifferentthreshold.Whileitiscommontouse singleflowthresholdswhenanalysingflowvariabilityforenvironmentalflowstudies, optimisingriveroperationtomeetenvironmentalflowrecommendationsbasedon singlethresholdflowscanleadtounintendedoutcomes.Themostobviousexample isaminimumflowrecommendation,whichmayleadtoconstantbaseflowreleases. 5.2 Decision Support Tool AMicrosoftExcelspreadsheetDecisionSupportTool(DST)accompaniesthisreport andhasbeendevelopedtoassisttheGoulburnBrokenCMAandDSEassessthe implicationofvariousIVTscenarios. A separate DST has been established for each of the study reaches thatcontainstheecologicalobjectivesidentifiedin Appendix1,theflowelementsidentifiedinChapter4,andboundsforindividual stressorsrepresentingapreferredrangetobeachievedduringtherelevantseason. Theboundsalsodescribeflowstressorlevelsindicativeofmoderateandhighriskto achievingstatedecologicalobjectives.Theboundsformoderateandhighriskare basedonbestavailablescientificinformationandtheopinionofScientificPanel members.

Peter Cottingham & Associates 63 Evaluation of summer inter-valley water transfers from the Goulburn River

5.2.1 AssessingComplianceagainstPanelRecommendations ExampleoutputsfromtheDSTarepresentedinFigure34andFigure35.TheDST worksheetlabelled“EnvObj”summarisestheperformanceofeachflowscenario againstthePanel’sflowrecommendations.Toviewthis,selectthe“SciPanel”button incellD1.Theresultsforotherscenarioscanbeviewedbyscrollingwiththeuseof theleftandrightarrowbuttoninCellB1. ColumnBlistsalltheflowelementsforwhichenvironmentalflowrecommendations havebeenmade.ColumnDdividestheseintoupperandlowerbounds.Row1lists alltheenvironmentalobjectivecodesandRow5dividestheseintoseasons. Thecoloursindicatecomplianceagainsttheflowrecommendationsofthepanel: • Greenindicatescomplianceagainsttherecommendedbounds; • Yellowindicatescomplianceagainstthemoderateriskbounds;and • Redindicatestheflowscenariodoesnotcomplywiththemoderaterisk bounds. IndividualcellsinthismatrixshowtheperformanceagainstPanelrecommendations foraparticularflowelement,upperandlowerbounds,seasonandflowobjective. Notethatgreycellsindicatethatnorecommendationsweremadeinthesecases. ThecellsinColumnDindicatetheperformanceoftheflowscenarioforeachflow elementagainstupperorlowerbounds.Likewise,thecellsinRow5indicatethe performanceforeachenvironmentalobjectiveandseason. Row2givestheproportionofrecommendedboundsthataremetforeach environmentalobjective.Row3givestheproportionofmoderateriskboundsthatare satisfiedforeachenvironmentalobjective.

Peter Cottingham & Associates 64 Evaluation of summer inter-valley water transfers from the Goulburn River

Table 6: List of flow stressors and elements considered by the Scientific Panel

Flow Description Type element code Summer Summer Autumn Winter Spring Dec-Apr F001 meanresidencetime(hours/km) X X X X magnitude F002a proportionoftimewheneuphoticdepthislessthan0.2timesthemeandepth X X X X duration F002b proportionoftimewheneuphoticdepthislessthan0.25timesthemeandepth X X X X duration F002c proportionoftimewheneuphoticdepthislessthan0.3timesthemeandepth X X X X duration F003a proportionoftimewhenshearstressislessthan1N/m2 X X X X duration F003b proportionoftimewhenshearstressislessthan2N/m2 X X X X duration F003c proportionoftimewhenshearstressislessthan3N/m2 X X X X duration F004a proportionoftimewhenshearstressismorethan5N/m2 X X X X duration F004b proportionoftimewhenshearstressismorethan6N/m2 X X X X duration F004c proportionoftimewhenshearstressismorethan7N/m2 X X X X duration F005a waterlevelfluctuationamphibioushabitatindexfor7.66mstagecorrespondingtoeuphoticdepthatthe10%exceedenceflowinthenaturalregime X X X X stability F005b waterlevelfluctuationamphibioushabitatindexfor5.51mstagecorrespondingtoeuphoticdepthatthe20%exceedenceflowinthenaturalregime X X X X stability F005c waterlevelfluctuationamphibioushabitatindexfor4.06mstagecorrespondingtoeuphoticdepthatthe30%exceedenceflowinthenaturalregime X X X X stability F005d waterlevelfluctuationamphibioushabitatindexfor3.26mstagecorrespondingtoeuphoticdepthatthe40%exceedenceflowinthenaturalregime X X X X stability F005e waterlevelfluctuationamphibioushabitatindexfor2.67mstagecorrespondingtoeuphoticdepthatthe50%exceedenceflowinthenaturalregime X X X X stability F005f waterlevelfluctuationamphibioushabitatindexfor2.13mstagecorrespondingtoeuphoticdepthatthe60%exceedenceflowinthenaturalregime X X X X stability F005g waterlevelfluctuationamphibioushabitatindexfor1.76mstagecorrespondingtoeuphoticdepthatthe70%exceedenceflowinthenaturalregime X X X X stability F005h waterlevelfluctuationamphibioushabitatindexfor1.52mstagecorrespondingtoeuphoticdepthatthe80%exceedenceflowinthenaturalregime X X X X stability F005i waterlevelfluctuationamphibioushabitatindexfor1.27mstagecorrespondingtoeuphoticdepthatthe90%exceedenceflowinthenaturalregime X X X X stability F006a maxspellduration(days)atthestage8.64mabovebedcorrespondingtothe10%exceedenceflowinthenaturalregime X spellduration F006b maxspellduration(days)atthestage6.49mabovebedcorrespondingtothe20%exceedenceflowinthenaturalregime X spellduration F006c maxspellduration(days)atthestage5.04mabovebedcorrespondingtothe30%exceedenceflowinthenaturalregime X spellduration F006d maxspellduration(days)atthestage4.24mabovebedcorrespondingtothe40%exceedenceflowinthenaturalregime X spellduration F006e maxspellduration(days)atthestage3.65mabovebedcorrespondingtothe50%exceedenceflowinthenaturalregime X spellduration F006f maxspellduration(days)atthestage3.11mabovebedcorrespondingtothe60%exceedenceflowinthenaturalregime X spellduration F006g maxspellduration(days)atthestage2.74mabovebedcorrespondingtothe70%exceedenceflowinthenaturalregime X spellduration F006h maxspellduration(days)atthestage2.5mabovebedcorrespondingtothe80%exceedenceflowinthenaturalregime X spellduration F006i maxspellduration(days)atthestage2.25mabovebedcorrespondingtothe90%exceedenceflowinthenaturalregime X spellduration F007a Proportionoftimewhenthereislessthan1m2/mslowshallowhabitat(d<0.5m,v<0.05m/s) X duration F007b Proportionoftimewhenthereislessthan2m2/mslowshallowhabitat(d<0.5m,v<0.05m/s) X duration F007c Proportionoftimewhenthereislessthan3m2/mslowshallowhabitat(d<0.5m,v<0.05m/s) X duration

Peter Cottingham & Associates 65 Evaluation of summer inter-valley water transfers from the Goulburn River

Flow Description Type element code Summer Summer Autumn Winter Spring Dec-Apr F007d Proportionoftimewhenthereislessthan4m2/mslowshallowhabitat(d<0.5m,v<0.05m/s) X duration F007e Proportionoftimewhenthereislessthan5m2/mslowshallowhabitat(d<0.5m,v<0.05m/s) X duration F008a Proportionoftimewhenthereislessthan5m2/mdeepwaterhabitatdefinedasd>1.5m X X X X duration F008b Proportionoftimewhenthereislessthan10m2/mdeepwaterhabitatdefinedasd>1.5m X X X X duration F008c Proportionoftimewhenthereislessthan15m2/mdeepwaterhabitatdefinedasd>1.5m X X X X duration F008d Proportionoftimewhenthereislessthan20m2/mdeepwaterhabitatdefinedasd>1.5m X X X X duration F009 Maximumcontinuousriseinstage(m) spellvariability F010a 10thpercentiledailychangeinstage(m) X X X X dailychange F010b 90thpercentiledailychangeinstage(m) X X X X dailychange F011 meanilluminatedvolumeofwater(m3permlenthofchannel X X X X magnitude F012 meanratioofeuphoticdepthtomeanwaterdepth X X X X magnitude F013a meanratiooffallvelocity(.2m/s)tomeanwaterdepth X X X X magnitude F013b meanratiooffallvelocity(.4m/s)tomeanwaterdepth X X X X magnitude F013c meanratiooffallvelocity(.95m/s)tomeanwaterdepth X X X X magnitude F014 meanilluminatedareaofbenthos(m2permlengthofchannel) X X X X magnitude F015a meanilluminatedareaofbenthoswithvelocitylessthan.2m/s(m2permlengthofchannel) X X X X magnitude F015b meanilluminatedareaofbenthoswithvelocitylessthan.3m/s(m2permlengthofchannel) X X X X magnitude F015c meanilluminatedareaofbenthoswithvelocitylessthan.4m/s(m2permlengthofchannel) X X X X magnitude F015d meanilluminatedareaofbenthoswithvelocitylessthan.9m/s(m2permlengthofchannel) X X X X magnitude F016a proportionoftimethebankhasbeenwithineuphoticzoneforatleast14days:atstage8.64mabovebedcorrespondingtothe10%exceedence X X X X stability flowinthenaturalregime F016b proportionoftimethebankhasbeenwithineuphoticzoneforatleast14days:atstage6.49mabovebedcorrespondingtothe20%exceedence X X X X stability flowinthenaturalregime F016c proportionoftimethebankhasbeenwithineuphoticzoneforatleast14days:atstage5.04mabovebedcorrespondingtothe30%exceedence X X X X stability flowinthenaturalregime F016d proportionoftimethebankhasbeenwithineuphoticzoneforatleast14days:atstage4.24mabovebedcorrespondingtothe40%exceedence X X X X stability flowinthenaturalregime F016e proportionoftimethebankhasbeenwithineuphoticzoneforatleast14days:atstage3.65mabovebedcorrespondingtothe50%exceedence X X X X stability flowinthenaturalregime F016f proportionoftimethebankhasbeenwithineuphoticzoneforatleast14days:atstage3.11mabovebedcorrespondingtothe60%exceedence X X X X stability flowinthenaturalregime F016g proportionoftimethebankhasbeenwithineuphoticzoneforatleast14days:atstage2.74mabovebedcorrespondingtothe70%exceedence X X X X stability flowinthenaturalregime F016h proportionoftimethebankhasbeenwithineuphoticzoneforatleast14days:atstage2.5mabovebedcorrespondingtothe80%exceedenceflow X X X X stability inthenaturalregime F016i proportionoftimethebankhasbeenwithineuphoticzoneforatleast14days:atstage2.25mabovebedcorrespondingtothe90%exceedence X X X X stability flowinthenaturalregime

Peter Cottingham & Associates 66 Evaluation of summer inter-valley water transfers from the Goulburn River

Flow Description Type element code Summer Summer Autumn Winter Spring Dec-Apr F016j proportionoftimethebankhasbeenwithineuphoticzoneforatleast42days:atstage8.64mabovebedcorrespondingtothe10%exceedence X X X X stability flowinthenaturalregime F016k proportionoftimethebankhasbeenwithineuphoticzoneforatleast42days:atstage6.49mabovebedcorrespondingtothe20%exceedence X X X X stability flowinthenaturalregime F016l proportionoftimethebankhasbeenwithineuphoticzoneforatleast42days:atstage5.04mabovebedcorrespondingtothe30%exceedence X X X X stability flowinthenaturalregime F016m proportionoftimethebankhasbeenwithineuphoticzoneforatleast42days:atstage4.24mabovebedcorrespondingtothe40%exceedence X X X X stability flowinthenaturalregime F016n proportionoftimethebankhasbeenwithineuphoticzoneforatleast42days:atstage3.65mabovebedcorrespondingtothe50%exceedence X X X X stability flowinthenaturalregime F016o proportionoftimethebankhasbeenwithineuphoticzoneforatleast42days:atstage3.11mabovebedcorrespondingtothe60%exceedence X X X X stability flowinthenaturalregime F016p proportionoftimethebankhasbeenwithineuphoticzoneforatleast42days:atstage2.74mabovebedcorrespondingtothe70%exceedence X X X X stability flowinthenaturalregime F016q proportionoftimethebankhasbeenwithineuphoticzoneforatleast42days:atstage2.5mabovebedcorrespondingtothe80%exceedenceflow X X X X stability inthenaturalregime F016r proportionoftimethebankhasbeenwithineuphoticzoneforatleast42days:atstage2.25mabovebedcorrespondingtothe90%exceedence X X X X stability flowinthenaturalregime F017a Numberofindependenteventswhenbenthoshasbeenineuphoticzoneforatleast14days:atstage8.64mabovebedcorrespondingtothe10% X X X X stability exceedenceflowinthenaturalregime F017b Numberofindependenteventswhenbenthoshasbeenineuphoticzoneforatleast14days:atstage6.49mabovebedcorrespondingtothe20% X X X X stability exceedenceflowinthenaturalregime F017c Numberofindependenteventswhenbenthoshasbeenineuphoticzoneforatleast14days:atstage5.04mabovebedcorrespondingtothe30% X X X X stability exceedenceflowinthenaturalregime F017d Numberofindependenteventswhenbenthoshasbeenineuphoticzoneforatleast14days:atstage4.24mabovebedcorrespondingtothe40% X X X X stability exceedenceflowinthenaturalregime F017e Numberofindependenteventswhenbenthoshasbeenineuphoticzoneforatleast14days:atstage3.65mabovebedcorrespondingtothe50% X X X X stability exceedenceflowinthenaturalregime F017f Numberofindependenteventswhenbenthoshasbeenineuphoticzoneforatleast14days:atstage3.11mabovebedcorrespondingtothe60% X X X X stability exceedenceflowinthenaturalregime F017g Numberofindependenteventswhenbenthoshasbeenineuphoticzoneforatleast14days:atstage2.74mabovebedcorrespondingtothe70% X X X X stability exceedenceflowinthenaturalregime F017h Numberofindependenteventswhenbenthoshasbeenineuphoticzoneforatleast14days:atstage2.5mabovebedcorrespondingtothe80% X X X X stability exceedenceflowinthenaturalregime F017i Numberofindependenteventswhenbenthoshasbeenineuphoticzoneforatleast14days:atstage2.25mabovebedcorrespondingtothe90% X X X X stability exceedenceflowinthenaturalregime F017j Numberofindependenteventswhenbenthoshasbeenineuphoticzoneforatleast42days:atstage8.64mabovebedcorrespondingtothe10% X X X X stability exceedenceflowinthenaturalregime F017k Numberofindependenteventswhenbenthoshasbeenineuphoticzoneforatleast42days:atstage6.49mabovebedcorrespondingtothe20% X X X X stability exceedenceflowinthenaturalregime F017l Numberofindependenteventswhenbenthoshasbeenineuphoticzoneforatleast42days:atstage5.04mabovebedcorrespondingtothe30% X X X X stability

Peter Cottingham & Associates 67 Evaluation of summer inter-valley water transfers from the Goulburn River

Flow Description Type element code Summer Summer Autumn Winter Spring Dec-Apr exceedenceflowinthenaturalregime F017m Numberofindependenteventswhenbenthoshasbeenineuphoticzoneforatleast42days:atstage4.24mabovebedcorrespondingtothe40% X X X X stability exceedenceflowinthenaturalregime F017n Numberofindependenteventswhenbenthoshasbeenineuphoticzoneforatleast42days:atstage3.65mabovebedcorrespondingtothe50% X X X X stability exceedenceflowinthenaturalregime F017o Numberofindependenteventswhenbenthoshasbeenineuphoticzoneforatleast42days:atstage3.11mabovebedcorrespondingtothe60% X X X X stability exceedenceflowinthenaturalregime F017p Numberofindependenteventswhenbenthoshasbeenineuphoticzoneforatleast42days:atstage2.74mabovebedcorrespondingtothe70% X X X X stability exceedenceflowinthenaturalregime F017q Numberofindependenteventswhenbenthoshasbeenineuphoticzoneforatleast42days:atstage2.5mabovebedcorrespondingtothe80% X X X X stability exceedenceflowinthenaturalregime F017r Numberofindependenteventswhenbenthoshasbeenineuphoticzoneforatleast42days:atstage2.25mabovebedcorrespondingtothe90% X X X X stability exceedenceflowinthenaturalregime F018a meanwaterdepthduringperiodswhenthebankhasbeenwithineuphoticzoneforatleast14days:atstage8.64mabovebedcorrespondingtothe X X X X magnitude 10%exceedenceflowinthenaturalregime F018b meanwaterdepthduringperiodswhenthebankhasbeenwithineuphoticzoneforatleast14days:atstage6.49mabovebedcorrespondingtothe X X X X magnitude 20%exceedenceflowinthenaturalregime F018c meanwaterdepthduringperiodswhenthebankhasbeenwithineuphoticzoneforatleast14days:atstage5.04mabovebedcorrespondingtothe X X X X magnitude 30%exceedenceflowinthenaturalregime F018d meanwaterdepthduringperiodswhenthebankhasbeenwithineuphoticzoneforatleast14days:atstage4.24mabovebedcorrespondingtothe X X X X magnitude 40%exceedenceflowinthenaturalregime F018e meanwaterdepthduringperiodswhenthebankhasbeenwithineuphoticzoneforatleast14days:atstage3.65mabovebedcorrespondingtothe X X X X magnitude 50%exceedenceflowinthenaturalregime F018f meanwaterdepthduringperiodswhenthebankhasbeenwithineuphoticzoneforatleast14days:atstage3.11mabovebedcorrespondingtothe X X X X magnitude 60%exceedenceflowinthenaturalregime F018g meanwaterdepthduringperiodswhenthebankhasbeenwithineuphoticzoneforatleast14days:atstage2.74mabovebedcorrespondingtothe X X X X magnitude 70%exceedenceflowinthenaturalregime F018h meanwaterdepthduringperiodswhenthebankhasbeenwithineuphoticzoneforatleast14days:atstage2.5mabovebedcorrespondingtothe X X X X magnitude 80%exceedenceflowinthenaturalregime F018i meanwaterdepthduringperiodswhenthebankhasbeenwithineuphoticzoneforatleast14days:atstage2.25mabovebedcorrespondingtothe X X X X magnitude 90%exceedenceflowinthenaturalregime F018j meanwaterdepthduringperiodswhenthebankhasbeenwithineuphoticzoneforatleast42days:atstage8.64mabovebedcorrespondingtothe X X X X magnitude 10%exceedenceflowinthenaturalregime F018k meanwaterdepthduringperiodswhenthebankhasbeenwithineuphoticzoneforatleast42days:atstage6.49mabovebedcorrespondingtothe X X X X magnitude 20%exceedenceflowinthenaturalregime F018l meanwaterdepthduringperiodswhenthebankhasbeenwithineuphoticzoneforatleast42days:atstage5.04mabovebedcorrespondingtothe X X X X magnitude 30%exceedenceflowinthenaturalregime F018m meanwaterdepthduringperiodswhenthebankhasbeenwithineuphoticzoneforatleast42days:atstage4.24mabovebedcorrespondingtothe X X X X magnitude 40%exceedenceflowinthenaturalregime F018n meanwaterdepthduringperiodswhenthebankhasbeenwithineuphoticzoneforatleast42days:atstage3.65mabovebedcorrespondingtothe X X X X magnitude 50%exceedenceflowinthenaturalregime

Peter Cottingham & Associates 68 Evaluation of summer inter-valley water transfers from the Goulburn River

Flow Description Type element code Summer Summer Autumn Winter Spring Dec-Apr F018o meanwaterdepthduringperiodswhenthebankhasbeenwithineuphoticzoneforatleast42days:atstage3.11mabovebedcorrespondingtothe X X X X magnitude 60%exceedenceflowinthenaturalregime F018p meanwaterdepthduringperiodswhenthebankhasbeenwithineuphoticzoneforatleast42days:atstage2.74mabovebedcorrespondingtothe X X X X magnitude 70%exceedenceflowinthenaturalregime F018q meanwaterdepthduringperiodswhenthebankhasbeenwithineuphoticzoneforatleast42days:atstage2.5mabovebedcorrespondingtothe X X X X magnitude 80%exceedenceflowinthenaturalregime F018r meanwaterdepthduringperiodswhenthebankhasbeenwithineuphoticzoneforatleast42days:atstage2.25mabovebedcorrespondingtothe X X X X magnitude 90%exceedenceflowinthenaturalregime F019a Proportionoftimebenthosisintheeuphoticzoneatstage8.64mabovebedcorrespondingtothe10%exceedenceflowinthenaturalregime X X X X duration F019b Proportionoftimebenthosisintheeuphoticzoneatstage6.49mabovebedcorrespondingtothe20%exceedenceflowinthenaturalregime X X X X duration F019c Proportionoftimebenthosisintheeuphoticzoneatstage5.04mabovebedcorrespondingtothe30%exceedenceflowinthenaturalregime X X X X duration F019d Proportionoftimebenthosisintheeuphoticzoneatstage4.24mabovebedcorrespondingtothe40%exceedenceflowinthenaturalregime X X X X duration F019e Proportionoftimebenthosisintheeuphoticzoneatstage3.65mabovebedcorrespondingtothe50%exceedenceflowinthenaturalregime X X X X duration F019f Proportionoftimebenthosisintheeuphoticzoneatstage3.11mabovebedcorrespondingtothe60%exceedenceflowinthenaturalregime X X X X duration F019g Proportionoftimebenthosisintheeuphoticzoneatstage2.74mabovebedcorrespondingtothe70%exceedenceflowinthenaturalregime X X X X duration F019h Proportionoftimebenthosisintheeuphoticzoneatstage2.5mabovebedcorrespondingtothe80%exceedenceflowinthenaturalregime X X X X duration F019i Proportionoftimebenthosisintheeuphoticzoneatstage2.25mabovebedcorrespondingtothe90%exceedenceflowinthenaturalregime X X X X duration F020a Proportionoftimebenthosisinbeloweuphoticzoneatstage8.64mabovebedcorrespondingtothe10%exceedenceflowinthenaturalregime X X X X duration F020b Proportionoftimebenthosisinbeloweuphoticzoneatstage6.49mabovebedcorrespondingtothe20%exceedenceflowinthenaturalregime X X X X duration F020c Proportionoftimebenthosisinbeloweuphoticzoneatstage5.04mabovebedcorrespondingtothe30%exceedenceflowinthenaturalregime X X X X duration F020d Proportionoftimebenthosisinbeloweuphoticzoneatstage4.24mabovebedcorrespondingtothe40%exceedenceflowinthenaturalregime X X X X duration F020e Proportionoftimebenthosisinbeloweuphoticzoneatstage3.65mabovebedcorrespondingtothe50%exceedenceflowinthenaturalregime X X X X duration F020f Proportionoftimebenthosisinbeloweuphoticzoneatstage3.11mabovebedcorrespondingtothe60%exceedenceflowinthenaturalregime X X X X duration F020g Proportionoftimebenthosisinbeloweuphoticzoneatstage2.74mabovebedcorrespondingtothe70%exceedenceflowinthenaturalregime X X X X duration F020h Proportionoftimebenthosisinbeloweuphoticzoneatstage2.5mabovebedcorrespondingtothe80%exceedenceflowinthenaturalregime X X X X duration F020i Proportionoftimebenthosisinbeloweuphoticzoneatstage2.25mabovebedcorrespondingtothe90%exceedenceflowinthenaturalregime X X X X duration F021a numberoffloodsexceeding24000ML/day,correspondingtoanecdotalonsetofoutofchannelflow X X X X spell frequency F021b numberoffloodsexceeding32700ML/day,correspondingtominorfloodwarninglevel X X X X spell frequency F021c numberoffloodsexceeding58700ML/day,correspondingtomoderatefloodwarninglevel X X X X spell frequency F021d numberoffloodsexceeding55000ML/day,correspondingtocommencetoflowatLochGarry X X X X spell frequency F021e numberoffloodsexceeding26000ML/day,correspondingtocommencetoflowatDeepCreek X X X X spell frequency F021f numberoffloodsexceeding21000ML/day,correspondingtocommencetoflowatWakitiCreek X X X X spell frequency

Peter Cottingham & Associates 69 Evaluation of summer inter-valley water transfers from the Goulburn River

Flow Description Type element code Summer Summer Autumn Winter Spring Dec-Apr F021g numberoffloodsexceeding23000ML/day,correspondingtocommencetoflowatHancocksCreek X X X X spell frequency F021h numberoffloodsexceeding19500ML/day,correspondingtocommencetoflowatRafteryForest X X X X spell frequency F022a 80thpercentiledailyriseinstage(m) X X X X dailychange F022b 90thpercentiledailyriseinstage(m) X X X X dailychange F022c 95thpercentiledailyriseinstage(m) X X X X dailychange F022d maximumdailyriseinstage(m) X X X X dailychange F023a 80thpercentiledailyfallinstage(m) X X X X dailychange F023b 90thpercentiledailyfallinstage(m) X X X X dailychange F023c 95thpercentiledailyfallinstage(m) X X X X dailychange F023d maximumdailyfallinstage(m) X X X X dailychange F024a 0thpercentiledailyfallinstage(m)forflowslessthan4000ML/day X X X X dailychange F024b 50thpercentiledailyfallinstage(m)forflowslessthan4000ML/day X X X X dailychange F024c 100thpercentiledailyfallinstage(m)forflowslessthan4000ML/day X X X X dailychange F024d 0thpercentiledailyfallinstage(m)forflowsgreaterthan4000ML/day X X X X dailychange F024e 50thpercentiledailyfallinstage(m)forflowsgreaterthan4000ML/day X X X X dailychange F024f 100thpercentiledailyfallinstage(m)forflowsgreaterthan4000ML/day X X X X dailychange F025a Proportionoftimewaterleveliswithintherange6.49to8.64mabovebedcorrespondingtothe20%to10%exceedenceflowsinthenatural X duration regime F025b Proportionoftimewaterleveliswithintherange5.04to6.49mabovebedcorrespondingtothe30%to20%exceedenceflowsinthenatural X duration regime F025c Proportionoftimewaterleveliswithintherange4.24to5.04mabovebedcorrespondingtothe40%to30%exceedenceflowsinthenatural X duration regime F025d Proportionoftimewaterleveliswithintherange3.65to4.24mabovebedcorrespondingtothe50%to40%exceedenceflowsinthenatural X duration regime F025e Proportionoftimewaterleveliswithintherange3.11to3.65mabovebedcorrespondingtothe60%to50%exceedenceflowsinthenatural X duration regime F025f Proportionoftimewaterleveliswithintherange2.74to3.11mabovebedcorrespondingtothe70%to60%exceedenceflowsinthenatural X duration regime F025g Proportionoftimewaterleveliswithintherange2.5to2.74mabovebedcorrespondingtothe80%to70%exceedenceflowsinthenaturalregime X duration F025h Proportionoftimewaterleveliswithintherange2.25to2.5mabovebedcorrespondingtothe90%to80%exceedenceflowsinthenaturalregime X duration F026a Proportionoftimewaterlevelishigherthan8.64mabovebedcorrespondingtothe10%exceedenceflowinthenaturalregime X X X X duration F026b Proportionoftimewaterlevelishigherthan6.49mabovebedcorrespondingtothe20%exceedenceflowinthenaturalregime X X X X duration F026c Proportionoftimewaterlevelishigherthan5.04mabovebedcorrespondingtothe30%exceedenceflowinthenaturalregime X X X X duration F026d Proportionoftimewaterlevelishigherthan4.24mabovebedcorrespondingtothe40%exceedenceflowinthenaturalregime X X X X duration F026e Proportionoftimewaterlevelishigherthan3.65mabovebedcorrespondingtothe50%exceedenceflowinthenaturalregime X X X X duration

Peter Cottingham & Associates 70 Evaluation of summer inter-valley water transfers from the Goulburn River

Flow Description Type element code Summer Summer Autumn Winter Spring Dec-Apr F026f Proportionoftimewaterlevelishigherthan3.11mabovebedcorrespondingtothe60%exceedenceflowinthenaturalregime X X X X duration F026g Proportionoftimewaterlevelishigherthan2.74mabovebedcorrespondingtothe70%exceedenceflowinthenaturalregime X X X X duration F026h Proportionoftimewaterlevelishigherthan2.5mabovebedcorrespondingtothe80%exceedenceflowinthenaturalregime X X X X duration F026i Proportionoftimewaterlevelishigherthan2.25mabovebedcorrespondingtothe90%exceedenceflowinthenaturalregime X X X X duration F027a Proportionoftimeflowexceeds24000ML/day X X X X duration F027b Proportionoftimeflowexceeds32700ML/day X X X X duration F027c Proportionoftimeflowexceeds58700ML/day X X X X duration F027d Proportionoftimeflowexceeds55000ML/day X X X X duration F027e Proportionoftimeflowexceeds26000ML/day X X X X duration F027f Proportionoftimeflowexceeds21000ML/day X X X X duration F027g Proportionoftimeflowexceeds23000ML/day X X X X duration F027h Proportionoftimeflowexceeds19500ML/day X X X X duration

Peter Cottingham & Associates 71 Evaluation of summer inter-valley water transfers from the Goulburn River

show compliance Sci Panel MI6 MI1 MI2 MI3 MI4 Geo2 Geo1 algae Agreed Risk Algae Periphytic Periphytic native fish native Planktonic Planktonic

Natural Macrophytes TerrBank Veg TerrBank Recommended 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% COMPLIANCE ModerateRisk 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% AgreedRisk 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

description season flow flow Winter Spring Winter Spring Winter Spring Winter Spring Winter Spring Winter Spring Winter Spring Winter Spring Winter Spring Winter Spring Winter Spring Winter Spring code Autumn Autumn Autumn Autumn Autumn Autumn Autumn Autumn Autumn Autumn Autumn Autumn Autumn DecApr DecApr DecApr DecApr DecApr DecApr DecApr DecApr DecApr DecApr DecApr DecApr Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer element element Planktonicalgae Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F010a 10thpercentiledailychangeinstage(m) Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F022a 80thpercentiledailyriseinstage(m) Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F022b 90thpercentiledailyriseinstage(m) Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F022d maximumdailyriseinstage(m) Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F023a 80thpercentiledailyfallinstage(m) Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F023b 90thpercentiledailyfallinstage(m) Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F023c 95thpercentiledailyfallinstage(m) Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 daily change daily Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F023d maximumdailyfallinstage(m) Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F024b 50thpercentiledailyfallinstage(m)forflowslessthan4000Ml/day Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F024c 90thpercentiledailyfallinstage(m)forflowslessthan4000Ml/day Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F002b proportionoftimewheneuphoticdepthislessthan0.25timesthemeandepth Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F002c proportionoftimewheneuphoticdepthislessthan0.3timesthemeandepth Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F003b proportionoftimewhenshearstressislessthan2N/m2 Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F004c proportionoftimewhenshearstressismorethan7N/m2 Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F007a Proportionoftimewhenthereislessthan1m2/mslowshallowhabitat(d<0.5m,v<0.05m/s) Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F007b Proportionoftimewhenthereislessthan2m2/mslowshallowhabitat(d<0.5m,v<0.05m/s) Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F007c Proportionoftimewhenthereislessthan3m2/mslowshallowhabitat(d<0.5m,v<0.05m/s) Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F008b Proportionoftimewhenthereislessthan10m2/mdeepwaterhabitatdefinedasd>1.5m Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F008c Proportionoftimewhenthereislessthan15m2/mdeepwaterhabitatdefinedasd>1.5m Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F025a Proportionoftimewaterleveliswithintherange7.01to10.64mabovebedcorrespondingtothe20%to10%exceedenceflowsinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F025b Proportionoftimewaterleveliswithintherange5.21to7.01mabovebedcorrespondingtothe30%to20%exceedenceflowsinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F025c Proportionoftimewaterleveliswithintherange4.29to5.21mabovebedcorrespondingtothe40%to30%exceedenceflowsinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F025d Proportionoftimewaterleveliswithintherange3.7to4.29mabovebedcorrespondingtothe50%to40%exceedenceflowsinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F025g Proportionoftimewaterleveliswithintherange2.71to2.98mabovebedcorrespondingtothe80%to70%exceedenceflowsinthenaturalregime Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 duration Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F025h Proportionoftimewaterleveliswithintherange2.46to2.71mabovebedcorrespondingtothe90%to80%exceedenceflowsinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F026a Proportionoftimewaterlevelishigherthan8.64mabovebedcorrespondingtothe10%exceedenceflowinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F026b Proportionoftimewaterlevelishigherthan6.49mabovebedcorrespondingtothe20%exceedenceflowinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F026c Proportionoftimewaterlevelishigherthan5.04mabovebedcorrespondingtothe30%exceedenceflowinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F026d Proportionoftimewaterlevelishigherthan4.24mabovebedcorrespondingtothe40%exceedenceflowinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F026e Proportionoftimewaterlevelishigherthan3.65mabovebedcorrespondingtothe50%exceedenceflowinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F026f Proportionoftimewaterlevelishigherthan3.11mabovebedcorrespondingtothe60%exceedenceflowinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F026g Proportionoftimewaterlevelishigherthan2.74mabovebedcorrespondingtothe70%exceedenceflowinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F026h Proportionoftimewaterlevelishigherthan2.5mabovebedcorrespondingtothe80%exceedenceflowinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F026i Proportionoftimewaterlevelishigherthan2.25mabovebedcorrespondingtothe90%exceedenceflowinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F027a Proportionoftimeflowexceeds24000Ml/day Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Figure 34: Example output of the DST for Reach 4 under an unregulated flow regime, identifying the relevant ecological objectives, flow components, flow stressors and risk levels (green = low risk to objectives, yellow = moderate risk to objectives, red = high risk to objectives).

Peter Cottingham & Associates 72 Evaluation of summer inter-valley water transfers from the Goulburn River

show compliance Sci Panel MI1 MI2 MI3 MI4 MI6 Geo3 Geo6 Geo1 Geo2 algae Agreed Risk Algae Periphytic native fish native Planktonic

IVT 2005-2006 Macrophytes TerrBank Veg Recommended 56% 59% 53% 56% 53% 44% 63% 47% 0% 32% 100% 100% 33% 100% COMPLIANCE ModerateRisk 67% 62% 66% 67% 100% 100% 75% 47% 0% 37% 100% 100% 33% 100% AgreedRisk 56% 59% 53% 56% 53% 44% 63% 47% 0% 32% 100% 100% 33% 100%

description season flow Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Spring Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter Winter code Autumn Autumn Autumn Autumn Autumn Autumn Autumn Autumn Autumn Autumn Autumn Autumn Autumn Autumn DecApr Summer DecApr Summer DecApr Summer DecApr Summer DecApr Summer DecApr Summer DecApr Summer DecApr Summer DecApr Summer DecApr Summer DecApr Summer DecApr Summer DecApr Summer DecApr element Planktonicalgae Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F010a 10thpercentiledailychangeinstage(m) Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 80thpercentiledailyriseinstage(m) Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F022a Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 90thpercentiledailyriseinstage(m) Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F022b Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 maximumdailyriseinstage(m) Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F022d Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 80thpercentiledailyfallinstage(m) Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F023a Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 90thpercentiledailyfallinstage(m) Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F023b Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 95thpercentiledailyfallinstage(m) Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F023c Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 daily change maximumdailyfallinstage(m) Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F023d Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 50thpercentiledailyfallinstage(m)forflowslessthan4000Ml/day Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F024b Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 90thpercentiledailyfallinstage(m)forflowslessthan4000Ml/day Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F024c Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 proportionoftimewheneuphoticdepthislessthan0.25timesthemeandepth Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F002b Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 proportionoftimewheneuphoticdepthislessthan0.3timesthemeandepth Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F002c Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 proportionoftimewhenshearstressislessthan2N/m2 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F003b Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 proportionoftimewhenshearstressismorethan7N/m2 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F004c Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Proportionoftimewhenthereislessthan1m2/mslowshallowhabitat(d<0.5m,v<0.05m/s) Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F007a Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Proportionoftimewhenthereislessthan2m2/mslowshallowhabitat(d<0.5m,v<0.05m/s) Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F007b Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Proportionoftimewhenthereislessthan3m2/mslowshallowhabitat(d<0.5m,v<0.05m/s) Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F007c Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Proportionoftimewhenthereislessthan10m2/mdeepwaterhabitatdefinedasd>1.5m Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F008b Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Proportionoftimewhenthereislessthan15m2/mdeepwaterhabitatdefinedasd>1.5m Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F008c Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F025a Proportionoftimewaterleveliswithintherange7.01to10.64mabovebedcorrespondingtothe20%to10%exceedenceflowsinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F025b Proportionoftimewaterleveliswithintherange5.21to7.01mabovebedcorrespondingtothe30%to20%exceedenceflowsinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F025c Proportionoftimewaterleveliswithintherange4.29to5.21mabovebedcorrespondingtothe40%to30%exceedenceflowsinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F025d Proportionoftimewaterleveliswithintherange3.7to4.29mabovebedcorrespondingtothe50%to40%exceedenceflowsinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F025g Proportionoftimewaterleveliswithintherange2.71to2.98mabovebedcorrespondingtothe80%to70%exceedenceflowsinthenaturalregime Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 duration Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F025h Proportionoftimewaterleveliswithintherange2.46to2.71mabovebedcorrespondingtothe90%to80%exceedenceflowsinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F026a Proportionoftimewaterlevelishigherthan8.64mabovebedcorrespondingtothe10%exceedenceflowinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F026b Proportionoftimewaterlevelishigherthan6.49mabovebedcorrespondingtothe20%exceedenceflowinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F026c Proportionoftimewaterlevelishigherthan5.04mabovebedcorrespondingtothe30%exceedenceflowinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F026d Proportionoftimewaterlevelishigherthan4.24mabovebedcorrespondingtothe40%exceedenceflowinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F026e Proportionoftimewaterlevelishigherthan3.65mabovebedcorrespondingtothe50%exceedenceflowinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F026f Proportionoftimewaterlevelishigherthan3.11mabovebedcorrespondingtothe60%exceedenceflowinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F026g Proportionoftimewaterlevelishigherthan2.74mabovebedcorrespondingtothe70%exceedenceflowinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F026h Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Proportionoftimewaterlevelishigherthan2.5mabovebedcorrespondingtothe80%exceedenceflowinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F026i Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Proportionoftimewaterlevelishigherthan2.25mabovebedcorrespondingtothe90%exceedenceflowinthenaturalregime Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 F027a Proportionoftimeflowexceeds24000Ml/day Upper 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Lower 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Figure 35: Example output of the DST for Reach 4 under the most recent IVT regime, 2005-2006 (green = low risk to objectives, yellow = moderate risk to objectives, red = high risk to objectives).

Peter Cottingham & Associates 73 Evaluation of summer inter-valley water transfers from the Goulburn River

EnvironmentalflowrecommendationsmadebythePanelapplytothreedifferent aspectsoftheflowregime: • thefrequencydistributionofflows; • flowspells;and • theratesofriseandfallinstage. Insomecasesitispossibletosimplifytherecommendationsinthefollowing sections,fromtheforminwhichtheyareexpressedintheDST.Forexamplesome oftheratesofriseandfallrecommendationswereredundantandthesehavebeen eliminatedinthissummary(althoughretainedintheDST).Inothers,simplification hasnotbeenpossibleandthefullsetofrecommendationsisprovidedinatable.The DSTprovidesthefullsetofrecommendationsastheywereagreedbythePaneland shouldbeusedforassessingcomplianceofaproposedflowregimeratherthanthe informationprovidedinthischapter.Thepurposeofthisdocumentistocollateand organisetheserecommendationsinaformthatismeaningfultowaterresource managers. Recommendationscanbesummarisedasacolourcodedtablethatmakesiteasyto quicklyidentifywhichoftherecommendationsrelatingtoriverhealthcouldbe affectedbycurrentorproposedriveroperations.Thetablealsocanguideflow operationdecisionstoachievecompliance. Inmanycasesinterannualvariationisincorporatedinsomeoftheupperandlower boundssetbythePanel.Thismeansthatinsomeyearsahigherflowmaybe possibleforalongerdurationalthoughthisisoffsetbyarequirementforlower magnitudesandshorterdurationinotheryears.Allowingforsuchinterannual variabilityincreasesthecomplexityoftherecommendations.Howevertheadvantage isanincreasedflexibilityofriveroperationwiththepossibilityofgreaterresourceuse insomeyearsthanwouldbepossibleifrigidorfixedrecommendationsweremade. Insomecasesitisonlyconditionsinextremeyearswhichareconstrained. InapplyingtheDST,itissuggestedthatattentionispaidfirstlytorecommendations forthemedianyearasameansofconsideringconditionsforatypicalyear(although recognisingthepotentialforyeartoyearvariability).Recommendationsarenot alwaysexpressedintermsofthemagnitudeofadischarge.Insomecases recommendationsareexpressedintermsofthedurationofaparticularflowevent, whileinothersitisthemagnitudeofahabitatmetric(whichmighthaveaninverse relationwithflow).Themagnitudereferstotheflowelementinquestion,whichhave beendefinedpreviouslyinsection5.2.Themedianyearrelatestothemedianyear fortheparticularflowelementofconcern,notnecessarilyamedianflowyear. Afterconsideringresultsformedianyears,examinationofabsolutemaximumand minimumrecommendations(themaximumandminimumvaluesforthemetricover theperiodofrecord,19752000)identifiesthefullrangeofvaluespossibleunderthe Panel’srecommendations.Therecommendationsforother“percentileyears”simply providemoredetailontheinterannualdistributionfortheparticularflowelement.

Peter Cottingham & Associates 74 Evaluation of summer inter-valley water transfers from the Goulburn River

5.3 IVT bounds to achieve environmental flow objectives Insummary,thePanelhasassignedupperandlowerlimitsbasedonbestavailable understandingofthenaturalrange,andlevelofdeparturefrom,elementssuchas ecologicallyimportantflowevents . Thisisdemonstrated,forexample,inthe identificationoffloweventscapableofcontrollingtheencroachmentofterrestrial vegetation(Section4.2.3,Figure26). Theenvironmentalflowrecommendationsplaceconstraintsonthefrequency distributionofflowsforeachseason(i.e.theflowdurationcurve).Theseconstraints areexpressedinoneofthreeforms,eachofwhichreferstoaparticularsetof objectives: • durationofflowexceedence; • durationwithinaflowrange;or • meanvalueofhabitatmetricwhichhasasimplefunctionalrelationto discharge. Upperandlowerboundshavebeenconsideredinallthreecases.Recommendations havealsobeendevelopedforratesofriseandfallinriverlevel.

5.3.1 Durationofflowexceedence Upperandlowerboundsforvariousflowdurationsrelevanttoecologicalobjectives forReach4arelistedinTable7.Interestingobservationsontherecommendations foramedianyeararethat: • Recommendedlowerlimitstoachievemacroinvertebrateandnativefish objectivesarethatdischargeintherange310830ML/dshouldbeexceededfor between95%and100%ofthetimeallyearround.Thisisconsistentwiththe previousPanelrecommendationofaminimumflowof610ML/dornatural(see alsoChapter6).Exceedenceoftheaboverangeinflowsforbetween80%and 90%ofthetimerepresentsamoderaterisk. • Summerflowscanexceed1,500ML/dfor90%ofthetimewithlittleriskto ecologicalobjectives,butshouldonlyexceed1,660ML/dfor63%ofthetime, 2,220ML/dfor40%ofthetime,and3,140ML/dfor20%ofthetime. • Shortdurationpeakflowsofapproximately4,500ML/d(for5%ofthetime)over summerarealsoconsideredtoposelittlerisktoecologicalobjectives,subjectto otherconstraintssuchasappropriateratesofriseandfallinriverlevels. • Floweventsaboveapproximately6,500ML/dinsummerwouldnotbeexpected tooccurinamedianyearbutareconsideredtoposelittlerisktoecological objectivesinwetyears. • Shortdurationeventsexceeding24,000ML/dinspringareconsideredtopose littlerisktoecologicalobjectivesandarelikelytobebeneficial(e.g.fornative fish). AsimilarpatterntothatdescribedaboveisevidentforReach5(Table8). Given the low flows that prevail under the current regime, increases in discharge with IVTs up to approximately 1,500 ML/d are likely to be of benefit to ecological processes in the lower Goulburn River .Itshouldbenotedthatthedischargesand associateddurationstatedinthepointsaboveareindicativeofhowIVTscanbe managed.TheinformationinTable7providesalargedegreeofflexibilityandbetter

Peter Cottingham & Associates 75 Evaluation of summer inter-valley water transfers from the Goulburn River

accountsforclimaticvariabilitythandoesarelativelystaticexpressionofaflow recommendation(e.g.asingleupperorlowerlimit). Table 7: Flow duration bounds identified for Reach 4 ecological objectives. The values in the table represent the proportion of time that discharge may exceed a particular bound (e.g. 0.85 = 85%). The various percentile years provide opportunities for inter-annual variability, providing different exceedence levels for dry (min, 10 th and 30 th percentile years) median and wet years (70 th , 90 th and max years).

Moderate Risk Recommended Minimum Minimum Maximum Maximum median year median year median year median year Flow Element Code Element Flow (ML/day) Discharge 10th percentile year 10th year percentile 30th year percentile 70th year percentile 90th year percentile 10th percentile year 10th year percentile 30th year percentile 70th year percentile 90th year percentile Ecological Objective Ecological Objective

Summer - Lower Bound MI4 F003b 540 0.80 0.85 0.9 0.96 0.98 0.90 0.95 0.95 0.98 0.99 MI1 F007a 310 0.700.801.00 1.00 MI3 F007a 310 0.85 0.90 0.93 0.95 0.95 0.99 0.99 0.99 0.99 0.99 MI2 F008b 400 0.75 0.80 0.85 0.90 0.90 0.90 0.93 0.95 0.98 0.98 n.fish F008b 400 0.55 0.76 0.80 0.80 0.80 0.74 0.95 0.99 0.99 0.99 n.fish F007b 500 0.80 0.80 0.80 0.80 0.80 0.97 0.98 0.99 0.99 0.99 MI6 F003b 540 0.60 0.80 0.90 0.98 0.98 0.80 0.90 0.95 0.99 0.99 MI2 F008c 830 0.55 0.70 0.90 0.95 0.95 0.95 0.70 0.93 0.95 0.98 0.98 Geo3 F026i 856 0.32 0.64 0.85 0.90 0.90 0.90 0.90 0.36 0.71 0.94 1.00 1.00 1.0 1.00 Geo3 F026h 1186 0.09 0.45 0.60 0.71 0.77 0.80 0.80 0.11 0.57 0.75 0.88 0.96 1.0 1.00 MI1 F007c 1500 0.100.30 0.450.75 MI3 F007c 1500 0.15 0.25 0.50 0.15 0.30 0.40 0.70 Geo3 F026g 1660 0.21 0.33 0.44 0.52 0.66 0.70 0.30 0.47 0.63 0.74 0.94 1.00 Geo3 F026f 2223 0.07 0.15 0.24 0.36 0.43 0.60 0.11 0.25 0.40 0.60 0.71 1.00 Geo3 F026e 3142 0.00 0.03 0.10 0.21 0.27 0.43 0.01 0.06 0.20 0.43 0.55 0.86 Geo3 F026d 4490 0.03 0.15 0.22 0.39 0.05 0.24 0.37 0.64 Geo3 F026c 6590 0.06 0.11 0.30 0.080.160.42 Geo3 F026b 10700 0.040.21 0.040.27 Geo3 F026a 19000 0.06 Summer Upper Bound Geo3 F026i 856 0.39 0.78 0.36 0.71 0.94 Geo3 F026h 1186 0.13 0.68 0.90 1.00 0.11 0.57 0.75 0.88 0.96 MI1 F007c 1500 0.55 0.70 0.75 0.70 0.90 0.90 Geo3 F026g 1660 0 0.39 0.62 0.82 0.96 0 0.30 0.47 0.63 0.74 0.94 Geo3 F026f 2223 0 0.15 0.35 0.56 0.84 0 0.11 0.25 0.40 0.60 0.71 Geo3 F026e 3142 0 0.01 0.08 0.31 0.64 0.82 0 0.01 0.06 0.20 0.43 0.55 0.86 Geo3 F026d 4490 0 0 0 0.07 0.34 0.52 0.90 0 0 0 0.05 0.24 0.37 0.64 Geo3 F026c 6590 0 0 0 0 0.10 0.20 0.55 0 0 0 0 0.08 0.16 0.42 Geo3 F026b 10700 0 0 0 0 0 0.05 0.32 0 0 0 0 0 0.04 0.27 Geo3 F026a 19000 0 0 0 0 0 0 0.07 0 0 0 0 0 00.07 Autumn Lower Bound

MI2 F008b 400 0.70 0.75 0.75 0.80 0.80 0.90 0.93 0.95 0.98 0.98 n.fish F008b 400 0.80 0.80 0.80 0.08 0.80 0.99 0.99 0.99 0.99 0.99 MI4 F003b 540 0.60 0.85 0.90 0.96 0.98 0.70 0.90 0.95 0.98 0.99 MI6 F003b 540 0.60 0.80 0.90 0.98 0.98 0.70 0.90 0.95 0.99 0.99 MI2 F008c 830 0.50 0.65 0.800.950.98

Peter Cottingham & Associates 76 Evaluation of summer inter-valley water transfers from the Goulburn River

Moderate Risk Recommended Minimum Minimum Maximum Maximum median year median year Flow Element Code Element Flow (ML/day) Discharge 10th percentile year 10th year percentile 30th year percentile 70th year percentile 90th year percentile 10th percentile year 10th year percentile 30th year percentile 70th year percentile 90th year percentile Ecological Objective Ecological Objective

Winter Lower Bound n.fish F008b 400 0.80 0.80 0.80 0.80 0.80 0.99 0.99 0.99 0.99 0.99 n.fish F007b 500 0.61 0.67 0.69 0.71 0.77 0.80 0.86 0.88 0.90 0.96 MI4 F003b 540 0.80 0.85 0.90 0.96 0.98 0.85 0.90 0.95 0.98 0.99 MI6 F003b 540 0.60 0.80 0.90 0.98 0.98 0.80 0.90 0.95 0.99 0.99 MI2 F008c 830 0.90 0.93 0.950.980.98 Spring Lower Bound n.fish F008b 400 0.80 0.80 0.80 0.80 0.80 0.99 0.99 0.99 0.99 0.99 MI2 F008b 400 0.70 0.75 0.75 0.80 0.80 0.90 0.93 0.95 0.98 0.98 n.fish F008b 400 0.80 0.80 0.80 0.80 0.80 0.99 0.99 0.99 0.99 0.99 n.fish F007b 500 0.62 0.66 0.72 0.76 0.80 0.81 0.85 0.91 0.95 0.99 MI4 F003b 540 0.60 0.85 0.90 0.96 0.98 0.70 0.90 0.95 0.98 0.99 MI6 F003b 540 0.60 0.80 0.90 0.98 0.98 0.70 0.90 0.95 0.99 0.99 MI2 F008c 830 0.90 0.93 0.950.980.98 n.fish F027a 24000 0 0 0.03 0.08 0.20 0.05 0.13 0.31 Spring Upper Bound n.fish F027a 24000 0 0 0.10 0.24 0.59 0 0 0.08 0.19 0.47 Table 8: Flow duration bounds identified for Reach 5 ecological objectives. The values represent the proportion of time that discharge may exceed a particular bound (e.g. 0.85 = 85%). The various percentile years provide opportunities for inter-annual variability, providing different exceedence levels for dry (min, 10 th and 30 th percentile years) median and wet years (70 th , 90 th and max years). Moderate risk Recommended (Ml/day) (Ml/day) Minimum Minimum Maximum Maximum median year median year median year median year Flow Threshold Flow Threshold Environ. Objective Environ. Flow Element Code Element Flow 10th percentile year year 10th percentile year percentile 30th year percentile 70th year percentile 90th 10th percentile year year percentile 10th year percentile 30th year percentile 70th year percentile 90th

Summer - Lower Bound

MI1 F007a240 0.700.801.00 1 MI3 F007a 240 0.85 0.90 0.93 0.95 0.95 0.99 0.99 0.99 0.99 0.99 n.fishF007b 320 0.80 0.80 0.80 0.80 0.80 0.90 0.90 0.99 0.99 0.99 MI2 F008b 540 0.70 0.75 0.75 0.80 0.80 0.90 0.92 0.95 0.98 0.98 n.fishF008b 540 0.80 0.80 0.80 0.80 0.80 0.99 0.99 0.99 0.99 0.99 MI4 F003b 770 0.80 0.85 0.90 0.96 0.98 0.90 0.95 0.95 0.98 0.99 MI6 F003b 770 0.60 0.80 0.90 0.98 0.98 0.80 0.90 0.95 0.99 0.99 MI2 F008c 940 0.40 0.50 0.55 0.60 0.70 0.70 0.92 0.95 0.98 0.98 Geo3 F026i 1096 0.34 0.67 0.79 0.86 0.90 0.90 0.90 0.38 0.75 0.88 0.96 1.00 1.00 1.00 Geo3 F026h 1505 0.13 0.42 0.51 0.66 0.75 0.80 0.80 0.17 0.53 0.64 0.82 0.94 1.00 1.00 Geo3 F026g 1993 0.02 0.12 0.28 0.42 0.51 0.68 0.70 0.02 0.17 0.40 0.60 0.73 0.97 1.00

Peter Cottingham & Associates 77 Evaluation of summer inter-valley water transfers from the Goulburn River

Moderate risk Recommended (Ml/day) (Ml/day) Minimum Minimum Maximum Maximum median year median year median year median year Flow Threshold Flow Threshold Environ. Objective Objective Environ. Flow Element Code Element Flow 10th percentile year year percentile 10th year percentile 30th year percentile 70th year percentile 90th 10th percentile year year percentile 10th year percentile 30th year percentile 70th year percentile 90th

Geo3 F026f 2711 0 0.05 0.13 0.21 0.36 0.52 0.60 0 0.09 0.21 0.35 0.60 0.87 1.00 Geo3 F026e 3800 0 0 0.03 0.10 0.2 0.33 0.50 0 0 0.05 0.20 0.40 0.66 1.00 Geo3 F026d 5240 0 0 0 0.01 0.13 0.26 0.43 0 0 0 0.02 0.22 0.43 0.71 Plankt. F002c6060 0 0.17 0 0.17 Algae Geo3 F026c 7560 0 0 0 0 0.05 0.13 0.33 0 0 0 0 0.08 0.18 0.47 Geo3F026b 13000 0 0 0 0 0 0.02 0.3 0 0 0 0 0 0.03 0.38 Geo3F026a 23900 0 0 0 0 0 0 0.08 0 0 0 0 0 0 0.09

Summer - Upper Bound Geo3 F026i 1096 0.42 0.82 0.97 1.00 1.00 1.00 1.00 0.38 0.75 0.88 0.96 1.00 1.00 1.00 Geo3 F026h 1505 0.20 0.64 0.77 0.99 1.00 1.00 1.00 0.17 0.53 0.64 0.82 0.94 1.00 1.00 Geo3 F026g 1993 0.03 0.23 0.52 0.78 0.95 1.00 1.00 0.02 0.17 0.4 0.60 0.73 0.97 1.00 Geo3 F026f 2711 0 0.13 0.29 0.49 0.84 1.00 1.00 0 0.09 0.21 0.35 0.60 0.87 1.00 Geo3 F026e 3800 0 0 0.08 0.3 0.6 1.00 1.00 0 0 0.05 0.20 0.40 0.66 1.00 Geo3 F026d 5240 0 0 0 0.03 0.31 0.6 1.00 0 0 0 0.02 0.22 0.43 0.71 MI2 F004c 5610 0.05 0.05 0.10 0.40 0.55 0.01 0.01 0.02 0.30 0.50 MI4 F004c 5610 0.01 0.01 0.02 0.25 0.45 Plankt. F002c 6060 0.23 0.36 0.19 0.30 algae Geo3 F026c 7560 0 0 0 0 0.10 0.24 0.61 0 0 0 0 0.08 0.18 0.47 MI2 F002b 8910 0.02 0.02 0.03 0.10 0.20 0.01 0.01 0.01 0.05 0.15 Geo3F026b 13000 0 0 0 0 0 0.03 0.45 0 0 0 0 0 0.03 0.38 Geo3F026a 23900 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0.09 Autumn - Lower Bound n.fishF007b 320 0.80 0.80 0.80 0.80 0.80 0.99 0.99 0.99 0.99 0.99 MI2 F008b 540 0.70 0.75 0.75 0.80 0.80 0.90 0.92 0.95 0.98 0.98 n.fishF008b 540 0.80 0.80 0.80 0.80 0.80 0.99 0.99 0.99 0.99 0.99 MI4 F003b 770 0.60 0.85 0.90 0.96 0.98 0.70 0.90 0.95 0.98 0.99 MI6 F003b 770 0.60 0.80 0.90 0.98 0.98 0.70 0.90 0.95 0.99 0.99 MI2 F008c 940 0.40 0.50 0.55 0.60 0.70 0.50 0.65 0.80 0.95 0.98 Autumn - Upper Bound MI2 F004c 5610 0.05 0.05 0.1 0.4 0.55 0.01 0.01 0.02 0.30 0.60 MI4 F004c 5610 0.05 0.05 0.1 0.4 0.55 0.03 0.10 MI2 F002b 8910 0.02 0.02 0.03 0.1 0.2 0.01 0.01 0.01 0.01 0.05 Winter - Lower Bound n.fishF007b 320 0.8 0.8 0.8 0.8 0.8 0.99 0.99 0.99 0.99 0.99 n.fishF008b 540 0.8 0.8 0.8 0.8 0.8 0.99 0.99 0.99 0.99 0.99 MI4 F003b 770 0.8 0.85 0.9 0.96 0.98 0.85 0.9 0.95 0.98 0.99 MI6 F003b 770 0.60 0.80 0.90 0.98 0.98 0.8 0.9 0.95 0.99 0.99 MI2 F008c 940 0.60 0.70 0.80 0.85 0.85 0.9 0.92 0.95 0.98 0.98 Winter - Upper Bound MI2 F002b 8910 0.30 0.40 0.75 0.85 0.95 0.2 0.3 0.65 0.8 0.9 Spring - Lower Bound n.fishF007b 320 0.80 0.80 0.80 0.80 0.80 0.99 0.99 0.99 0.99 0.99 MI2 F008b 540 0.70 0.75 0.75 0.80 0.80 0.9 0.92 0.95 0.98 0.98 n.fishF008b 540 0.80 0.80 0.80 0.80 0.80 0.99 0.99 0.99 0.99 0.99 n.fishF008b 540 0.80 0.80 0.80 0.80 0.80 0.99 0.99 0.99 0.99 0.99 MI4 F003b 770 0.60 0.85 0.90 0.96 0.98 0.70 0.90 0.95 0.98 0.99

Peter Cottingham & Associates 78 Evaluation of summer inter-valley water transfers from the Goulburn River

Moderate risk Recommended (Ml/day) (Ml/day) Minimum Minimum Maximum Maximum median year median year median year median year Flow Threshold Flow Threshold Environ. Objective Objective Environ. Flow Element Code Element Flow 10th percentile year year percentile 10th year percentile 30th year percentile 70th year percentile 90th 10th percentile year year percentile 10th year percentile 30th year percentile 70th year percentile 90th

MI6 F003b 770 0.60 0.80 0.90 0.98 0.98 0.70 0.90 0.95 0.99 0.99 MI2 F008c 940 0.60 0.70 0.80 0.85 0.85 0.90 0.92 0.95 0.98 0.98 Plankt. F002c6060 algae Spring - Upper Bound MI4 F004c 5610 0.55 0.80 0.95 0.42 0.70 0.85 0.95 1.00 Plankt. F002c 6060 0.42 0.83 0.87 1.00 1.00 0.35 0.66 0.73 0.86 1.00 algae MI2 F002b 8910 0.15 0.55 0.70 0.95 0.10 0.40 0.65 0.80 1.00 n.fishF027a 24000 0.01 0.06 0.16 0.33 0.67 0 0.05 0.13 0.26 0.54

5.3.2 Durationwithinaflowrange Thedurationwithinaflowrangereferstothetotaldurationofflows(asaproportion ofthetotaldurationoftheseason)regardlessofwhetherornotitisacontinuous spell.RecommendationsforReach4(Table9)indicatethat: • Dischargeinexcessofapproximately5,000ML/danduptoapproximately7,400 ML/disacceptableforshortperiods(e.g.2%ofthetime)insummerbutcan persist(85%ofthetime)inspringwithlittlerisktoecologicalobjectives. • Dischargeaboveorbelowtherangeofapproximately850ML/dto1,200ML/dfor 30%oftimeduringthesummerautumnirrigationseasonislikelytoposelittlerisk toecologicalobjectives. AsimilarpatternisevidentforReach5( Table10).Forexample,resultsindicatethattoachieveobjectivesfor macroinvertebrates,flowsshouldbewithintherange440ML/dto1820ML/dfora minimumof30%ofthetimeandamaximumof90%ofthetime. Table 9: Upper and lower bounds for the duration of ecologically significant flow events for Reach 4

Moderate Risk Recommended Minimum Minimum Maximum Maximum median year median year Environ. Objective Environ. Objective Flow Element Code Flow Element 10th percentile year percentile 10th year percentile 30th year percentile 70th year percentile 90th 10th percentile year percentile 10th year percentile 30th year percentile 70th year percentile 90th Upper Discharge (Ml/day) Upper Lower Discharge (Ml/day) Discharge Lower (Ml/day) Summer Upper Bound

MI2 F004c 5570 7440 0.05 0.05 0.10 0.40 0.55 0.01 0.01 0.02 0.30 0.50

Peter Cottingham & Associates 79 Evaluation of summer inter-valley water transfers from the Goulburn River

Moderate Risk Recommended Minimum Minimum Maximum Maximum median year median year Environ. Objective Environ. Objective Flow Element Code Element Flow 10th percentile year 10th year percentile 30th year percentile 70th year percentile 90th year percentile 10th percentile year 10th year percentile 30th year percentile 70th year percentile 90th year percentile Upper Discharge (Ml/day) Discharge Upper Lower Discharge (Ml/day) Lower(Ml/day) Discharge MI4 F004c 5570 7440 0.05 0.05 0.10 0.40 0.55 0.01 0.01 0.02 0.25 0.45 Autumn Upper Bound

MI2 F004c 5570 7440 0.02 0.02 0.03 0.05 0.15 0.01 0.01 0.02 0.30 0.60 MI4 F004c 5570 7440 0.02 0.02 0.03 0.05 0.15 0.03 0.10 Spring Upper Bound

MI4 F004c 5570 7440 0.55 0.85 0.95 0.35 0.70 0.85 0.95 Dec_Apr Lower Bound

MI2 F025h 856 1186 0.03 0.05 0.08 0.10 0.05 0.08 0.10 0.15 MI2 F025g 1186 1660 0.02 0.010.05 Dec_Apr Upper Bound

MI2 F025h 856 1186 0.03 0.30 0.40 0.50 0.55 0.02 0.20 0.30 0.35 0.45 Geo1 F025d 3142 4490 0.01 0.05 0.13 0.18 0.25 0.42 0.04 0.10 0.15 0.20 0.33 Geo1 F025c 4490 6590 0.05 0.13 0.19 0.23 0.04 0.11 0.16 0.20 Geo1 F025b 6590 10700 0.01 0.06 0.09 0.14 0.01 0.05 0.08 0.12 Geo1 F025a 10700 19000 0.030.14 0.030.14

Table 10: Upper and lower bounds for the duration of ecologically significant flow events for Reach 5

Moderate Risk Recommended Minimum Minimum Maximum Maximum median year median median year median Environ. Objective Environ. Objective Flow Element Code Flow Element 10th percentile year percentile 10th year percentile 30th year percentile 70th year percentile 90th 10th percentile year percentile 10th year percentile 30th year percentile 70th year percentile 90th (U)pper or (L)ower bound (U)pperor (L)ower Upper Flow Threshold (Ml/day) Threshold Flow Upper Lower Flow Threshold (Ml/day) Threshold Lower Flow Summer

MI1 F007c L 440 1820 0.100.300.450.75 MI1 F007c U 440 1820 0.50 0.70 0.80 0.95 0.70 0.90 0.90 1.00 MI3 F007c L 440 1820 0 0 0.15 0.25 0.50 0 0.15 0.30 0.40 0.70 Dec_Apr

Geo1 F025a U 13000 23900 0.020.21 0.020.20 Geo1 F025b U 7560 13000 0 0.06 0.12 0.15 0 0.05 0.10 0.14

Peter Cottingham & Associates 80 Evaluation of summer inter-valley water transfers from the Goulburn River

Geo1 F025c U 5240 7560 0.03 0.10 0.21 0.29 0.02 0.09 0.18 0.24 Geo1 F025d U 3800 5240 0 0.04 0.08 0.18 0.29 0.48 0.03 0.06 0.15 0.23 0.39 MI2 F025g L 1505 1993 0.03 0.06 0.10 0.20 0.01 0.05 MI2 F025h U 1096 1505 0.03 0.30 0.40 0.50 0.60 0.02 0.2 0.30 0.35 0.45 MI2 F025h L 1096 1505 0.03 0.05 0.06 0.10 0 0.05 0.08 0.10 0.15

5.3.3 HabitatConditions–meanhabitatavailabilityoveraseason Inmanycasesthemeanhabitatconditionsrecommendationswillbemetifthe durationrecommendations(inthesectionsabove)aresatisfied.Inordertocheck complianceagainsttheserecommendationsitisnecessarytofirsttransformtheflow seriestoatimeseriesoftherelevanthabitatmetric(Table11andTable12).Units forindividualmetrics,suchasF005etc.canbefoundinTable6(section5.2.1). Table 11: Upper and lower bounds for habitat metrics relevant to Reach 4. See Table 5 for the units associated with each metric.

Moderate Risk Recommended bound Minimum Minimum Objective Maximum Maximum median year year median median year year median Environmental Environmental (U)pper or (L)ower (U)pperor (L)ower Flow Element Code Code Flow Element 10th percentile year percentile 10th year percentile 30th year percentile 70th year percentile 90th 10th percentile year percentile 10th year percentile 30th year percentile 70th year percentile 90th Summer Plankt. F001 L algae 0.73 0.80 Plankt. F001 U algae 1.00 1.20 1.40 0.86 1.02 1.30 Plankt. F013b L algae 0.14 0.18 Plankt. F013b U algae 0.30 0.25 Plankt. F013c L algae 0.36 0.44 Plankt. F013c U algae 0.70 0.59 Periph. F014 L Algae 24.5 25.3 Macrophytes F014 L 24.5 25.3 Periph. F014 U Algae 28.2 27.5 Macrophytes F014 U 28.2 27.5 Periph. F015a L Algae 0.30 4.0 0.39 Periph. F015a U Algae 6.0 5.0 Periph. F015b L Algae 2.0 8.0 2.5 Periph. F015b U algae 12.0 10.0 Periph. F015c L algae 5.0 12.0 6.0 Macrophytes F015c L 5.0 12.0 6.0 Periph. F015c U algae 18.0 15.0 Macrophytes F015c U 18.0 15.0 Macrophytes F015D L 24.2 25.5 Macrophytes F015D U 26.2 27.4 25.2 26.6 Autumn

Peter Cottingham & Associates 81 Evaluation of summer inter-valley water transfers from the Goulburn River

Moderate Risk Recommended bound Minimum Minimum Objective Maximum Maximum median year median year Environmental Environmental (U)pper or (L)ower (U)pperor (L)ower Flow Element Code Flow Element 10th percentile 10th year percentile 30th year percentile 70th year percentile 90th year percentile 10th percentile 10th year percentile 30th year percentile 70th year percentile 90th year percentile Macrophytes F014 U 23.0 24.0 26.0 25.1 25.8 27.3 Macrophytes F015c L 14.4 9.5 Macrophytes F015c U 21.6 18.0 Macrophytes F015d L 24.6 25.4 Macrophytes F015d U 25.7 27.0 24.7 26.4 Winter Macrophytes F014 U 10.1 23.0 27.5 10.1 24.4 25.3 Spring Plankt. F001 L algae 0.30 0.40 Plankt. F001 U algae 1.1 0.90 Plankt. F012 L algae 0.21 0.48 0.27 0.60 Plankt. F012 U algae 0.73 1.1 0.61 0.95 Plankt. F013b L algae 0.05 0.05 Plankt. F013b U algae 0.35 0.18 Plankt. F013c L algae 0.12 0.20 0.12 0.25 Plankt. F013c U algae 0.32 0.46 0.27 0.42 Periph. F014 L algae 7.2 9.2 Macrophytes F014 L 7.6 18.0 9.3 Periphytic F014 U Algae 30.0 28.3 Macrophytes F014 U 25.0 30.0 20.5 28.3 Periph. F015a L algae 0 0 Periph. F015a U algae 1.0 0.06 Periph. F015b L algae 0 0 Periph. F015b U algae 0.04 1.0 0.03 0.80 Periph. F015c L algae 0.03 3.5 0.05 Macrophytes F015c L 0.03 3.5 0.05 Periph. F015c U algae 5.3 4.4 Macrophytes F015c U 5.3 4.4

Peter Cottingham & Associates 82 Evaluation of summer inter-valley water transfers from the Goulburn River

Table 12: Upper and lower bounds for habitat metrics relevant to Reach 5. See Table 5 for the units associated with each metric Moderate Risk Recommended Minimum Minimum Maximum median year median year Environ. Objective Environ. Objective Flow Element Code Element Flow 10th percentile year 10th year percentile 30th year percentile 70th year percentile 90th year percentile 10th percentile year 10th year percentile 30th year percentile 70th year percentile 90th year percentile (U)pper or (L)ower bound (U)pperor (L)ower

Summer Planktonicalgae F001 U 1.70 1.40 Planktonicalgae F001 L 0.56 0.70 Planktonicalgae F012 U 0.45 0.60 Planktonicalgae F012 L 0.30 0.35 Planktonicalgae F013b U 0.30 0.24 Planktonicalgae F013b L 0.14 0.14 Planktonicalgae F013c U 0.66 0.55 Planktonicalgae F013c L 0.30 0.30 PeriphyticAlgae F014 U 10.0 8.20 PeriphyticAlgae F014 L 5.60 5.60 Macrophytes F014 U 9.90 8.20 Macrophytes F014 L 5.60 5.60 6.60 5.60 5.65 PeriphyticAlgae F015a U 6.00 5.60 PeriphyticAlgae F015a L 0.30 0.38 PeriphyticAlgae F015b U 6.00 5.70 PeriphyticAlgae F015b L 3.90 4.90 PeriphyticAlgae F015c U 5.00 6.30 PeriphyticAlgae F015c L 4.00 5.20 Macrophytes F015c U 6.23 6.60 7.28 5.29 5.60 6.28 Macrophytes F015c L 5.23 4.60 5.00 5.23 5.59 6.27 Macrophytes F015D U 9.90 8.20 Macrophytes F015D L 5.60 5.06 6.60 5.60 5.65 Autumn Macrophytes F014 U 15.0 12.50 Macrophytes F014 L 5.60 6.00 5.60 7.58 Macrophytes F015c U 6.40 7.40 9.40 5.40 6.43 8.43 Macrophytes F015c L 5.09 5.40 7.40 Macrophytes F015d U 14.5 12.10 Macrophytes F015d L 5.60 6.00 9.70 5.60 7.50 9.00 Winter Macrophytes F014 U 5.60 7.20 5.61 6.00 Spring Planktonicalgae F001 U 1.10 0.40 Planktonicalgae F001 L 0.30 0.24 0.33 Planktonicalgae F012 U 0.29 0.40 0.15 0.23 Planktonicalgae F012 L 0.12 0.20 0.18 Planktonicalgae F013b U 0.35 0.05 Planktonicalgae F013b L 0.05 0.23 0.32 Planktonicalgae F013c U 0.27 0.46 0.12 0.22 Planktonicalgae F013c L 0.12 0.18 5.70 PeriphyticAlgae F014 U 6.00 5.60 PeriphyticAlgae F014 L 5.60 5.61 5.61

Peter Cottingham & Associates 83 Evaluation of summer inter-valley water transfers from the Goulburn River

Moderate Risk Recommended Minimum Minimum Maximum median year median year Environ. Objective Environ. Objective Flow Element Code Flow Element 10th percentile 10th year percentile 30th year percentile 70th year percentile 90th year percentile 10th percentile 10th year percentile 30th year percentile 70th year percentile 90th year percentile (U)pper or (L)ower bound or (L)ower (U)pper

Macrophytes F014 U 5.50 5.50 Macrophytes F014 L 5.70 PeriphyticAlgae F015a U 6.00 5.40 PeriphyticAlgae F015a L 4.30 5.70 PeriphyticAlgae F015b U 5.70 5.50 PeriphyticAlgae F015b L 4.00 5.70 PeriphyticAlgae F015c U 6.00 5.55 PeriphyticAlgae F015c L 4.00 4.60 5.56 5.61 Macrophytes F015c U 5.50 5.50 Macrophytes F015c L PeriphyticAlgae F018h U PeriphyticAlgae F018h L PeriphyticAlgae F018i U PeriphyticAlgae F018i L 2.00 2.00 4.00

5.3.4 FlowSpells–floodfrequency Thetimingoffloodsisanimportantfactorinachievingecologicalobjectivesforthe GoulburnRiver.Floodsinwinterandspringprovideimportantcuesinthelifecycleof riverineandfloodplainorganismsandthePanelrecommendedmorefrequentwinter springfloodeventsinitspreviousdeliberations(Cottinghametal.2003).However, floodsinsummerautumnperiodarearelativelyrareoccurrenceundernatural conditions.Althoughtheirecologicalsignificanceisnotfullyunderstood,itislikely thattheywillresultinsomekindofecologicalchanges,eithertoriverinebiotaor ecologicalprocesses,andthiscouldbeinterpretedasatypeofrisk.Forexample, theentrainmentofdecomposingorganicmatter(withahightannincontent)during summercanleadto‘blackwater’events(particularlyifafloodfollowsandextended dryperiod)thataffectwaterqualityandcanharmaquaticorganisms(e.g.Baldwinet al.2001,MDBC2002).ThePanelrecommendsamaximumfrequencyofone ‘moderate’sizedfloodalongthelowerGoulburnevery2yearsforamedianyear (Table13andTable14).Upto2moderatesizedfloodseachyearinwinterand springposelittlerisktoecologicalobjectivesfortheriver.

Peter Cottingham & Associates 84 Evaluation of summer inter-valley water transfers from the Goulburn River

Table 13: Return frequency of floods along Reach 4. Values represent upper limits of flood frequency per year.

Moderate Risk Recommended Number of floods Number of floods Objective discharge 70th 70th 90th 90th 70th 70th 90th 90th year year year year Environmental Environmental Flood Threshold Flood Threshold (U)pper or (L)ower or (L)ower (U)pper percentile percentile percentile percentile percentile percentile percentile percentile Flow Element Code Element Flow bound on frequency on bound median year median year median year median year Summer MI4 F021b U 32700 0.80 1.30 1.30 0.50 1.00 1.00 MI4 F021d U 55000 0.05 0.10 0.02 0.05 Autumn MI4 F021b U 32700 0.80 1.30 1.30 0.50 1.00 1.00 MI4 F021d U 55000 0.05 0.10 0.02 0.05 Winter MI4 F021b L 32700 1.20 3.00 3.00 2.00 4.00 4.00 MI4 F021d L 55000 1.00 2.00 Spring MI4 F021b L 32700 1.50 2.00 2.50 2.00 3.00 4.00 MI4 F021d L 55000 0 1.00 0 2.00 Table 14: Return frequency of floods along Reach 5 Moderate Risk Recommended (ML/d) (ML/d) bound median year median year Flood Threshold Flood Threshold (U)pper or (L)ower (U)pperor (L)ower Environ. Objective Environ. Objective Flow Element Code Flow Element 70th percentile 70th year percentile 90th year percentile 70th year percentile 90th year percentile

Summer MI4 F021b U 32700 0.50 1.00 1.00 MI4 F021d U 55000 0.05 0.10 0.02 0.05 Autumn MI4 F021b U 32700 0.50 1.00 1.00 MI4 F021d U 55000 0.05 0.10 0.02 0.05 Winter MI4 F021b L 32700 0.75 2.00 2.00 1.50 3.00 3.00 MI4 F021d L 55000 0.90 0.18 Spring MI4 F021b L 32700 1.00 1.00 3.00 2.00 3.40 MI4 F021d L 55000 1.00 2.00

5.3.5 DurationoftheLongestSpell Managing encroachment of terrestrial vegetation Theenvironmentalflowregimerecommendedtoachievetheobjectivefornonwoody terrestrialbankvegetation(“TerrBankVeg”)appliestotheperiodDecembertoApril.

Peter Cottingham & Associates 85 Evaluation of summer inter-valley water transfers from the Goulburn River

Therecommendation(seesection4.3)hastwoparts,onefortheupperandonefor thelowerbanks(Table15): • Upperbank:thelongestdurationspellinexcessof6,600ML/dshouldbeless than15daysinnineoutofeverytenyears(30daysforthemoderaterisk bound). • Lowerbank:thelongestdurationspellinexcessof4,500ML/dshouldbeatleast 40daysinatleastoneoutofevery10years(20daysforthemoderaterisk bound). Spellsmustbeseparatedbyatleast5daystobeconsideredindependent.Spells maystartpriortotheDecemberAprilperiodinwhichcasethetotaldurationis countedincludingtheperiodpriortoDecember. Table 15: Spell duration to achieve vegetation objectives for the lower and upper section of the river bank

Moderate risk Recommended bound Minimum Minimum Maximum Maximum median year median year median year median year (U)pper or (L)ower or (L)ower (U)pper Environ. Objective Environ. Objective Flow Element Code Element Flow 10th percentile year 10th year percentile 30th year percentile 70th year percentile 90th year percentile 10th percentile year 10th year percentile 30th year percentile 70th year percentile 90th year percentile Flow threshold (ML/d) (ML/d) Flow threshold

TerrBank f006i L 1096 20 40 Veg TerrBank f006h L 1505 20 40 Veg TerrBank f006g L 1993 20 40 Veg TerrBank f006f L 2711 20 40 Veg TerrBank f006e L 3800 20 40 Veg TerrBank f006d L 5240 20 40 Veg TerrBank f006c L 7560 20 40 Veg TerrBank f006b U 13000 15 30 Veg TerrBank f006a U 23900 15 30 Veg

5.3.6 PersistentSpellsofStableFlow Persistentspellshavebeendefinedasspellsexceedingacertainnumberofdays. Spellsmustbeseparatedbyaperiodofmorethan5daystobeconsideredas separatespells.SeparatePanelrecommendationsaddressspellsexceedingtwo weeks(forperiphyticalgaegrowth)andspellsexceedingsixweeks(formacrophyte growth).Aspellisdefinedbycontinuousflowwithinaspecifiedflowband.Ifflow persistswithinthisbandformorethantwo(orsix)weeksitisconsideredtobea persistentspellandrepresentsaperiodofstableflow.Whentheflowhasbeen stablefortwo(orsix)weeks,additionaldaysofstableflowarecounted(counting commenceswhenthethresholdisreachedanddoesnotincludetheinitial2orsix

Peter Cottingham & Associates 86 Evaluation of summer inter-valley water transfers from the Goulburn River weeks).Thenumberofsuchstableflowdaysisexpressedasaproportionofthe totalnumberofdaysintheseason(Table16andTable17). Table 16: Persistent stable flows exceeding six weeks to achieve the macrophytes objective

Moderate Risk Recommended year year year year year year year year Code bound median year year median year median Flow Element Flow Element 10th percentile 10th percentile 30th percentile 70th percentile 90th percentile 10th percentile 30th percentile 70th percentile 90th percentile Upper threshold Upper threshold Lower threshold Lower threshold discharge (ML/d) discharge (ML/d) discharge (U)pper or (L)ower (U)pperor (L)ower Summer F016n U 3142 8080 0.03 0.18 0.04 0.22 F016o U 2223 7150 0 0.11 0.20 0 0.14 0.25 F016p U 1660 6440 0.09 0.22 0.36 0.12 0.28 0.46 F016q L 1186 5820 0.09 0.27 0.44 0.11 0.34 F016q U 1186 5820 0.84 0.73 F016r L 856 5250 0.15 0.43 0.62 0.18 0.53 F016r U 856 5250 0.64 0.93 0.78 Autumn F016p U 1660 6440 0 0.42 0 0.53 F016q U 1186 5820 0 0.05 0.7 0.01 0.07 0.88 F016r U 856 5250 0.28 0.67 0.8 0 0.35 0.85 1.00 Spring F016n L 3142 8080 0 0.05 0.23 0 0.05 F016n U 3142 8080 0.34 0.29 F016o L 2223 7150 0 0.02 0.21 0 0.02 F016o U 2223 7150 0.31 0.27 F016p L 1660 6440 0 0.01 0.22 0 0.01 F016p U 1660 6440 0.33 0.28 Table 17: Persistent stable flows exceeding 2 weeks to achieve the periphytic algae objective

Moderate Risk Recommended year year year year year year year year Code bound median year median year Flow Element Element Flow 70th percentile 70th percentile 90th percentile 70th percentile 70th percentile 90th percentile 10th percentile 30th percentile 10th percentile 10th percentile 30th percentile Upper threshold Upper threshold Lower threshold Lowerthreshold discharge (ML/d) discharge (ML/d) discharge (U)pper or (L)ower (U)pperor (L)ower Spring F016a L 19000 239300 0 F016a U 19000 23930 0.05 0 F016b L 10700 15640 0.05 0 F016b U 10700 15640 0.07 0.06 F016c L 6590 11530 0 0.05 0.14 0 0.06 F016c U 6590 11530 0.20 0.18 F016d L 4490 9430 0 0.08 0.16 0.30 0 0.13 0.2 F016d U 4490 9430 0.43 0.37 F016e L 3142 8080 0 0.20 0.30 0.47 0 0.12 0.22 0.39 F016e U 3142 8080 0.70 0.60

Peter Cottingham & Associates 87 Evaluation of summer inter-valley water transfers from the Goulburn River

Moderate Risk Recommended year year year year year year year year year year year Code bound median year median year Flow Element Flow Element 70th percentile percentile 70th percentile 90th 70th percentile percentile 70th percentile 90th percentile 10th percentile 30th 10th percentile percentile 10th percentile 30th Upper threshold threshold Upper Lower threshold Lower threshold discharge (ML/d) (ML/d) discharge (ML/d) discharge (U)pper or (L)ower or (L)ower (U)pper F016f L 2223 7150 0 0.20 0.30 0.47 0 0.13 0.24 0.39 F016f U 2223 7150 0.70 0.58 F016g L 1660 6440 0 0.07 0.13 0.26 0.47 0 0.08 0.16 0.32 F016g U 1660 6440 0.38 0.70 0.59 F016h L 1186 5820 0 0.08 0.32 0 0.10 F016h U 1186 5820 0.48 0.40 F016i L 856 5250 0 0.03 0.30 0 0.03 F016i U 856 5250 0.43 0.36

5.3.7 RatesofRiseandFall Managingratesofriseandfallinriverlevelsisimportanttoavoidoutcomessuchas excessivebankslumpinganderosionorstrandingfororganismssuchas macroinvertebratesorfish.Ratesofriseandfallare(Table18)basedonthe80th and90thpercentilelevelindailychangeforeachseason. Table 18: Operational boundaries on the distribution of daily rise and fall in Reach 4 stage (m) to comply with Panel recommendations. The table provides upper limits for the various percentiles on the distribution of daily changes. Lower limits are shown in brackets.

Moderate Risk Recommended

h th th th th th upper bound all daily changes

changes <4000 >4000 daily daily change daily change daily change daily daily change daily change daily change upper upper bound 90 lower lower bound 90 lower bound 90 Ml/day Ml/day upper upper bound 80 upper upper bound 90 upper upper bound 80

upper bound all daily Daily Rise in Stage (m) Summer (0.16) 0.48 0.77 (0.26) 0.38 0.52 Autumn 0.86 0.57 Winter 5.40 1.20 3.60 Spring (0.91) 2.74 4.00 0.80 (1.50) 2.20 2.70 Daily Fall in Stage (m) Summer 0.12 (0.06) 0.18 0.51 0.09 (0.10) 0.15 0.25 0.34 Autumn 0.13 0.43 0.09 0.25 0.29 Winter 1.20 2.60 0.78 1.75 Spring 0.72 (0.38) 1.15 3.70 0.72 (0.38) 1.15 3.70

Peter Cottingham & Associates 88 Evaluation of summer inter-valley water transfers from the Goulburn River

5.4 Summary pattern of recommended releases Theupperandlowerboundsofflowrecommendationshavebeensummarisedin Figure36.Asa general guide ,theresultsindicatethatfora median year,summer dischargewithintherangeofapproximately500ML/dand2,000ML/dfor70%ofthe timeposeslittlerisktoecologicalobjectives,andindeedislikelytobemore beneficialtoriverinebiotaandecologicalprocessesthanthecurrentflowregime. Flowsaboveapproximately2000ML/dcanstillbedelivered,butforincreasingly shorterdurationasdischargeincreases.Forexample,thereleaseofIVTsat dischargeexceeding4,000–6,000ML/dposelittlerisktoecologicalobjectivesso longastheyaredeliveredasshortevents(e.g.10%3%exceedence),with appropriateratesofriseandfall.Climaticvariabilitycanbeaccountedforbyadopting asimilarreleasepatternforthemedianyear,butwithhigherorlowerdischargesfor wetanddryyears,respectively. Itisreiteratedthattheapproachadoptedforthisproject,whileinitiallycomplex, providesfargreateroperationalflexibilityandwillmakeiteasiertodefineand reinstateelementsofnaturalvariabilityintheflowregimethanwouldbethecaseif flowrecommendationswerepresentedassingle(static)discharges. 100% Reach 4 - Summer 90% allyears

80% 90thpercentileyear 70thpercentileyear 70% medianyear 30thpercentileyear 60% 10thpercentileyear

50%

40%

30%

Percent of of time Percent flow is exceeded 20%

10%

0% 0 2000 4000 6000 8000 10000 Discharge (Ml/day) Figure 36: Upper and lower bounds and exceedence levels for flow duration for 10 th , 30 th , median, 70 th , 90 th percentile years and all years (1975- 2000) for the pre-regulated flow regime. Solid shapes and solid lines represent upper bounds for each percentile year, while open shapes and broken lines represent lower bounds.

Peter Cottingham & Associates 89 Evaluation of summer inter-valley water transfers from the Goulburn River

5.5 Other considerations

5.5.1 Operationalconsiderations–formationofanadvisorygroup Rivermanagerswouldprefertohaveaclearsetofrulesfromwhichtooperate,free fromtheneedtoconsultwithoutsidebodies.Thesetofruleswouldprovidethe boundswithinwhichtherivershouldbemanaged.Whileitispossiblethatrulescan bedevelopedthatwillguardagainstdamagetoenvironmentalassetsandvalues, managersarelikelytorequireadditionaladviceonriskofalternativeflowscenarios thatrepresentdifferentlevelsofrisk.Onewayofachievingthisistoestablishan ecosystemadvisorygroup,similartothatestablishedfordeliveringtheBarmah EnvironmentalWaterAllocation.Suchanadvisorygroupcouldcommentonannual waterdeliveryplansandidentifyadjustmentsthatmightberequired,forexamplein lightofprevailingclimaticconditionsorprecedenthydrology.Suchagroup,working inconjunctionwiththerivermanagers,couldaddvaluetoanadaptivemanagement process.

5.5.2 Unseasonalflowregime(inversionoftheseasonalflowregime) IncreasedIVTshaveimplicationsforanemergingpatternofsummerflowinversion– asIVTflowsincreaseinmagnitudeandduration,theflowregimeofthelower Goulburnwillincreasinglybedominatedbyhighflowsinsummer.Thecurrentregime oflowflowsinwinterwillpresumablybemaintained.TheintentofthePanelisto returndesirableelementsofthesummerflowregimelostunderthehistoricregulated flowregime,giventhatweexpectmanagementofwinterflowstoremainunchanged. TheproposeddecommissioningofLakeMokoananddeliveryofwatertomeetLiving MurrayobjectivesmayincreasewinterflowsalongthelowerGoulburninthefuture, addingtovariabilityindischarge.Potentialrisksassociatedwithseasonalinversionof theflowregimewouldbereducedevenfurtherbyimplementingthe recommendationsforwetlandwateringeventsinwinterspringoutlinedinthe previousenvironmentalflowstudy(Cottinghametal.2003a).

5.5.3 Potentialcoldwaterissues Withregardstonativefish,depressionofwatertemperaturesisprobablythemost detrimentaleffectofelevatedsummerflowsbelowmajorimpoundmentsinAustralian rivers.Depressedwatertemperaturescandecreasethemetabolicandgrowthrates offish,resultinfailureoffishtospawn,reducethesurvivalofeggsandlarvaeif spawningdoesoccur,andreducetheabilityoffishtoavoidpredatorsandswim againststrongcurrents(Ryanetal.2001;Toddetal.2005).Inadditiontothedirect effectsonfish,depressedwatertemperaturescandrasticallyreduceratesofprimary productivityandbacterialactivityinriversystems(whichformthebasisofthefood chain),thusreducingthecarryingcapacityoftheaffectedriver. IthasbeenestimatedthatwatertemperatureintheGoulburnRiverbelowLake Eildonisoftendepressedby57°Cduringsummer(GippelandFinlayson1993;Ryan etal.2001).Suchlevelsoftemperaturedepressionhavehaddetrimentaleffects uponnativefishpopulationsinawiderangeofriversinsoutheasternAustralia, includingtheGoulburn(GippelandFinlayson1993;Koehnetal.1995;Lugg1999; Ryanetal.2001).Strongtemperaturedepressionhasnotbeennotedinthe GoulburnRiverbelowGoulburnWeirunderthecurrentflowmanagementregime (Ryanetal.2001).However,theScientificPanelisconcernedthatoncestoragein

Peter Cottingham & Associates 90 Evaluation of summer inter-valley water transfers from the Goulburn River

LakeEildonreturnstohighlevelstherewillbeincreasedpotentialforcoldwaterto reachfurtherdownstreamtothelowerGoulburnRiverunderIVTscenarios. AdditionaltemperaturemodellingbytheCSIRO(Sherman2007,Appendix3)was commissionedtoinformtheScientificPanelonpotentialtemperaturerelatedissues resultingfromIVTs.ResultssuggestthattemperaturedownstreamofGoulburnWeir islikelytoberelativelyinsensitivetochangesindischargeandwaterdepthasa resultofincreasingIVTs.

5.5.4 Socialandeconomicconsiderations Thescopeofthisprojecthasbeentoprovideanenvironmentalperspective.Itis acknowledgedthatoutcomesthatmayprovebeneficialfromanecosystem perspectivemaycomeatsomesocialandeconomiccost.Forexample,increased summerflowsmayprecludeaccesstolowlyingbenchesand‘beaches’favouredfor recreationbythelocalcommunity.

5.5.5 ImplicationsoftheGoulburnInterceptorproject DSEiscurrentlyconsideringthefeasibilityofconstructingadiversionchannel(the GoulburnInterceptor)fromYarrawongatotheSheppartonIrrigationArea(SIA)to overcomeconstraintsindeliveryfromtheMurrayRivercausedbytheBarmahChoke (seethePrimeMinister’s National Plan for Water Security ).TheGoulburnInterceptor wouldsupplytheSIAwithwaterfromtheMurrayRiver.Thuswaterthatwould normallybedeliveredtotheSIAfromtheGoulburnRiverwouldbereleasedtothe MurrayRiverasa‘substitution’.CommissioningoftheGoulburnInterceptorwould increasethevolumeofreleasestothelowerGoulburnRiverfromGoulburnWeir, overandabovethatcurrentlybeingconsideredforIVTs. Anumberofadditionalconsiderations,beyondthescopeofthisproject,shouldbe consideredwhenevaluatingthefeasibilityoftheGoulburnInterceptorproject: • Substitutionflowsincreasethelikelihood,andthereforerisk,associatedwith increasedsummerautumnflowsalongthelowerGoulburnRiver; • IncreasedsummerreleasesofcoldwaterfromHumeDam(Sherman2006) increasestheriskthatcolderthannaturalwaterwouldbereleasedfrom YarrawongatotheSIAandpotentiallyBrokenCreekandtheBrokenRiver (shouldtheInterceptoroutfalltotheBrokenRiver).Itisrecommendedthat temperaturemodellingbeundertakentoinvestigatetheriskofcoldwater releasestoBrokenCreekandtheBrokenRiver. • Highersummerautumnwaterlevelsincreasetheriskofunseasonalflooding alongthelowerGoulburnRiver.Morefrequentunseasonalfloodingincreasesthe riskof‘blackwater’events,canaffectthedynamicsofriverineproduction, banksideerosionandvegetationdynamics,andcanaffecttheavailabilityof shallow,lowvelocityhabitatfavouredbyaquaticmacrophytes, macroinvertebratesandfish.Thislastriskisexacerbatedbythelackofcross sectionalcomplexityinthelowerGoulburnchannel. • OutfalloftheInterceptorcanaltotheBrokenCreekandBrokenRiverhasthe potentialtoincreasesummerautumnflows,potentiallyposingsimilarissuesto thatposedbyhighIVTsalongthelowerGoulburnRiver.Itisrecommendedthat highsummerautumnflowscenariosbeevaluatedforthelowerBrokenCreekand

Peter Cottingham & Associates 91 Evaluation of summer inter-valley water transfers from the Goulburn River

lowerBrokenRiverusingthemethodologydevelopedduringthisprojectforthe GoulburnRiver.

Peter Cottingham & Associates 92 Evaluation of summer inter-valley water transfers from the Goulburn River 6 CLARIFICATION OF PREVIOUS ENVIRONMENTAL FLOW RECOMMENDATIONS DSEhasrequestedthattwoflowrecommendationsrecommendedbyCottinghamet al.(2003)bepresentedinaformatconsistentwithsubsequentenvironmentalflow studiesforotherrivers.ThiswillalsoallowDSEtoincludetheserecommendationsin demandmodelsfortheGoulburnRiver.Thedailyflowdatausedintheoriginalstudy (fortheperiod19752000)wereusedtoassessordescribe: • Compliancewithaminimumflowrecommendationof610ML/d(yearround)in eachstudyreach(Reach4and5),and • Summerflowpulses,thefrequency,magnitudeanddurationofwhichhadtobe preserved(i.e.theScientificPanelrecommendedthattheseflowattributeswere tobemaintainedinthefuture). Minimum flow recommendation Examinationofthedataindicatedthatunderanunregulatedflowregime,flowabove 610ML/dwouldhaveoccurred97%and99%ofthetimeintheMurchisonand Wyunareaches(Reach4and5),respectively.Undertheregulatedflowregime,flow above610ML/dwouldonlyhaveoccurredlessthan70%ofthetimeinbothreaches (Table19). Table 19: Compliance of the regulated flow regime in the lower Goulburn with a minimum flow recommendation of 610 ML/d. Component Time Flow Rec Reach 4 Reach 5 Rec %Comp Rec %Comp Lowflow Allyear Volume 610ML/d 30 610ML/d 69 BasedonthedraftprioritycriteriaproposedbySKM(2005),thelowflow recommendationof610ML/d(ornatural)wouldbeclassifiedasaVeryHighPriority flowcomponentinCriticalPriorityReach(Table20).Withcompliancelevelsbelow 70%,thecurrentlowflowregimeposesacriticalrisk( Table21 )toachieving ecologicalobjectivesrelatedtothemaintenanceofnativefishpopulations. Table 20: Draft criteria for determining priority reaches (from SKM 2005)

Peter Cottingham & Associates 93 Evaluation of summer inter-valley water transfers from the Goulburn River

Table 21: Draft risk categories (SKM 2005)

ThelowerboundsofflowrecommendationsidentifiedinChapter5complementthe previousrecommendationofaminimumflowof610ML/d(ornatural),whichaimsto provideminimumlevelsofdeepwater(pool)habitatfornativefish.Meetingthe objectivesforminimumlevelsofmacroinvertebrate,macrophyteandfish(larvaeand juvenile)habitataddstothevariabilityoflowflowsthatareimportantformaintaining diverseandresilientpopulationsofriverinebiota. Summer flow pulses Flowfreshesrecommendedinthepreviousenvironmentalflowstudywereintended toinundatebenches,particularlyinReach4.Benchinundationcommencesat1000 ML/dayandallbenchesareinundatedby5000ML/day(Figure37).The recommendationinthepreviousstudywastopreservethehistoric(i.e.regulatedfor theperiod1975to2000)frequencyoffreshesintherangeofmagnitudes2000 ML/dayto5000ML/day.Figure38showsthefrequencymagnituderelationforthis rangeofdischarges(usingthepartialdurationseries)fortheperiodDecemberto May.Anequationisincludedwhichrepresentstherecommendedfrequency magnituderelationforfreshesatthissite.Figure39showsthenaturalvariationin freshdurationforspellthresholdsintherangeof1000ML/dayto5000ML/day.The previousstudyrecommendedmaintainingthisrelationintheenvironmentalflow regime. However,theserecommendationsbecomeredundantiftherecommendationsinthis currentenvironmentalflowstudyareadopted.

25

20 /m) 2 15

10 Bench (m area 5

0 0 5000 10000 15000 20000 Discharge (ML/day) Figure 37: Bench area at Murchison (using model results from the 2003 environmental flow study)

Peter Cottingham & Associates 94 Evaluation of summer inter-valley water transfers from the Goulburn River

10000

9000 recorded 8000 Modellednatural 7000

6000

5000

4000

(Dec-May) ML/day (Dec-May) 3000 y=1751.3Ln(x)+2915.7 2 2000 R =0.9627

1000 Peak magnitudePeak of bench inundation event 0 0.1 1 10 Recurrence interval (years) Figure 38: Regulated and modelled natural (partial duration) flood frequency plots for Murchison

12

10

8 y=0.0015x1.9667 R2=0.2395 6

4

2 Durationflow (days) than ML/day greater 2000

0 0 1000 2000 3000 4000 5000 6000 Peak Magnitude (ML/day) Figure 39: Relation between fresh peak magnitude and duration above a threshold of 2,000 ML/day.

Peter Cottingham & Associates 95 Evaluation of summer inter-valley water transfers from the Goulburn River 7 MONITORING AND EVALUATION REQUIREMENTS Field programs, variable definitions and the timing, frequency and protocols for samplingvariablesrelevanttoenvironmentalflowrecommendationsfortheGoulburn RiverhavebeenconsideredindetailbyCheeetal.(2006).However,this,aswellas thepreviousenvironmentalflowstudyfortheGoulburnRiveronwhichitwasbased, didnotconsiderupperlimitsonsummerflowsasIVTswerenotthenprominent.The Panel therefore recommends that the following be added to the list of variables considered for monitoring and evaluation of any environmental flow regime for the GoulburnRiver. Riverine Productivity: • Lightpenetrationmeasurementsaddedtowaterqualityparameterstodevelop animprovedrelationshipwithturbidity.Usingunderwaterlightsensors,record lightintensityjustbelowsurfaceandthenmeasuredepthof10%or1% penetrationunderstablelightconditions.Anotheroptionistomountaseriesof4 5recordinglightsensorsatknownintervalsonasolidrodandplacethetop sensorjustbelowthewatersurfaceandrecordirradiancesforseveralminutes. • Planktonicchlorophyllconcentrationsshouldalsobeaddedtothewaterquality parameters.Iftheriveriswellmixedthenbottlesamplingisacceptable,but preferablyrepresentativesamplesaretakenwithanintegratingtubeatstations acrosstheriver,combinedandsubsampled.Ifbloomsoccurthensampling needstobemodifiedasrequiredtoprovidespecificinformationonbloom characteristics. • Identificationofmajorphytoplanktongenera(eg.Generacomprising90%of biomass)withspeciesidentificationifrequired.Subsampledfromchlorophyll sample. • Measuresofperiphytoncoveranditsdistributionwithintheeuphoticzone.Direct sedimentsamplingandchlorophyllanalysesisadifficultmethodandchlorophyll fluorescencemeasurementsarelikelytobemoretenable,butthisrequires suitableinstrumentationandcalibrationandtestingwillberequired.Matchedwith watervelocitymeasurements,substratemeasurementsandlightpenetration measurements. • Rivermetabolismmeasurementsbasedondielfluctuationsindissolvedoxygen concentrations.Withthenewerstyleoxygensensorsitshouldnowbepossibleto dothisroutinelyandprovidesvaluableinformationonenergysourceswithinthe riverandhowenergysuppliesalterinresponsetochangesinseasonalflow conditions. Terrestrial bank vegetation: • Vegetationcoverbythefollowingcombinations:  growthform(tree,shrub,herb,grassandgraminoid,sedges)with herbs,grassesandsedgesandgraminoidssubdividedaccordingto form(tussockform,prostrateorstoloniferousorrhizomatousform, simpleerect),andtreeandshrubnotedaccordingtoaheightclass;  lifespan(perennial,annualmeaningregeneratingfromseed);  origin(Australian,introduced).

Peter Cottingham & Associates 96 Evaluation of summer inter-valley water transfers from the Goulburn River

Native Fish: • Fishmovementstudies(radiotrackingoracousticsurveys)toevaluatewhether IVTsencouragetheexchangeoffishsuchasMurraycodandgoldenperch betweentheGoulburnRiverandtheMurrayRiver.

Peter Cottingham & Associates 97 Evaluation of summer inter-valley water transfers from the Goulburn River 8 REFERENCES BaldwinD.,HowittJ.andEdwards,M.(2001).Blackwaterevent. Austasia Aquaculture ,April/May,21. BasuB.K.andPickF.R.(1996)Factorsregulatingphytoplanktonandzooplankton biomassintemperaterivers. Limnology and Oceanography ,41,pp.15721577. BennettJ.,SandersN.,MoultonD.,PhillipsN.,LukacsG.,WalkerK.andRedfernF. (2002).GuidelinesforProtectingAustralianWaterways.Land&WaterAustralia, Canberra. BerkampG.,McCartneyM.,DuganP.,McNeelyJ.,AcremanM.(2000).Dams, EcosystemFunctionsandEnvironmentalRestorationThematicReviewII.1prepared asaninputtotheWorldCommissiononDams,CapeTown,www.dams.org. BlomC.W.,VoesenekL.A.,BangaM.,EngelaarW.M.,RijindersJ.H.,vandeSteeg H.M.andVisserE.J.W.(1994).Physiologicalecologyofriversidespecies;adaptive responsesofplantstosubmergence. Annals of Botany, 74,pp.253263. BondN.R.andLakeP.S.(2003).Characterizingfishhabitatassociationsinstreams asthefirststepinecologicalrestoration. Austral Ecology ,28,pp.611621. BowlerJ.M.(1978).QuaternaryclimateandtectonicsintheevolutionoftheRiverine Plain,southeasternAustralia.In:M.A.J.Williams.(editor)LandformEvolutionin Australasia,Canberra.A.N.U.Press,pp.70112. CasanovaM.T.andBrockM.A.(2000).Howdodepth,durationandfrequencyof floodinginfluencetheestablishmentofwetlandplantcommunities? Plant Ecology, 147,pp.237250. CheeY.E.,WebbA.,StewardsonM.andCottinghamP.(2006).Victorian environmentalflowsmonitoringandassessmentprogram.Monitoringandevaluation ofenvironmentalflowsreleasesintheGoulburnRiver.Reportpreparedforthe GoulburnBrokenCatchmentManagementAuthorityandtheDepartmentof SustainabilityandEnvironment.eWaterCRC,Melbourne. CottinghamP.,StewardsonM.,CrookD.,HillmanT.,RobertsJ.andRutherfurdI. (2003).EnvironmentalflowrecommendationsfortheGoulburnRiverbelowLake Eildon.CRCFreshwaterEcologyandCRCCatchmentHydrologyreporttoDSE VictoriaandtheMDBC. Crowder L. B. and Cooper W. E. (1982). Habitat structural complexity and the interactionbetweenbluegillsandtheirprey. Ecology ,63,pp.18021813. CrookD.,RobertsonA.,KingA.andHumphriesP.(2001).Theinfluenceofspatial scaleandhabitatarrangementondielpatternsofhabitatusebytwolowlandriver fishes. Oecologia ,129(4),pp.525533.

Peter Cottingham & Associates 98 Evaluation of summer inter-valley water transfers from the Goulburn River

DNRE(2002).TheFLOWSmethod:amethodfordeterminingenvironmentalwater requirementsinVictoria.SKM,CRCFreshwaterEcology,FreshwaterEcology(NRE), andLloydEnvironmentalConsultantsreporttotheDepartmentofNaturalResources and Environment, Victoria. Environment and Natural Resources Committee (2001). Inquiryintotheallocationofwaterresources–ReportENRC,ParliamentofVictoria. DSE (2003). Irrigation Development in Sunraysia and Associated Murray Channel Capacity Issues. Discussion Draft, Department of Sustainability and Environment, Victoria. Ferrari I., Farabegoli A. and Mazzoni R. (1989). Abundance and diversity of planktonicrotifersinthePoriver. Hydrobiologia ,186/187,pp.201208. GBCMA (2005a). Regional River Health Strategy 20052015. Goulburn Broken CatchmentManagementAuthority,Shepparton. GBCMA(2005b).RegionalRiverHealthStrategy2005:statusoftheriverinesystem waterwaysinfocus.GoulburnBrokenCatchmentManagementAuthority, Shepparton. GormanO.andKarrJ.(1978).Habitatstructureandstreamfishcommunities . Ecology ,59(3),pp.507515. HarveyB.andStewartA.(1991).Fishsizeandhabitatdepthrelationshipsin headwaterstreams. Oecologia ,87(3),pp.336342. HoenderdosM.(2006).Spatialandtemporalvariationinthemacroinvertebrate communityofthelowerMurrayDarlingBasin,Australia,between1980and2000. HonoursThesis,Dept.EnvironmentalManagementandEcology,LaTrobe University. HoggI.B.andNorrisR.H.(1991).Effectsofrunofffromlandclearingandurban developmentonthedistributionandabundanceofmacroinvertebratesinpoolareas ofariver. Aust. J. Mar. Freshw. Res., 43,pp . 507518. HumphriesP.,CookR.A.,RichardsonA.J.andSarafiniL.G.(2006).Creatinga disturbance:manipulatingslackwatersinalowlandriver. River Research and Applications ,22(5),pp.525–542. . King A.J. (2004). Ontogenetic patterns of habitat use by fishes within the main channelofanAustralianfloodplainriver. Journal of Fish Biology ,65,pp.15821603. King,A.J.(2004).Densityanddistributionofpotentialpreyforlarvalfishinthemain channelofafloodplainriver:pelagicversusepibenthicmeiofauna. River Research and Applications ,20,pp.883897. LCC(1991).Riversandstreamsspecialinvestigation:finalrecommendations.Land ConservationCouncil,Melbourne. LoweB.(2002).Impactsofalteredflowregimeonriverbankvegetationinalowland floodplainriver.PhDThesis,CharlesSturtUniversity.

Peter Cottingham & Associates 99 Evaluation of summer inter-valley water transfers from the Goulburn River

McAllisterD.,CraigJ.,DavidsonN.,DelanyS.andSeddonM.(2001).Biodiversity impactsoflargedams.BackgroundPaperNr.1.PreparedforIUCN/UNEP/WCD. MDBC(2005).Environmentalwateringplanfor2005/2006.MurrayDarlingBasin Commission,Canberra. MDBC(2004).TheLivingMurraybusinessplan.MurrayDarlingBasinCommission, Canberra. MDBC(2002).BarmahMillewaForestFishResearchandMonitoringStrategy. MurrayDarlingBasinCommissiononbehalfoftheBarmahMillewaForum. MinshallG.W.(1984).Aquaticinsectsubstratumrelationships.In The Ecology of Aquatic Insects .Resh,V.H.andRosenberg,D.M.,(Ed.).Praeger,NewYork,pp. 358400. MommerL.,deKroonH.,PierikR.,BogermanG.M.andVisserE.J.W.(2005).A functionalcomparisonofacclimationtoshadeandsubmergenceintwoterrestrial plantspecies. New Phytologist, 167,pp.197206. NewmanR.M.(1991).Herbivoryanddetrivoryonfreshwatermacrophytesby invertebrates:areview. Journal of North American Benthological Society ,10,pp.89 114. O'ConnorN.A.(1991).Theeffectsofhabitatcomplexityonmacroinvertebrates colonisingstreamsubstratesinalowlandstream. Oecologia, 85,pp.504512. OliverR.,HartB.,OlleyJ.,GraceM.,ReesG.andCaitcheonG.(1999).TheDarling River:algalgrowthandthecyclingandsourcesofnutrients.CRCFEandCSIRO reporttotheMurrayDarlingBasinCommission. PaceM.L.,FindlayS.E.andLintsD.(1992).Zooplanktoninadvective environments:theHudsonRivercommunityandacomparativeanalysis . Canadian Journal of Fisheries and Aquatic Sciences ,49,pp.10601069. PhillipsN.,BennettJ.andMoultonD.(2001).Principlesandtoolsforprotecting Australianrivers.Land&WaterAustralia,Canberra. PoffL.,AllanJ.,BainM.,KarrJ.,PrestegaardKandRichterB.(1996).Thenatural flowregime:aparadigmforriverconservationandrestoration. Bioscience ,47(11), pp.769784. Pusey,B.J.,Kennard,M.J.andArthington,A.H.(2004).FreshwaterFishesof NortheasternAustralia.CSIROPublishing,Melbourne. Pusey,B.J.,Kennard,M.J.andArthington,A.H.(2000).Dischargevariabilityand thedevelopmentofpredictivemodelsrelatingstreamfishassemblagetohabitatin northeasternAustralia. Ecology of Freshwater Fish ,9,pp.3050.

Peter Cottingham & Associates 100 Evaluation of summer inter-valley water transfers from the Goulburn River

Pusey,B.J.,Arthington,A.H.andRead,M.G.(1998).Freshwaterfishesofthe BurdekinRiver,Australia:biogeography,historyandspatialvariationincommunity structure. Environmental Biology of Fishes ,53,pp.303318. Pusey,B.J.andKennard,M.J.(1996).Speciesrichnessandgeographicalvariation inassemblagestructureofthefreshwaterfishfaunaoftheWetTropicsRegionof northern. Marine and Freshwater Research ,47,pp.563573. Pusey,B.J.,Arthington,A.H.andRead,M.G.(1995).Speciesrichnessandspatial variationinfishassemblagestructureintworiversoftheWetTropicsofnorthern Queensland,Australia. Environmental Biology of Fishes ,42,pp.181199. Pusey,B.J.,Arthington,A.H.andRead,M.G.(1993).Spatialandtemporal variationinfishassemblagestructureintheMaryRiver,southeastQueensland:the influenceofhabitatstructure. Environmental Biology of Fishes ,37,pp.355380. Pusey, B. J. and Arthington, A. H. (2003). Importance of the riparian zone to conservationandmanagementoffreshwaterfish:areview . Marine and Freshwater Research ,54,pp.116. RichterB.BaumgartnerJ.,WiggingtonR.andBraunD.(1997).Howmuchwater doesariverneed? Freshwater Biology ,37,pp.231249. RichterB.D.,BaumgartnerJ.V.,PowellJ.andBraunD.P.(1996).Amethodfor assessinghydrologicalterationwithinecosystems.Conservation Biology ,10,pp. 1631174. RobertsonA.I.,BaconP.andHeagneyG.(2001).Theresponsesoffloodplain primaryproductiontofloodfrequencyandtiming.Journal of Applied Ecology. 38,pp. 126136. SKM(2006).AssessmentofVictoriandemandsintheRiverMurrayandfuturesupply options.ReporttotheDepartmentofSustainabilityandEnvironment,Melbourne. SKM(2005).Environmentalflowscomplianceandecologicalriskassessment methods.DraftreporttotheDepartmentofSustainabilityandEnvironment. Sousa,M.E.(1979).Disturbanceinmarineintertidalboulderfields:the nonequalibriummaintenanceofspeciesdiversity. Ecology, 60,pp.2251239. vanderSmanA.J.,BlomC.W.P.M.andBarendseG.W.M.(1993).Flooding resistanceandshootelongationinrelationtodevelopmentalstageand environmentalconditionsin Rumex maritimus L.and Rumex palustris Sm. New Phytologist ,125,pp.7384. vanEckWH.M.,vandeSteegH.M.,BlomC.W.P.M.anddeKroonH.(2004).Is tolerancetosummerfloodingcorrelatedwithdistributionpatternsinriverfloodplains? Acomparativestudyof20terrestrialgrasslandspecies. Oikos ,107,pp.393405.

Peter Cottingham & Associates 101 Evaluation of summer inter-valley water transfers from the Goulburn River vanEckW.H.J.M.,vandeSteegH.M.,BlomC.W.P.M.anddeKroonH.(2005a). Recruitmentlimitationalongdisturbancegradientsinriverfloodplains. Journal of Vegetation Science, 16,pp.103110. vanEckW.H.J.M.,LenssenJ.P.M.,RengelinkR.H.J.,BlomC.W.P.M.anddeKroon H.(2005b).Watertemperatureinsteadofacclimationstageandoxygen concentrationdeterminesresponsestowinterfloods. Aquatic Botany, 81,pp.253 264. vanEckW.H.J.M.,LenssenJ.P.M.,vandeSteegH.M.,BlomC.W.P.M.andde KroonH.(2006).Seasonaldependenteffectsoffloodingonplantspeciessurvival andzonation:acomparativestudyof10terrestrialgrasslandspecies. Hydrobiologia, 565,pp.5969. VervurenP.J.A.,BlomC.W.P.M.,anddeKroonH.(2003).Extremefloodingevents ontheRhineandthesurvivalanddistributionofriparianplantspecies. Journal of Ecology, 91,pp.135146. VoesenekL.A.C.,ColmerT.D.,PierikR.,MillenaarF.F.andPeetersA.J.M.(2006). Howplantscopewithsubmergence. New Phytologist, 170,pp.213226. Weatherhead M. A. and James M. R. (2001). Distribution of macroinvertebrates in relationtophysicalandbiologicalvariablesinthelittoralzoneofNewZealandlakes. Hydrobiologia ,462,pp.115129. ZweigL.D.andRabeniC.F.(2001).Biomonitoringfordepositedsedimentusing benthicinvertebrates:ateston4Missouristreams. Journal of North American Benthological Society, 20,pp.643657.

Peter Cottingham & Associates 102 Evaluation of summer inter-valley water transfers from the Goulburn River 9 APPENDIX 1: FLOW-RELATED ECOSYSTEM OBJECTIVES Note: the following tables include a restatement of previous environmental flow objectives, and additional considerations and objectives based on new insights on ecosystem responses gained since 2003. The information presented is that applying to the current study reaches (Reach 4 and 5 of the original study).

Peter Cottingham & Associates 103 Evaluation of summer inter-valley water transfers from the Goulburn River

Table 22: Flow related issues and ecosystem objectives related to river geomorphology Ecological Issue Environmental or Current Condition Ecological Extent to which Complementary Flow Seasons Notes Attribute Ecological Values Objectives (code) objective is flow management component related required codes Geomorphic Increasedbank AsonMurrayanalog Presentlyonly Avoidnotching 100%alongwithloss F025a DecApr Flowstayswithinoneflow diversity erosion(notching) makesitdifficultfor observedintheWyuna (Geo1) ofgrass bandfortwicethenatural duetolong plantstocolonisethe reach duration,butthehigherthe durationsummer bankface flowgets,themore flows undesirablelongduration stillstandsbecomebecause thevelocityishigher.Also dependsontheeffectofthe flowonbankgrasses. Rapiddrawdown Reducedhabitatvalue Rareprocessat Avoidslumping 100% revegetation F023 DecApr Rateoffallisdoublethe leadingtomass ofbanks+increased present (Geo2) naturalratewithtwicethe failureofbanks turbidity frequency(thistoocouldbe scaledupthebank)i.e. fallstwiceasfast,twiceas often. Fillingofpoolsby Reducedfishhabitat? Uncertain,probably Maintainpool Alsocontrolledby FO04ac DecApr Perhapsbestexpressedin redistributionof changedlittlesince depth(Geo3) sedimentsupply termsofshearstress sandatregulated regulationbegan. magnitudeanddurationas flows forF004ac.Thekeyisto reducethe'moderate'sized eventsthatfillthepoolsbut donotflushthem. Potentiallossof N/A DecApr lowflow habitat(channel marginandLWD) becauseof depositionorlack oferosion

Peter Cottingham & Associates 104 Evaluation of summer inter-valley water transfers from the Goulburn River

Ecological Issue Environmental or Current Condition Ecological Extent to which Complementary Flow Seasons Notes Attribute Ecological Values Objectives (code) objective is flow management component related required codes Benchformation: Uniqueterrestrial Rateofaccretion Maintainbench Sedimentsupplyalso revegetation DecApr Avoidflowsthatalwayssitat reductioninrateof habitat,consistent alreadycompromised accretionand afactor thetopofthepresentbench verticalaccretion backwaterarea bysedimentstarvation erosionasfor level=1.5mongaugeor ofconcave natural(covered 1000ML/d.Mechanismis benches,increase byGeo1andGeo thatflowsthatarebig inerosionofbench 6) enoughtocoverthebenches margins(restricted quicklyexhaustthemof toupperthirdof sedimentbecauseofthelow targetreach) yieldtotheriver.Avoid flowsthataretwiceaslong onaverage.

Scourofaquatic Keyaquaticplant Good.Abundant Naturalrateof F004ac DecApr Someliteraturesuggests macrophytes Vallisnaria inthereach disturbance thatflowsabove0.75m/sare (especially (Geo6) startingtoerodethe Vallisnaria) Vallisnariainsandbed channelsand1m/sis severelystressingthem.

Peter Cottingham & Associates 105 Evaluation of summer inter-valley water transfers from the Goulburn River

Table 23: Ecological features and flow components to be assessed for riverine production in the Goulburn River. Ecological Features Environmental or Current Condition Ecological Extent to which Complementary Flow Seasons Notes Attribute Ecological Values Objectives objective is flow management component related required codes Planktonic Biomass Sourceoffoodfor Unknown Biomasslevels Increasedchannel Managementofin F001 Spring Increasesinphytoplantkon algae macro/micro resemblingsites retentiondueto streamstructure Summer biomassoccurataverage invertebratesandfish unaffectedbyflow reducedwatervelocity includingshapeand flowvelocities<0.20.3m/s regulation and/orincreased woodydebris,nutrient inMurrayandsimilarrates hydraulicretention management, observedelsewhereso zonesallows couldusemeanduration accumulationof whenaveragevelocity<0.3 biomassifgrowth m/s.Mikehasestimated ratesexceedloss retentionascrosssectional rates.Otherfactors area/flow.Inverseisaverage impingeeg. velocity.Criticalaverageflow sedimentation, insameunitsis0.3 nutrients,grazing m/s=0.93h/km,0.25=1.1, 0.2=1.38,0.15=1.85, 0.1=2.8,0.05=5.6

Dependingonsinking Managementofin F013 Spring Inawellmixedcolumnwith rateofphytoplankton, streamstructure Summer anonmixedbottomsurface turbulentmixingand includingshapeand thepopulationlossby depthofwater woodydebris,nutrient sinkingis:Nt=Noe(vt/z) resulting management, thereforeln(No/Nt)*1/t=v/z sedimentationwill wherevsinkingvelocityand reducephytoplankton zisaveragedepth.Thisis biomass.Otherfactors therateofchangein impingeeg.nutrients, populationduetolossesby grazing,light sedimentationexpressedin availability aformequivalenttoagrowth rate.Lookatmean populationlossratefor seasonsassumingphytos havesinkingratesof0.95 and0.4and0.2m/day

Peter Cottingham & Associates 106 Evaluation of summer inter-valley water transfers from the Goulburn River

Ecological Features Environmental or Current Condition Ecological Extent to which Complementary Flow Seasons Notes Attribute Ecological Values Objectives objective is flow management component related required codes Productivity Populationgrowth Unknown Productivity Reducedlight Managementof F002 Spring Approximatelydelimitszero providingsourceof consistentwith penetrationasaresult sedimentloads,colour Summer growthperiods.Calculatefor foodformacro/micro supporting ofpoorlight seasonsproportionoftime invertebratesandfish foodwebs penetration,deepwell wheneuphoticdepthless comparablewith mixedconditions,if than0.3timestheaverage sitesunaffectedby zeu/zaveis<0.3then depth flowregulation lightstarvationlikely andproductionisnot possible

Aszeu/zavedeclines Managementof F012 Spring Followsconditionsfoundin towardsca.0.3 sedimentloads,colour Summer MurrayRbyOliver/Merrick. phytoplankton Wheneuphotic productiondecines depth

Biomass Sourceoffoodand Unknown Biomasslevels Areaofcolonization Managementof F014 Spring Calculatemeaneuphotic habitatformacro resemblingsites determinedbyextent sedimentloadsand Summer areaofbenthosforseasons /microinvertebrates unaffectedbyflow oflightzone(use colourforlight andfish regulation euphoticdepth)which conditions,channel isinfluencedbywater shapeandinstream levelonbankandalso structuressuchas sedimenttype woodydebrisfor surface

Peter Cottingham & Associates 107 Evaluation of summer inter-valley water transfers from the Goulburn River

Ecological Features Environmental or Current Condition Ecological Extent to which Complementary Flow Seasons Notes Attribute Ecological Values Objectives objective is flow management component related required codes Areaofcolonization Substratecondition, F015 Spring Literaturesuggeststhat determinedbyextent channelstructures Summer filamentousbiofilmshave oflightzonebut maximumbiomassatnear delineatedby bedvelocitiesof<0.2m/s velocitiesinfluencing anddeclineexponentially biofilmstability abovethesevelocitiesto verylowvaluesabove0.4 m/s.Mucilaginousformshad maximumbiomassatnear bedvelocitiesof0.2m/s. Calculatemeaneuphotic areaofbenthoswithvelocity <0.3m/sforseasonsor<0.2 and<0.4

Periphytic Productivity Productivityconsistent Unknown Productivity I.Increasedwater Asabove F016 Spring Problemwithabove algae/biofilm withsupportinga resemblingsites levelfluctuation, Summer measuresisthateuphotic comparablefoodweb unaffectedbyflow strandingperiphyton areamaybemovingrapidly tounregulated regulation abovewaterlineorto upanddownbanksothat conditions adepthgreaterthan periphytoncannotestablish. eupoticdepthfor Evenwithrapidgrowthrates extendedperiods andgoodpropaguledelivery establishingbiofilmswilltake minimumof2weeks. Investigatetheproportionof timethatparticularpoints withinrepresentativeflow bandsonthebankarewithin theeuphoticzonefor minimumof2weeksover theseasons

II.Increasedwater Asabove F017 Spring Anotherwayoflookingatthe levelfluctuation, Summer previoiuscomponentis strandingperiphyton ratherthanproportionoftime abovewaterlineorto lookatnumberoftimes adepthgreaterthan withinseasonsthatparticular eupoticdepthfor pointswithinrepresentative extendedperiods flowbandsarewithinthe euphoticzoneforperiods exceeding2weeks

Peter Cottingham & Associates 108 Evaluation of summer inter-valley water transfers from the Goulburn River

Ecological Features Environmental or Current Condition Ecological Extent to which Complementary Flow Seasons Notes Attribute Ecological Values Objectives objective is flow management component related required codes Lightrequirementfor Asabove F018 Spring Difficultbecauseofwater productivity Summer levelvariation,butcould estimateaveragelightin areaswithinrepresentative flowbandsthatarewithin theeuphoticzoneforperiods lasting2weeksover seaso nsie.averagedepthof eachoccurrenceinF017. Averagelightatagivenpoint isestimatedasIz=Iexp^( kd*z).AsIandkdare consideredtobeconstant, thentheaveragelightisa functionofzave.At Murchisonkd~2whileat Wyunakd~4.7.Assuming summerlightca.900and takinglightlimitedregionas 20,100,200wehave correspondingzavevalues atMurchisonof1.9,1.1and 0.75andatWyunaof0.81, 0.47and0.32. Diversity Suitablefooditemsto Unknown Community Fluctuatingflow Diversityisinfluencedbythe supportrelianttrophic composition conditionsinfluence timeinandoutofeuphotic. levels(grazers, resemblingsites biofilmdiversityby Similartoabovebiomass microbes,detritivores) unaffectedbyflow movingitinandoutof considerationsbutwithin andanappropriatemix regulation theeuphoticzone.If eachmonththemeanratio fordriving moretimeisspent oftimeineuphotic/timeout biogeochemicalcycles beloweuphoticthen ofeuphotic.Perhaps comparableto biofilmtendstobe improvebyusingtworatios, unregulated moreheterotrophic,if timeineuphotic/timebelow conditions.Suitable moretimeineuphotic euphoticandtimein habitatstructuring thenmoreautotrophic euphotic/timeabove andgreenfilamentous euphotic (althoughvelocity influencesthis)while beingstrandedresets biofilmdevelopment suchthatmaystart againmore heterotrophicbutshifts toautotrophic.

Peter Cottingham & Associates 109 Evaluation of summer inter-valley water transfers from the Goulburn River

Ecological Features Environmental or Current Condition Ecological Extent to which Complementary Flow Seasons Notes Attribute Ecological Values Objectives objective is flow management component related required codes Biomass Sourceoffoodand Unknown Biomasslevels Areaofcolonization Managementof F014 Spring, Calculatemeaneuphotic habitatformacro resemblingsites determinedbyextent sedimentloadsand Summer, areaofbenthosforseasons /microinvertebrates unaffectedbyflow oflightzone:use colourforlight Autumn asdoneforperiphytonas andfish regulation euphoticdepth conditions,channel theeuphoticzonelimits shapeandinstream appearsimilar structuressuchas woodydebrisforflow modification Areaofcolonization F015 Spring, Criticalnearbedvelocities determinedbyextent Summer, appearsimilartothoseof oflightzone:use Autumn periphytonie0.2m/s euphoticdepth,but maximumbiomasswithfew delineatedbyvelocity, macrophytesafter0.9m/s. highvelocities Comparedtoperiphyton, influencing submergedmacrophytes macrophytestability. requiremoredepthtogrow in.Calculatemeaneuphotic areaofbenthoswithvelocity <0.3m/sforseasonsasfor periphyton

I.Increasedwater F016 Spring, Theeuphoticareamay levelfluctuation, Summer, moverapidlyupanddown strandingperiphyton Autumn thebanksothat abovewaterlineorto macrophytescannot adepthgreaterthan establish.Evenwithrapid eupoticdepthfor growthratesandgood extendedperiods. propaguledelivery Assumestableperiod establishingwilltake of6weeksrequiredfor minimumof6weeks. plantestablishment Investigatetheproportionof timethatparticularpoints withinrepresentativeflow bandsonthebankarewithin theeuphoticzonefor minimumof6weeksover theseasons.

Peter Cottingham & Associates 110 Evaluation of summer inter-valley water transfers from the Goulburn River

Ecological Features Environmental or Current Condition Ecological Extent to which Complementary Flow Seasons Notes Attribute Ecological Values Objectives objective is flow management component related required codes Submerged II.Increasedwater Asabove F017 Spring, Anotherwayoflookingatthe macrophytes levelfluctuation, Summer, previoiuscomponentis strandingmacrophytes Autumn ratherthanproportio noftime abovewaterlineorto lookatnumberoftimes adepthgreaterthan withinseasonsthatparticular eupoticdepthfor pointswithinrepresentative extendedperiods flowbandsarewithinthe euphoticzoneforperiods exceeding6weeks

Productivity Productivityconsistent Unknown Productivity Lightrequirementfor F018 Spring, Difficultbecauseofwater withsupportinga resemblingun productivityinfluenced Summer, levelvariation,butaverage comparablefoodweb impactedsites bywaterdepth,light Autumn lightintensitywithineuphotic tounregulated penetration,channel zone,oraddtoaboveie. conditions shape.Seekingzones averagelightineuphotic withsufficientlightfor zoneslasting6weeks. longenoughwithan Estimateaveragelightin acceptabledepth areaswithinrepresentative (assumed>0.2m) flowbandsthatarewithin theeuphoticzoneforperiods lasting6weeksover seasonsie.averagedepthof eachoccurrence.Average lightatagivenpointis estimatedasIz=Iexp^( kd*z).Asweareconsidering Iandkdtobeconstant,then theaveragelightisa functionofzave.At Murchisonkd~2whileat Wyunakd~4.7.Assuming summerlightca.900and takinglightlimitedregionas 20,wehavecorresponding zavevalueatMurchisonof 1.9andatWyunaof0.81.

Peter Cottingham & Associates 111 Evaluation of summer inter-valley water transfers from the Goulburn River

Ecological Features Environmental or Current Condition Ecological Extent to which Complementary Flow Seasons Notes Attribute Ecological Values Objectives objective is flow management component related required codes Diversity Suitablefooditemsto Unknown Community Fluctuatingflow Diversityisinfluencedbythe supportrelianttrophic composition conditionsinfluence timeinandoutofeuphotic. levels(grazers, resemblingun macrophytesurvival Similartoabovebiomass microbes,detritivores) impactedsites anddiversityby considerationsbutwithin andanappropriatemix movingplantsinand eachmonththemeanratio fordriving outoftheeuphotic oftimeineuphotic/timeout biogeochemicalcycles zone. ofeuphotic.Perhaps comparableto improvebyusingtworatios, unregulatedconditions timeineuphotic/timebelow euphoticandtimein euphotic/timeabove euphotic

Energy/Food Supplyofterrestrial Unkknown Floodplain Considerdprincipal Landuse F021 Spring, Aimtoretainconnectivity. supply,nutrients organiccarbon Connectivity formofsupplyof Summer, suitabletosupport allochthonousorganic Autumn foodwebsalongwith carbonalthoughalso sedimentsand aeoliandeliveryand nutrientstodrive flyinginsect biogeochemcialcycles deposition. comparablewith unregulatedconditions

Peter Cottingham & Associates 112 Evaluation of summer inter-valley water transfers from the Goulburn River

Table 24: Ecological features and flow components to be assessed for bankside vegetation along the Goulburn River.

Complementary Ecological Environmental or Ecological Extent to which objective is flow Flow component Features Current Condition management Seasons Attribute Ecological Values Objectives related codes required [1] General: Terrestrial Unquantified,little tussock known,no GRASSES benchmark onriverbank information; ecologicalstudies veryfew,most studieshavebeen onhydrology, hydraulics;no mapping. Goulburn : Knowledgeof Goulburnis qualitative,fromfield vists ABUNDANCE Bankstability Probablygreater [1]Minimise not attempted (cover) throughroot verticalrangenow, likelihoodof systemsbinding extendingfurther extensivebank sparsesoil downbankunder erosion regulatedthanunder nonregulated Habitatunderdry conditions [2a]Maintain Flowcritical:Durationof Landmanagement F006 DecApril andflooded persistentcover submergence(inundation)has practicesthat conditions (see overpartof potentialtodrownoutterresgtrial coulddegrade below) upperpartof vegetation;criticalvaluesforduration soilsand bank(equivalent expectedtovarywithseason,whether vegetationon tonatrualflow cool(autumnwinter)orgrowing bank,especially percentiles (springsummer) upperpart,should wherebank beavoided,such inundationhas as:stockaccess, same/similar extensive durationunder recreational natrualas usage,burningoff. historic)..

Peter Cottingham & Associates 113 Evaluation of summer inter-valley water transfers from the Goulburn River

Complementary Ecological Environmental or Ecological Extent to which objective is flow Flow component Features Current Condition management Seasons Attribute Ecological Values Objectives related codes required [2b]Reduce FlowandWaterlevelsaretheprincipal F006 DecApril cover,iemove driverhere. towards assumed natural,forthose partsofbank fallingbelow threshold (thresholdisflow percentilewhere natrualduration ofinundaitonis approximately equalto historic). HEIGHT Contributesto [3]Maintain not attempted channelroughness somecoverand flowrefuge HEIGHTand Providesa habitatacrossa ABUNDANCE temporaryvelocity flowrangeand refugeforaquatic acrossseasons. small&microfauna ifinundatedin winterspringfloods Composition Biodiversity:specific Nativeperennials, [4]Maintain Flow,alongwithwaterlevelsandtime Insufficient suitesofplant mostly(field compositionthat ofyear,ishighlyrelevantbutisnot knowledgeto speciesand/or observations).No ismainlynative soledeterminant.Stateofknowledge forgeaflow functionaltypes evidenceofspecies species iscurrentlyinsufficienttoassigna componentthat change. (notionallyat relativeimportancetoflowversus describesthis. least75%by otherhydrologicalfactors(levels,time Not attempted cover) ofyear,durations)orotherecological factors(speciespool,season,other disturbances)indetermining nativeness.Equally,isnotpossible selectaflowcomponentthatis uniquelyandunambiguouslylinkedto nativeness

Peter Cottingham & Associates 114 Evaluation of summer inter-valley water transfers from the Goulburn River

Complementary Ecological Environmental or Ecological Extent to which objective is flow Flow component Features Current Condition management Seasons Attribute Ecological Values Objectives related codes required [5]Avoid Flowcritical,evenifimperfectly Upstreamand not attempted conditionsthat understoodatspecieslevel. catchmentcontrol favoursignificant ofknown riparianand outbreaks aquaticweeds essential. knowntooccur inthearea. [2] General: Terrestrial Unquantified,little woody known,no (SHRUBS benchmark andTREES) information. onriverbank Goulburn : andwithin Knowledgeis channel qualitative,fromfield vists. Abundance Contributetohabitat Abundanceinsome [6]Prevent Successofprocessessuchas not attempted (Cover; diversitywithin partsoftheriver further germinationandestablishmentfrom numberof channel,for channelis encroachmentof propagulessuchasseedsorplant patches) terrestrialfaunaand consideredtobe terrestrialshrubs partsisstronglydependentonflow foraquaticfauna(eg greaternowthan andtrees. regime. asvelocityrefugein undernatural highflows). conditions. Aestheticvalue Evidenceof [7]Reverse Usesflowasagentsodependenton NEEDS A NEW encroachment, enroachment flow.Reinstatingwetterconditions(ie FLOW downbankandinto increasingdurationofbankinundation) COMPONENT: channel(where isexpectedtocreateanaerobic duration thesespeciesare conditionsinsubstratewhichif inundated per colonisingbarsand repeatedannuallywillresultinstress, season, and total benches). lossofvigour,rootweakening,and annual eventualdeathortoppling. TARGET wouldbedischargesfrom400MLto approx0.35mdeeper,ieupto750ML fromaperspectiveof REHABILITATION .

Peter Cottingham & Associates 115 Evaluation of summer inter-valley water transfers from the Goulburn River

Complementary Ecological Environmental or Ecological Extent to which objective is flow Flow component Features Current Condition management Seasons Attribute Ecological Values Objectives related codes required Biodiversity:specific Presenceof [8]Protect Treevigourcanbenegativelyaffected NEEDS A NEW suitesofplant woodlandand vigouroftreesin bymanyfactors,rangingfromfireto FLOW species. shrublandpatches existingRiver insectattack,tovandalism,to COMPONENT onhigherinchannel RedGum localisedpollution.Thisobjectiveis (same as above): features.Condition woodland concernedwiththeriskofsoil duration ofunderstoreyoften establishedon saturationthroughsustainedor inundated per poordueto insetbenches persistentinundationofwoodedinset season, and total introducedandor benches,resultinginwaterlogging, annual annualgrassesand throughhighsummerflows. TARGET herbs. wouldbe1mabovewhenvisitedor Locallymodify approx1.3mongauge,andwould microclimate considerdurationsintherange1000 throughshading. to2000ML,fromperspectiveof Minorroleincarbon potential RISK . contributionthrough directcontributionof leaflitter.

Peter Cottingham & Associates 116 Evaluation of summer inter-valley water transfers from the Goulburn River

Table 25: Ecological features and flow components to be assessed for macroinvertebrate populations along the Goulburn River. Ecological Features Environmental or Current Condition Ecological Objectives Extent to which objective Complementary Flow Seasons Attribute Ecological Values is flow related management required component codes Macroinvertebrates DIVERSITY Resilliencetochange. Variablebutmostly Fullrangeofhabitattypes Biodiversity Allpotentially poor(EPAdata) presentand'functional'. overspace successfultaxa andtime represented

1.AquaticVeg(especially Flowisalimitingfactor(ie #Riparianlanduse F005 all emergent)onbanksand necessarybutnotsufficient) (Grazing)#High barsvariableoveryears turbidityreduces'flexibility'of butsimilar(insum)to flowcomponents natural.

F007 All(espspr/summ)

F010 springsummer

2.Rangeofsnaghabitats Quantityandvarietyof Snagmanagement F002 all (NaturalInterandIntra snagsdependantonvolume yeardistributionnot (interalia)[possibly significantlydiminished) modifiedbybiodiversityand productivityofsnagbiofilm depthandvariabilityoflight climate] F004

F008

F025 DecApr

3.Lowflow&slackwater Highly Riparianlanduseand F007 all zonesmaintained(similar management tositesunaffectedbyflow regulation) F010

Peter Cottingham & Associates 117 Evaluation of summer inter-valley water transfers from the Goulburn River

Ecological Features Environmental or Current Condition Ecological Objectives Extent to which objective Complementary Flow Seasons Attribute Ecological Values is flow related management required component codes F023/F024 4.Litterpacksavailable, moderatehigh Appropriateriverine F003 augmentedandfreeof terrestrialvegetation excesssediment maintainedandfloodplain notalienatedfromhighflows F004 any

F021 all

Habitatheterogeneityover high interannual Perhaps'multi time variability annual'

Waterqualityappropriate Moderate.[Inlower Catchmentland F003 all tosupportingrangeofMI Goulburntemperature management.Indirect taxaasper'natural' assumednotsignificant, effectsofrivermanagement pollutioneffects(salt includingtemperature, nutrientstoxins)notknown. interactionwithgroundwater Sedimentdepositionnoted (salinity)andbankerosion andknownto'knockout' susceptibletaxa]

BIOMASS Sufficientquantityof Notreported(some 1.Providesufficientrange organismstosupport estimatesinrecent andquantityofhabitatand highertrophiclevels EPAobservations). foodresourcestosupport andsufficientnumbers Believedtobepoor macroinvertebrates ineachfunctional feedinggroupto maintainreasonable ecologicalbalance (e.g.breakdownlitter, grazeonprimary producers) 2.Maintain quality offood Moderatehigh.Probably Catchmentandriparianland F003 all andhabitatresources closelyassociatedwith managementespecially supportingaquaticprimary generationoffinesediment productiontosomeextent andgrazing

Peter Cottingham & Associates 118 Evaluation of summer inter-valley water transfers from the Goulburn River

Ecological Features Environmental or Current Condition Ecological Objectives Extent to which objective Complementary Flow Seasons Attribute Ecological Values is flow related management required component codes Nativefish Diversityofnative Poortomoderate Suitablethermalregimefor Notdirectlyrelated,but Mitigationofcoldwater NA Summer assemblages species,naturallyself spawning,growthand increasedflowsmay releasesmayberequired reporducing survivalofalllifestages decreasewarmingofwater populationsofnative downstreamofEildon fish,threatenedand iconicnativespecies. Suitableinchannelhabitat High Protectionofexistinghabitat F007,F008 Summer(F007), foralllifestages andhabitatrestoration. allyear(F008) Managementofintroduced species

Suitableoffchannel Moderatetohigh Riparianandfloodplain F021 allyear habitatforalllifestages wetlandmanagement. Removalofunnecessary leveesandblockbanks

Passageforalllifestages High Removalofinstreambarriers Notrequired and/orinstallationoffish ladders

Cuesforadultmigration High Removalofinstreambarriers F022 Spring,summer duringspawningseason Lowflowsforspawning High Protectionofexistinghabitat F007 Summer andrecruitment andhabitatrestoration. Managementofintroduced species

Peter Cottingham & Associates 119 Evaluation of summer inter-valley water transfers from the Goulburn River 10 APPENDIX 2: MACROINVERTEBRATE RESPONSE TO WET AND DRY CONDITIONS EPAVictoriacarryoutregularmacroinvertebratemonitoringalongtheGoulburn. Thefollowinganalysisisbasedondata(LMetzling,pers.Com)from macroinvertebratesamplestakenintheGoulburnnearSheppartonandMcCoy’s bridgeusingtwosamplingmethods–handnetsweepsattheedgeoftheriverand artificialsubstratesamples(bundlesofsticksprovidinghabitatsimilartocourse woodydebris)–duringtheperiod199294andagainin200506usinghandnet sweepsalone.ThesesetsofsamplesaredesignatedASS,HN19,andHN20 respectivelyforthefollowingdiscussion.Thetaxonomicresolutionofthedatais mixedwithidentificationstofamilylevelorfiner. Themeannumbersoftaxacapturedpersamplewerequitesimilarforeachgroupof samples–17.79taxaperASSsample(14samples),16.56forHN19(9samples), and14.33forHN20(12samples).However,thetotalnumberoftaxaobserved througheithersamplingmethodinthe‘wet’period199294(73taxainASS,79taxa inHN19)wasnotablyhigherthaninthehandnetsamplestakenduringthedrought period200506(36taxainHN20).Oftheselatter36taxa,only11hadbeen observedinanyHN19samples.Theseresultsimplythat,whilstthetaxonomic richnessatanypointintheriverremainedfairlyconstantinwetanddryperiods,the diversityorheterogeneityofmacroinvertebrateswasconsiderablygreaterduringthe wetperiod(regardlessofsamplingtechnique).Unfortunately,thesamplingmethods usedprecludeanyreliableestimateofbiomassfromthesedataandtemporal differencesinthisaspectofmacroinvertebratecommunitiescannotbeassessed. Moredetailedanalysissupportstheaboveassessmentoftaxonomiccomposition, however.FigureXisanordinationplotresultingfromaNMDSanalysisbasedon BrayCurtissimilarityindicescalculatedusingfourthroottransformationofcounts fromlivepickedsamples.Theanalysisindicatesnotabledifferencesinthe compositionofmacroinvertebratecommunitiessampledbythetwomethodsduring 199294(averagedissimilarity94%)andalsobetweencommunitiesin199294 versusthosein200506bothsampledusinghandnets(averagedissimilarity92%). SIMPERanalysis(ref)rankstaxaaccordingtotheircontributiontotheobserved dissimilaritiesbetweengroupsofsamples.TheresultsaresummarisedintableY. Differencesbetweensamplingmethods–increasedrepresentationofoligochaetes (associatedwithorganicmaterialandsediment)andthemayfly, Cloeon sp. (detritivore),inthestickbundles(ASS)and Miconecta sp.(omnivorousbug associatedwithbiofilminlowflowzonesandwetlands)intheedgenetsamples (HN19)–supportthesuggestionthathabitatdiversitycontributestothebiodiversity ofmacroinvertebratecommunities. Theanalysesalsoshowedacleardifferencebetweensweepnetsamplestakenin 199294andsimilarsamplesin200506(92%).Againtherelativenumbersof Micronecta sp.contributesubstantiallytothisdifferenceasdoesthe ephemeropteran, Cloeon sp.–bothbeingabsentfromthe200506samples. Unidentifiedcorixids(predaciousbugsassociatedwithopenwater)occurredin significantnumbersin200506butwerenotfoundin199294.

Peter Cottingham & Associates 120 Evaluation of summer inter-valley water transfers from the Goulburn River

Thesubstantialdissimilaritybetweenedgesamplesin199294(HN19)versusthose in200506(HN20)isalittlemoredifficulttoexplainpartlybecauseinformation regardinghabitatconditions(extentofvegetation,flowconditionsetc.)islimitedfor the199294samples.Thereisalsonoinformationabouttherelativebiomass presentasthedataaresubsamplesofanunspecifiedproportionofthetotalcatch. Thereisthereforenowayofdeterminingifthesamplescomefromdenseorsparsely distributedcommunities. Thesearesignificantfactorsthatshouldbebourninmindthroughthefollowing assessment. Arecentstudyof20yearsofmacroinvertebratesamplingintheMurray(Hoenderdos 2006)indicatedlongperiodsofstablecommunitycompositionbrokenupbytwo ‘sudden’shiftstonew,stable,assemblages(interestingly,oneoftheseoccurredin 1994.Hoenderdos(2006)observedthatthesuddenshiftsinmacroinvertebrate communitycompositionatMurraysitesin1985and1994occurredduringdry periodsthat,inturn,followedsignificantperiodsofhigherthanaverageflow.No causalexplanationsareprovidedbutitisclearthatmacroinvertebratecommunities intheMurraywererespondingtofactorsoperatingonagreatertemporalscalethan seasonalorannual.Somehydrologicalfactorseemsalikelyexplanation.Itisalso evidentthattheperiod199294wasconsiderably‘wetter’than200506(seesome figureinthereportsomewhere). Thepossibilitythattherelativedrynessofconditionsmightbeestimatedfrom precedenthydrologicalconditionswastestedbyassessingthemacroinvertebrate dataagainstthefollowinghydrologicalvariables: • Flow(ML/day)onthedayofsampling(‘flowondayofsampling’) • Dayssinceflowexceeded500ML/day • Dayssinceflowexceeded1000ML/day • Dayssinceflowexceeded2000ML/day • Dayssinceflowexceeded5000ML/day • Dayssinceflowexceeded1000ML/day • Flowondayofsamplingas%ageofmaximumflowduringpreceding30days • Flowondayofsamplingas%ageofmaximumflowduringpreceding60days • Flowondayofsamplingas%ageofmeanflowduringpreceding30days • Flowondayofsamplingas%ageofmeanflowduringpreceding60days • CVofflowforpreceding30days • CVofflowforpreceding60days • CVofflowforpreceding90days Thesedatawerenormalised(tocompensatefordifferencesinnumericalscale)and adissimilaritymatrix(Euclidiandistance)calculated.TheBIOENVprocedure (ClarkeandWarwick1994)wasappliedseekingtoidentifymaximumrank correlationbetweenthismatrixandonedescribingdissimilaritiesbetweenthe macroinvertebratesamples.Theflowvariablethatgroupsthesitesinapatternmost similartothemacroinvertebratedata‘flowondayofsamplingas%ofmeanflow duringthepast60days’.Thebestfittingpairofhydrologicalvariableswasthisone plus‘dayssinceflowsexceeded2000ML/day’.Itshouldbenoted,however,thatin bothcasestheweightedSpearmanRankCorrelationisonlyalittleover0.3, indicatingthatotherfactorsarealsolinkedtotheobservedbioticdissimilarity.

Peter Cottingham & Associates 121 Evaluation of summer inter-valley water transfers from the Goulburn River

11 APPENDIX 3: TEMPERATURE MODELLING GBIVTthermalcalculations BradfordSherman CSIROLandandWater

Peter Cottingham & Associates 122 Evaluation of summer inter-valley water transfers from the Goulburn River

Summary Twomethodswereusedtopredicttheeffectofintervalleytransfersonwater temperatureintheGoulburnRiverdownstreamofGoulburnWeir.Thefirstmethod (‘assumedheatflux’)employedasimpleheatbudgetmodelhasbeenusedto calculatechangesinmonthlymeanwatertemperaturealongtheGoulburnRiver usinghistorical,minimumandproposedIVTdischargescenarios.Channelhydraulic characteristicswerecomputedusingManning’sequation.Anetheatfluxbasedon observationsatHumeDamandChaffeyDamwasassumedtoapplytotheGoulburn Riveraswell.Thesecondmethodemployedthe‘EquilibriumTemperatureMethod’ todeterminetheexpectedequilibriumtemperature(ETM)predictedusingSILO historicalmeteorologicalvaluesfortheregionnearReach4andwindspeedat Tatura. TheETMapproachmatchedobservedtemperaturetrendsmuchbetterthanthe ‘assumedheatflux’methodanditspredictionshavehigherconfidence.However, thereremainunresolvedissuesregardingthereconciliationofobservedriver temperaturesatMcCoysBridgewiththeETMpredictionswhicharebeyondthe scopeofthisreporttopredict. The ETM method predicts that changes in water depth arising from IVTs are expected to have little impact on water temperature compared to the existing conditions .Theexpectedtemperaturevariedbyapproximately0.4°Cbetweenthe currentconditions(1.3massumeddepth)andthemaximumanticipatedIVT(350 GL,5mdepth). TheobservedtemperatureatMurchisonwas0.51°CwarmerthanETMpredictions duringspringearlysummerbutgenerallytrackedtheETMpredictionswell. Observationsclearlyshowthattherivertemperatureincreasesdownstreamof GoulburnWeirandthisimpliesthattheETMpredictionsunderpredictthetrue equilibriumtemperaturealthoughtheerroratMurchisonissmallandtheseasonal patternsarereproducedwell. Thetimescaleforwatertemperaturetoadjusttoshorttermfluctuationsin meteorologicalforcingrangedfromabout1.5dforthecurrentconditionstoslightly morethan6daysforanIVTof350GL.Thisadjustmenttimescaleislikelytobe characteristicofadjustmenttoanytemperaturedifferencebetweenLakeNagambie dischargetemperatureandthepredictedequilibriumtemperatureaswell.TheETM methodsuggeststhattheLakeNagambiedischargetemperatureisalreadycloseto theequlibriumvalueforthegeographicregionanditisnotpossibletopredicta ‘recovery’distanceasaconsequencebecauselittlechangeintemperature downstreamofGoulburnWeirispredictedtooccur. Comparisonofthe‘assumedheatflux’modelpredictionswithobservedtemperature datafortheGoulburnRiverbetweenLakeEildonandTrawoolweresatisfactory duringspringbutlowerthanobservedduringJanAprsuggestingthateither dischargetemperaturesfromEildonDamwerewarmerthanassumed(i.e.lower waterlevel)orthattheassumednetheatfluxwasinerror.Performanceofthemodel downstreamofGoulburnWeirhasnotbeenaccuratelyassessed(beyondthescope

Peter Cottingham & Associates 123 Evaluation of summer inter-valley water transfers from the Goulburn River ofthisreport)asbothdischargeandtemperatureareexpectedtobeimpactedby tributaryflowsfromdrainsandtheBrokenRiver.Apreliminarycomparisonof predictedandobservedtemperaturesatMurchisonundercurrentflowconditions waspoorandcastsdoubtontheusefulnessofthisapproachtoestimatingriver temperatureinthelowerGoulburnRiver.

Background CSIROLandandWaterwashiredtouseasimpleheatbudgetmethodtopredictthe impactofproposedintervalleywatertransfers(IVTs)onthetemperatureofthe GoulburnRiverdownstreamofGoulburnWeir.IVTsintroduceasignificantchangein thedischargeandthishasconsequencesfortherivertemperature(Figure40).The simpleestimatespresentedhereprovideanindicationoftheextentofthelikely impactofIVTsonrivertemperature.

Figure 40: Schematic of Goulburn River system. Yellow circles denote stream flow gaging stations. H o denotes channel bed elevation at gaging station. Also shown are typical travel times along various reaches.

Peter Cottingham & Associates 124 Evaluation of summer inter-valley water transfers from the Goulburn River Method of calculation TheimpactofIVTsonthetemperatureoftheGoulburnRiverdownstreamof GoulburnWeirwasestimatedonamonthlybasisfortheOctAprperiodusinga simpleheatbudgetapproachproposedbySherman(2001).Inthisapproach,the changeinwatertemperatureisestimatedbyspecifyinganetheatflux,channel width,waterdepth,andwatertraveltime.Thenetheatfluxacrosstheairwater interfacewasassumedtobecomparabletothatmeasuredatHumeDam(Sherman 2005)andChaffeyDam(Shermanetal.2001).Thechannelwasassumedtohavea rectangularcrosssectionandthewidthwasassumedequaltothebankfullwidth providedbyP.Cottingham(pers.comm.).Waterdepthandtraveltimewerederived fromspecifiedflowsandtheapplicationofManning’sequationforthereaches considered. Foragivennetheatflux, H,thechangeintemperature,∆T,experiencedalonga reachwithdepth h,duringtime∆tisgivenby, DT = HDt r C ph where ρand Cparethedensityandheatcapacityofwater. Thetraveltimethroughareachisgivenby Dt = L v where Listhereachlength(m)and v(ms 1)isthemeanvelocityinthereach. ThevelocityisestimatedfromManning’sequation, 1 2 1 v = n R 3 S 2 where nisaroughnesscoefficienttypicallyintherange0.030.035fornatural streams, Sisthechannelgradient(m/m)determinedasthedifferenceinelevation betweengaugezeroelevations(theelevationcorrespondingtonoflowandassumed tobeequivalenttothebedlevel)dividedbythereachlengthbetweenthegauges, and Risthehydraulicradius, R = A P

Aand Parethecrosssectionalareaandwettedperimeterwhichforarectangular channelofdepth handwidth b aregivenby, P = 2 h + b A = b h Manning’sequationcanberearrangedas:

Peter Cottingham & Associates 125 Evaluation of summer inter-valley water transfers from the Goulburn River

2 b b h 3 h S 2 h + b n = Q where Qistheflow(m 3s 1). Theflowingdepth, h,wasderivedbysolvingManning’sequationgraphicallyforthe depthbytakingvalueofdepthcorrespondingtoManning’snprovidedbyMelbourne University1Dhydraulicmodelresults(Stewardson,pers.comm.). Assumptions Discharge scenarios Calculationswereperformedusingthefollowingassumeddischargesforthe GoulburnRiverupstreamanddownstreamofGoulburnWeir.Thefivereaches consideredinpreviousworkandcorrespondingstreamflowgaugingstationdetails aregiveninTable26.Dischargeandtemperaturedatareferredtothroughoutthis reportcorrespondtothestationslistedinTable26unlessotherwisenoted. Table 26: Goulburn River study reaches. Reach length was derived from 1:250000 contour map. Gauge zero depth for (Goulburn Weir) is the full supply level (FSL). Reach ID indicates the downstream end of a reach. Shaded rows denote stations within a reach. Reach 4a is measured from 405259 to 405200 and reach 5a is measured from 405204 to 405232. Gauge Reac Bankfull Bankfull Bankfull Reach zero Bed Bankfull hID Flow Flow Width length elevation slope Depth GaugingStation (m 3s 1) (MLd 1) (m) (km) (mAHD) (m/m) (m) Eildon 205.729 (405203) Molesworth 6.82E 1 163 14083 54 57.5 166.540 2.7 (405223) 04 Trawool 5.26E 2 327 28253 68 52.5 138.930 3.5 (405201) 04 Lake 2.05E 3 417 36029 73 71.5 124.240 4.7 Nagambie 04 GoulburnWeir 181.5 114. (405259) 0 (estimate) Shepparton 1.85E 4 825 71280 86 75 100.127 5.9 (405204) 04 Murray@ 1.08E 5 Echuca 578 49939 74 144.4 84.592 6.3 04 (409200) Murchison 4a 20.9 108.679 (405200) McCoysBridge 5a 85.7 91.443 (405232) Thedischargewasassumedtobethesameinreaches13andwasbasedondaily historicalflowdata(P.Cottingham,perscomm.)compiledforthethreereaches betweenLakeEildonandLakeNagambie.AlthoughOctoberexhibitsappreciable

Peter Cottingham & Associates 126 Evaluation of summer inter-valley water transfers from the Goulburn River tributaryinflowsbetweenEildonDamandGoulburnWeir,thisassumptionwasquite goodforNovApr(Figure41). MeanmonthlydischargebelowGoulburnWeirisshowninFigure42.Thereis substantialadditionalinflowtotheGoulburnRiverdownstreamofShepparton (Reach5)wheretheflowincreasesby40100%comparedtoReach4. ConsiderationoftheimpactofthisadditionalflowonthethermalregimeofReach5 isbeyondthescopeofthiswork. TheproposedIVTs,whichassumea‘monthlycropfactorpattern’,arecompared withthehistorical(19952000)meanflowsinTable27.Therangeofflows contemplatedrepresentincreasesinflowinReach4byafactorofroughly3to9. ThereisasignificantdifferencebetweenthehistoricalOctflowsandtheminimum requiredflow.Morerecently,thedroughthascausedareductioninOctflowsto closetotheminimumvalue(P.Cottingham,pers.comm.).

GB flow stats 1995 on 1.2104

4 Eildon(405203) ) 110 1 Molesworth(405223) Trawool(405201) 8000

6000

4000

2000 Meandischarge(MLd 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Figure 41: Mean monthly flows during 1 Jan 1995 - 30 June 2000 below (blue) and at Molesworth (red) and Trawool (green).

GB flow stats 1 Jan 1995 - 30 June 2000 3 1.2104 3

4 9.2710 3

110 3 3 3 3

8000 3 6.3710

) Reach4 5.5910 1 5.1210 6000 Reach5 5.0610 3.6410 3.3210 4000 3.1910 3 1500 1.1110

1000 899 715 676 674 666 616 Discharge(MLd 537 505 495 452 410 376 500 346

0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Figure 42: Mean monthly flows during 1 Jan 1995 - 30 June 2000 between Goulburn Weir and Shepparton (Reach 4, blue) and Shepparton to the River Murray (Reach 5, red).

Peter Cottingham & Associates 127 Evaluation of summer inter-valley water transfers from the Goulburn River

Table 27: Discharge scenarios for Goulburn River below Goulburn Weir. Intervalley transfer (IVT) scenarios are adjusted to reflect a crop demand factor. 200GL Curren 300GL 350GL 200GL 300GL 350GL Current Minimum IVT t Minimum 1 1 IVT IVT 3 3 1 IVT IVT IVT (MLd ) (MLd ) (MLd 1 1 (m s (m s ) 3 1 3 1 3 1 1 (MLd ) (MLd ) 1 (m s ) (m s ) (m s ) ) ) Oct 3321 400 650 750 800 38.44 4.63 7.5 8.7 9.3 No 410 350 1150 1500 1700 4.75 4.05 13.3 17.4 19.7 v De 376 350 1700 2350 2700 4.35 4.05 19.7 27.2 31.3 c Jan 505 350 1900 2700 3050 5.84 4.05 22.0 31.3 35.3 Feb 495 350 1650 2250 2600 5.73 4.05 19.1 26.0 30.1 Mar 452 350 1300 1800 2100 5.23 4.05 15.1 20.8 24.3 Apr 346 350 800 1000 1150 4.00 4.05 9.3 11.6 13.3 Net air-water heat flux ThenetheatairwaterfluxwasassumedtobesimilartothatmeasuredatChaffey DamandHumeDam.MonthlynetfluxesareshowninFigure43andillustrateboth thenaturalinterannualvariabilityofthefluxaswellastheseasonaltrendsinflux. CalculationswerelimitedtotheOctAprperiodandtheheatfluxvaluesusedare givenin

Peter Cottingham & Associates 128 Evaluation of summer inter-valley water transfers from the Goulburn River

Table28.Althoughtheshortwaveradiationcompareswell,windspeeddoesnot (Figure44)andthiscouldleadtoerrorsintheassumedheatflux. compare mean met fluxes 140 ) 2 120 Chaffeyalldata Humealldata 100 Chaffey1995 Chaffey1996 Chaffey1997 80 Hume2002 60 40 20 0 Netairwaterheatflux(Wm 20 1 2 3 4 5 6 7 9 10 11 12 month Figure 43: Mean monthly net heat fluxes computed from on-site high resolution meteorological measurements at Chaffey Dam and Hume Dam.

Peter Cottingham & Associates 129 Evaluation of summer inter-valley water transfers from the Goulburn River

Table 28: Assumed mean monthly net heat flux experienced by Goulburn River. Max Flux Month 2 Flux (Wm ) 2 (Wm ) Oct 90 106 Nov 100 124 Dec 105 110 Jan 85 106 Feb 50 102 Mar 35 38 Apr 20 55

compare Hume eildon met compare Hume eildon met 3.5 350 y=0.97x y=37.52+1.03xR2=0.83 3.0 300 ) 2.5 ) 250 1 2

2.0 200

1.5 150 EildonSW(Wm Eildonwind(ms 1.0 100

0.5 50

0.0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 50 100 150 200 250 300 350 1 2 Humewind(ms ) HumeSW(Wm ) Figure 44: Comparison between Eildon Dam and Hume Dam shortwave radiation and wind speed observations.

Eildon discharge temperature DischargetemperaturefromEildondamisveryconsistentlycoldunderallbutthe mostextremedroughtconditions.For85%ofthetimetheEildonofftakewillbeat least25mbelowthewatersurfaceduringOctApr(Figure45).Thetemperatureat thisdepthisexpectedtobebetween11and12°CbasedonEildonthermistorchain dataforthefirsthalfof2003.

Peter Cottingham & Associates 130 Evaluation of summer inter-valley water transfers from the Goulburn River

Lake Eildon water level 290

280

270

260

250

Offtakelevel 240 Waterlevel(mAHD) 230 Minimum Maximum Mean 220 Mean+1s Mean1s Median 210 Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Figure 45: Monthly water levels in Lake Eildon. Grey bar denotes offtake level. Dashed lines denote ± 1 standard deviation from the mean monthly water levels.

Sources of uncertainty Intrinsicuncertaintiesinheatfluxestimatesarisefromnaturalvariabilityinthenet meterologicalheatfluxes(about±1020Wm 2)aswellasdifferencesinthewater temperaturebetweenEildondischarge(1112°C)andtheChaffeyandHume reservoirsurfacetemperaturescorrespondingtotheheatfluxesinFigure43.For example,adifferenceinwatertemperatureof5°Cwouldintroduceanoffsetof>25 Wm 2inthenetheatfluxequivalenttoroughly0.5°Cd 1fora1mdeepwater column. Therearealsouncertaintiesregardingthehydrauliccomponentsofthecalculation. Anythingthataltersthetraveltime(i.e.velocity)orthedepthinareachwillalterthe predictedtemperaturechange.Thechannelisnotrectangularandthewidth,depth andslopewillvaryalongeachreach.Furthermore,tributaryinflowsmayadd substantialamountsofheattotheriverandcouldnotbeaccountedforwithinthe scopeofthiswork. Finally,itmustbeborneinmindthatthecalculationspresentedhereassumebotha constantmonthlyheatfluxandaconstantwatertemperaturetopredictapotential temperaturechangealongareach. This is not the same as predicting the temperature. Theimportantfeedbackbetweenincreasingtemperatureandtheloss ofheatfromawaterbodyisnotincludedinthecalculations.Inreality,thisfeedback stronglydampstemperatureincreasessuchthatforallpracticalpurposesthereis littlechanceofthewatertemperatureeverexceedinganequilibriumtemperatureof

Peter Cottingham & Associates 131 Evaluation of summer inter-valley water transfers from the Goulburn River

2526°CintheGoulburnRiver.Norareanyheattransfersbetweenthewaterand theearthconsidered.Whereverylargepotentialtemperaturechangesarepredicted theyshouldbeinterpretedasindicatingthattheriverapproachesequilibriumearlyin thereachandthenmaintainsanequilibriumtemperaturealongtheremainderofthe river. Results Eildon Dam to Lake Nagambie - validation LittlechangeinthereleasepatternsfromEildondamareexpectedandasingle calculationwasperformedfortheupper3reachesasatestofthemodel.Resultsfor theGoulburnRiverupstreamofLakeNagambiearepresentedinTable4(hydraulic parameters)andTable30(predictedtemperatureincreases). BetweenEildonDamandLakeNagambie,thetemperatureispredictedtoincrease by34°CduringOctDec.Assumingthereleasetemperatureis1112°Cthe predictionisthattheriverwillwarmtowithintherange1416°Cduringthisperiod. DatacollectedatTrawoolconfirmthepredictionverywell(Figure46).DuringJan Aprsmallertemperatureincreases(12°C)arepredictedwhich,giventheobserved temperaturerangeatTrawoolof1619°Cimplyawarmerdischargetemperature fromEildonDamorasignificanterrorintheassumednetheatflux.Waterlevels during19952000fellnearlymidwaybetweenthemeanandmean1stddevlinesin Figure45,consistentwiththerequirementforwarmerdischargewaterbutprobably notenoughtoaccountfortheentirediscrepancy.Therelevantreservoirtemperature datawerenotavailabletoconfirmthishypothesisatthetimeofwriting.Such confirmationwouldprovideusefulinsightintotheaccuracyofthesimplemodelling approachusedhere.

Peter Cottingham & Associates 132 Evaluation of summer inter-valley water transfers from the Goulburn River Table 29: Characteristic depth, velocity and travel time for reaches 1-3 and Lake Nagambie for the assumed monthly mean daily discharge for Eildon - Lake Nagambie and corresponding (Vol = 25000 ML, mean depth = 2.2 m). Reach1 Reach2 Reach3 Nagambie Eildon Eildon Nagambie Nagambie Residence Depth Velocity ∆t Depth Velocity ∆t Depth Velocity ∆t mean mean time (m) (ms 1) (days) (m) (ms 1) (days) (m) (ms 1) (days) discharge discharge (days) (MLd 1) (m 3s 1) Oct 6915 80 1.5 1.0 0.7 1.4 0.8 0.7 1.8 0.6 1.4 3.6 Nov 5276 61 1.3 0.9 0.8 1.2 0.7 0.8 1.6 0.5 1.5 4.7 Dec 7989 92 1.7 1.0 0.7 1.6 0.9 0.7 2.0 0.6 1.3 3.1 Jan 8469 98 1.8 1.0 0.6 1.6 0.9 0.7 2.1 0.6 1.3 3.0 Feb 8720 101 1.8 1.0 0.6 1.7 0.9 0.7 2.1 0.7 1.3 2.9 Mar 8085 94 1.7 1.0 0.7 1.6 0.9 0.7 2.0 0.6 1.3 3.1 Apr 4985 58 1.3 0.8 0.8 1.2 0.7 0.8 1.5 0.5 1.6 5.0 Table 30: Predicted temperature changes along reaches 1-3 and during passage through Lake Nagambie. Observed change was computed from 15-minute temperature data at Tawool (405201) and downstream of the Goulburn Weir (405259). Observed ∆TEildon Predicted∆T Observed∆T ∆TReach1 ∆TReach2 ∆TReach3 ∆T Nagambie reach3+ reach3+ (°C) (°C) (°C) Nagambie (°C) Nagambie Nagambie (°C) Oct 0.8 1.0 1.4 3.2 3.1 4.5 2.3 Nov 1.0 1.1 1.6 3.7 3.6 5.2 2.1 Dec 0.8 1.0 1.4 3.2 3.1 4.5 3.5 Jan 0.6 0.7 1.0 2.2 2.1 3.0 3.4 Feb 0.4 0.4 0.6 1.4 1.3 2.0 3.2 Mar 0.3 0.3 0.5 1.1 1.0 1.5 2.4 Apr 0.3 0.3 0.4 1.0 0.9 1.4 1.6

Peter Cottingham & Associates 133 Evaluation of summer inter-valley water transfers from the Goulburn River

Trawool (405201) mean monthly temperature 25

20

15

10 Averagetemperature(°C) 5 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Figure 46: Mean monthly temperature for Goulburn River at Trawool during 1995 - 2001. Goulburn Weir to River Murray TherivertemperaturesatMurchisonandatMcCoysBridgewereestimatedas TMurchison = TNagambie + dT/dt reach4 * Lreach4a / vreach4 TMcCoys = TShepparton + dT/dt reach5 * L reach5a / vreach5 . where dT/dt isthepredicteddailytemperaturechange(Table39), L isthedistancefrom thestartofthereach(Table26)and visthepredictedwatervelocity(Table37). Temperaturewasnotallowedtoexceed26°C.ResultsareshowninTable31andTable 32. Table 31: Predicted temperatures at Murchison. Observed temperatures at Lake Nagambie and Murchison (405200). Nagambie Observed Current Minimum 200GL 300GL 350GL Temp (°C) (°C) (°C) trade trade trade (°C) (°C) (°C) (°C) Oct 16.4 16.7 17.4 24.8 21.6 20.9 20.6 Nov 18.5 19.5 26.0 26.0 21.7 21.0 20.7 Dec 21.0 22.0 26.0 26.0 23.3 22.7 22.4 Jan 21.5 23.0 26.0 26.0 23.2 22.7 22.5 Feb 22.6 22.6 26.0 26.0 23.7 23.4 23.3 Mar 20.8 20.0 23.7 24.5 21.8 21.5 21.4 Apr 17.4 15.6 19.6 19.5 18.3 18.1 18.0 Table 32: Predicted temperature at McCoys Bridge Observed Current Minimum 200GL 300GL 350GL (°C) (°C) (°C) trade trade trade (°C) (°C) (°C) Oct 18 23.6 26.0 26.0 26.0 26.0 Nov 20 26.0 26.0 26.0 26.0 26.0 Dec 22.8 26.0 26.0 26.0 26.0 26.0 Jan 26.4 26.0 26.0 26.0 26.0 26.0 Feb 25.9 26.0 26.0 26.0 26.0 26.0 Mar 22.1 26.0 26.0 26.0 26.0 25.2 Apr 16.4 26.0 26.0 24.0 22.7 22.0

Peter Cottingham & Associates 134 Evaluation of summer inter-valley water transfers from the Goulburn River

Themodelpredictsthattherivershouldattainanearequilibriumtemperature(26°C)by thetimeitreachesMurchisonunderthecurrentandminimumflowscenarios.By increasingtheflowtheIVTsincreasewatercolumndepth,decreasetraveltimeand therebyarepredictedtodecreasethetemperatureatMurchisonby24°C. However,whencomparedwithobservationsoftemperaturethecalculationsforcurrent conditionsconsistentlyoverestimatedthetemperatureatMurchison.Thissuggestseither asignificanterrorintheassumednetheatfluxorintheestimatedtraveltimeforthe system.ObservedtemperaturesshowasurprisinglysmallincreasefromLakeNagambie toMurchisongiventheestimated5daytraveltimefromGoulburnWeirandtheassumed watercolumndepthofabout1.2m.Theimplicationisthattheassumednetheatfluxis muchtoohigh(e.g.byafactorof10inNovDec)orthattheassumedhydraulicconditions containalargeerror.Itseemsunlikelythattheassumedheatfluxcouldcontainanerrorof thismagnitude. ResultsofthecalculationareexpressedinTable33intermsofthedistancedownstream ofGoulburnWeiratwhichthewatertemperatureispredictedtoincreaseto25°C,which isintherangeofmaximumachievabletemperaturesbasedonthermodynamic considerations.Thecalculationsarebasedontheobservedmonthlymeandischarge temperaturefromGoulburnWeirduring19992001(Figure47)becausenochangein dischargecharacteristicsfromEildonDamisanticipatedandtheheatingcharacteristicsof LakeNagambiearedifficulttopredictaccuratelyduetovariablebathymetryandpreferred flowpathsthroughthetortuousstorage. Historically,OctoberdischargefromGoulburnWeir(‘current’inTable33)hasbeenmuch greaterthantheminimumrequiredflowandthetemperatureisnotexpectedtoincreaseto 25°Cfor195km,roughly35kmdownstreamofMcCoy’sBridge.Observedtemperatures atMcCoy’sBridge(Figure48)aresmallerthanpredictedherewhichsuggeststhateither theheatfluxissmallerthanassumedorthattributaryinflowsfromtheBrokenRiver, agriculturaldrains,etchavesupplementedthedischargewithcolderwater.Confirmation ofthishypothesisisbeyondthescopeofthisreportbutthesatisfactorypredictionsforthe upperreachesoftheGoulburnduringspringsuggesttheassumedheatfluxis approximatelycorrect. Recently,flowsbelowGoulburnWeirhavemorecloselyfollowedtheminimumflow requirementandundertheseconditionstheriverispredictedtowarmto25°Cwithin20 kmoftheweir.Theintroductionofintervalleytransfers(IVTs)extendthedistanceforthe rivertorecoverto25°Ctoroughly45,55and65kmforthe200,300and350GLIVT scenarios,respectively.InApril,theobservedtemperaturedecreasesslightlybetween GoulburnWeirandMcCoy’sBridgeandIVTsarenotexpectedtohaveamaterialimpact ontemperaturealthoughtheymaybeexpectedtoattenuatethetemperaturedecrease slightly.

Peter Cottingham & Associates 135 Evaluation of summer inter-valley water transfers from the Goulburn River

Table 33: Predicted distance downstream of Goulburn Weir for river temperature to reach 25°C. Observed temperature at McCoy’s Bridge (1995-2001) may be considered an upper limit for an achievable temperature during summer. Note that observations show a decrease in temperature between Goulburn Weir and McCoy’s Bridge during April. Goulburn McCoy’s Reach4&5distanceto25°CfromGoulburnWeir Weir Bridge Current Minimum 200GL 300GL 350GL Temp Temp (km) (km) IVT IVT IVT (°C) (°C) (km) (km) (km) Oct 16.4 18.0 194.9 21.5 34.9 40.2 42.9 Nov 18.5 20.0 15.0 12.8 42.0 54.7 62.0 Dec 21.0 22.8 8.0 7.5 36.4 50.3 57.7 Jan 21.5 26.4 11.7 8.1 43.9 62.4 70.5 Feb 22.6 25.9 13.3 9.4 44.5 60.6 70.1 Mar 20.8 22.1 30.5 23.6 89.6 128.8 152.3 Apr 17.4 16.4 73.8 74.7 186.2 235.8 273.0 Goulburn Weir (405259) mean monthly temperature (1999-2001) 25 22.6 21.0 21.5 20.8 18.5 20 17.4 16.4 13.9 15 13.5

9.9 9.6 10.5 10 Averagetemperature(°C) 5 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Figure 47: Observed monthly mean temperatures in the Goulburn River downstream of Goulburn Weir (site 405259).

Peter Cottingham & Associates 136 Evaluation of summer inter-valley water transfers from the Goulburn River

McCoy's Bridge (405232) mean monthly temperature 35

30 26.4 25.9 25 22.8 22.1 20

20 18 16.4 13.8

15 13.3 10.2 9.93

10 8.81 Averagetemperature(°C) 5 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Figure 48: Observed monthly mean temperatures in the Goulburn River at McCoy’s Bridge (site 405232).

Temperature estimates using the “Equilibrium Temperature Method” (ETM) CSIROLandandWaterhasrecentlydevelopedacalculationtoestimatewater temperatureandevaporationrateforanylocationintheMurrayDarlingBasin.These calculationsarebasedontheworkofaredrivenbylocalestimatesofmeteorological parametersprovidedfromtheBureauofMeteorology’sSILOinterpolateddataset.The EquilibriumTemperatureMethodisexpectedtobemoreaccuratethanthe‘assumednet heatflux’methodusedinsections16abovebecauseitemploysmeteorologicaldatathat aremorerepresentativeoflocalconditionsandthemethodmoreexplicitlyincorporates thefeedbackofchangingwatertemperatureonthenetheatfluxattheairwaterinterface. Theequilibriumtemperaturemethod(ETM)computesan‘equilibriumtemperature’anda responsetimebasedontheworkofdeBruin(1982).Theequilibriumtemperatureisthe temperaturethatthewaterwouldassumegivenconstantmeteorologicalconditions.In otherwords,attheequilibriumtemperaturethenetheatfluxintothewatercolumniszero. Inrealitythemeteorologicalforcingisneverconstantforasufficientperiodtoallowthe watertemperaturetoreachtheequilibriumtemperature.Thetruewatertemperature,Tw, willdifferfromtheequilibriumtemperature,Teq,bysomeamount,∆T,andisassumedto approachtheequilibriumtemperatureexponentiallyoveratimeinterval,∆t,witha characteristictimescale, τ. Tw=Teq+∆Texp(∆t/ τ) Thefollowingdatawereusedtoperformtheequilibriumtemperaturecalculations: Temperature,vapourpressureandsolarradiationandwindspeeddataweretakenby interrogatingtheBureauofMeteorologySILOdatabaseusingthelatitudeandlongiutude fortheriverchannelmidwaybetweenLakeNagambieandShepparton.Windspeeddata weretakenfromthenearestmetstationatTatura.Dayswithoutwindspeeddatahave beenfilledwiththeaverageofthecompletedataset. Theriverchannelwidthwassetat45mandcalculationsperformedforwaterdepthsof3 and5m.ThisdepthrangespansthepredictedrangeinwaterdepthsforthedifferentIVT scenarios.

Peter Cottingham & Associates 137 Evaluation of summer inter-valley water transfers from the Goulburn River Results ResultsoftheequilibriumtemperaturemethodcalculationsaregiveninTable34.The observedtemperaturedownstreamofGoulburnWeiriswellpredictedbytheETM calculationsforOctthroughFebruaryandisslightlywarmerduringMarchandApril(Figure 49).ThissuggeststhatLakeNagambieisatapproximateequilibriumduringspringand earlysummerandobservedtemperatureshereareareasonableintitalconditionfor determiningdownstreamtemperaturesintheGoulburnRiver. DirectcomparisonofETMpredictedtemperaturewithobservedtemperaturesinthe GoulburnRiverrevealsomebiasinthepredictions.DuringOctDectheobserved temperatureatMurchisonisabout1°Cwarmerthanpredictedandroughly0.5°Cwarmer duringJanApr.AtMcCoysBridgethedifferenceis1.52°C. ThecurvesinFigure50showthepredictedmonthlymeantemperaturesforReach4 assumingwatercolumndepthsof1.3m(currentconditions),3m(200GLIVT),and5m (350GLIVT).Predictedtemperaturesallfallwithinarangeof0.5°CregardlessoftheIVT scenario.Thisindicatesthatthetemperatureintheriverisnotlikelytobeverysensitiveto theflowscenario,i.e.theassumedwatercolumndepth. Thecharacteristictimescaleforthewatercolumntoapproachtheequilibriumtemperature rangesfrom1.5to6daysasthedepthvariesfrom1.3mto5m.Thistimescale representsthetimerequiredforthewatercolumntemperaturetorespondtoshortterm variationsinmeteorologicalforcing,butitcanalsobethoughtof,approximately,asatime scaleforwaterdischargedfromGoulburnWeirtoapproachtheequilibriumtemperature downstream.WiththetraveltimeforReach4predictedtorangefrom913daysunder mostcircumstancesthedifferenceinETMpredictedresponsetimesisequivalenttoa15 20kmlongerdistancerequiredforthewatercolumntoreachequilibrium. BecausetheflowregimeforLakeNagambieisunlikelytochangesubstantiallyandthe watercolumntemperatureisclosetothatpredictedbytheETM,thiscalculationmethod suggeststhereisnotmuchscopeforfurtherwarmingintheriverdownstreamofLake Nagambie.TheobservedtemperatureatMcCoy’sBridge(Figure49)impliesthattheETM isunderpredictingtheequilibriumtemperaturebyasignificantmargin.Itisnotpossibleto reconcilethisdiscrepancywithinthescopeofthisreportasamuchmoredetailedheat budgetcalculationwouldberequired. Therootmeansquaredifferenceinpredictedtemperaturesbetweenthe1.3and5mdeep watercolumnsisabout0.4°Cwiththe5mscenariobeingcolderinspringandwarmerin autumn.Duringsummerthepredicteddifferenceintemperatureisjust0.2°C.TheETM predictionsindicatethatthetemperatureoftheriverdownstreamofGoulburnWeirshould notbeverysensitivetochangesindischarge.

Peter Cottingham & Associates 138 Evaluation of summer inter-valley water transfers from the Goulburn River

T T T GoulbWeir Depth=1.3m McCoy's T T Murchison Depth=5m 30

25

20

15 Meantemperature(°C)

10 Oct Nov Dec Jan Feb Mar Apr Figure 49: Observed temperatures downstream of Goulburn Weir (405259), at Murchison (405200), and at McCoy’s Bridge (405232) compared to ETM- predicted temperatures for Reach 4 (Goulburn Weir - Shepparton) for water depths of 1.3 m (current conditions) and 5 m (350 GL IVT scenario).

Peter Cottingham & Associates 139 Evaluation of summer inter-valley water transfers from the Goulburn River Table 34: Water temperature predictions using equilibrium temperature method. Average temperature at Murchison and McCoys Bridge (1995-2001). Average temperature downstream of Goulburn Weir (2000-2001). Equilibrium temperature calculations were performed for the period 1 Jan 1990 - 3 Apr 2006. Tatura Goulburn Murchison McCoy’s Equilibrium ETM ETM ETMresponse ETM ETM ETM Meanair WeirTemp Temp Bridge temperature response temperature time(d) temperature response temperature Temp (405259) (405200) Temp (°C) time(d) (°C) Depth=5m (°C) time(d) (°C) (°C) (°C) (°C) (405232) Depth= Depth=1.3 Depth=5m Depth=3m Depth=3m (°C) 1.3m m Oct 14.1 16.4 16.7 18.0 16.4 1.9 16.0 7.1 15.6 4.3 15.8 Nov 17.1 18.5 19.5 20.0 18.9 1.7 18.6 6.6 18.2 3.9 18.4 Dec 20.0 21.0 22.0 22.8 21.2 1.7 20.9 6.4 20.6 3.8 20.8 Jan 22.2 21.5 23.0 26.4 22.6 1.5 22.3 5.9 22.1 3.6 22.2 Feb 21.9 22.6 22.6 25.9 22.1 1.6 22.0 6.2 22.1 3.7 22.1 Mar 19.1 20.8 20.0 22.1 19.4 1.8 19.4 6.8 19.9 4.1 19.6 Apr 15.0 17.4 15.6 16.4 15.4 2.0 15.4 7.7 16.1 4.6 15.7

Peter Cottingham & Associates 140 Evaluation of summer inter-valley water transfers from the Goulburn River

Equilibrium temperature method 24

22 tair Tatura 20 teq Tatura Tw1 18 Tatura tw3 Tatura 16 Tw5 Tatura 14

12 MeanTemperature(°C) 10

8 1 2 3 4 5 6 7 8 9 10 11 12 month Figure 50: Mean air temperature at Tatura (from SILO data) and predicted equilibrium (violet) and water temperatures for mean water column depths of 1.3 m (blue), 3 m (green) and 5 m (red) in Reach 4 (Lake Nagambie - Shepparton). Equilibrium temperature method response time 10 Depth=1.3m Depth=3m 8 Depth=5m

6

4

2 Predictedresponsetime(d)

0 1 2 3 4 5 6 7 8 9 10 11 12 month Figure 51: Predicted time for water temperature to reach equilibrium temperature.

Peter Cottingham & Associates 141 Evaluation of summer inter-valley water transfers from the Goulburn River References deBruin,H.A.R."TemperatureandEnergyBalanceofaWaterReservoir DeterminedFromStandardWeatherDataofaLandStation."JournalofHydrology 59(1982):261274. Sherman,BradfordS.2001"ScopingOptionsforMitigatingColdWaterDischarges FromDams."InThermalPollutionoftheMurrayDarlingBasinWaterways: WorkshopHeldAtLakeHume1819June2001:StatementandRecommendations PlusSupportingPapers,editedbyBillPhillips,1228.Sydney:InlandRivers Network,WorldWideFundforNatureAustralia. Sherman,BradfordS.2005HumeReservoirThermalMonitoringandModelling FinalReport.Canberra:CSIROLandandWater. Sherman,BradfordS.,PhillipFord,PatrickHatton,JohnWhittington,DamianGreen, DarrenBaldwin,RoderickL.Oliver,RussShiel,Berkelvan,Jason,RonBeckett, LeighGrey,andBillMaher.2001 The Chaffey Dam Story . Final Report for Crcfe Projects B.202 and B.203 .Canberra:CRCforFreshwaterEcology.

Peter Cottingham & Associates 142 Evaluation of summer inter-valley water transfers from the Goulburn River Appendix A - Supporting data and calculations compare gb monthly temps

30 t405201Trawool t405200Murchison t405259d/sGoulburnWeir t405232McCoysBridge

25

20

15

10

Meanmonthlywatertemperature(°C) 5 11094 11095 11096 11097 11098 11099 11000 11001 11002 Figure 52: Observed monthly mean temperatures along the Goulburn River.

4 Trawooltod/sGoulburnWeir 3 d/sGoulburnWeirtoMurchison MurchisontoMcCoysBridge 2

1

Averagemonthly 0 temperaturechange(°C)

1 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Figure 53: Observed temperature increases in the Goulburn River between Trawool and McCoy’s Bridge. Table 35: Discharge scenarios for Oct-Apr include a crop factor. Curren 200GL 300GL 350GL t 200GL 300GL 350GL Current Minimum IVT IVT IVT (m 3s Minimum IVT IVT IVT (m 3s 1) (m 3s 1) (m 3s 1) (m 3s 1) (m 3s 1) 1) (m 3s 1) (m 3s 1) (m 3s 1) (m 3s 1) Oct 38.44 4.63 7.5 8.7 9.3 38.44 4.63 7.5 8.7 9.3 No 4.75 4.05 13.3 17.4 19.7 4.75 4.05 13.3 17.4 19.7 v De 4.35 4.05 19.7 27.2 31.3 4.35 4.05 19.7 27.2 31.3 c Jan 5.84 4.05 22.0 31.3 35.3 5.84 4.05 22.0 31.3 35.3 Feb 5.73 4.05 19.1 26.0 30.1 5.73 4.05 19.1 26.0 30.1 Mar 5.23 4.05 15.1 20.8 24.3 5.23 4.05 15.1 20.8 24.3 Apr 4.00 4.05 9.3 11.6 13.3 4.00 4.05 9.3 11.6 13.3

Peter Cottingham & Associates 143 Evaluation of summer inter-valley water transfers from the Goulburn River

Table 36: Predicted flowing depth for reaches 4 and 5 determined from Manning’s equation. Reach4flowingdepth Reach5flowingdepth Current Minimum 200GL 300GL 350GL Current Minimum 200GL 300GL 350GL (m) (m) IVT IVT IVT (m) (m) IVT IVT IVT (m) (m) (m) (m) (m) (m) Oct 4.34 1.19 1.59 1.74 1.81 5.36 1.45 1.95 2.13 2.21 No 1.21 1.09 2.26 2.66 2.87 1.47 1.33 2.77 3.26 3.52 v De 1.14 1.09 2.87 3.50 3.82 1.39 1.33 3.52 4.31 4.70 c Jan 1.37 1.09 3.07 3.82 4.12 1.67 1.33 3.78 4.70 5.08 Feb 1.35 1.09 2.82 3.41 3.73 1.65 1.33 3.46 4.20 4.59 Mar 1.28 1.09 2.43 2.97 3.27 1.56 1.33 2.98 3.65 4.02 Apr 1.09 1.09 1.81 2.07 2.26 1.32 1.33 2.21 2.54 2.77 Table 37: Predicted mean velocities in reaches 4 and 5. Reach4velocity Reach5velocity Current Minimum 200GL 300GL 350GL Current Minimum 200GL 300GL 350GL (ms 1) (ms 1) IVT IVT IVT (ms 1) (ms 1) IVT IVT IVT (ms 1) (ms 1) (ms 1) (ms 1) (ms 1) (ms 1) Oct 0.10 0.05 0.06 0.06 0.06 0.10 0.04 0.05 0.06 0.06 No 0.05 0.04 0.07 0.08 0.08 0.04 0.04 0.06 0.07 0.08 v De 0.04 0.04 0.08 0.09 0.10 0.04 0.04 0.08 0.09 0.09 c Jan 0.05 0.04 0.08 0.10 0.10 0.05 0.04 0.08 0.09 0.09 Feb 0.05 0.04 0.08 0.09 0.09 0.05 0.04 0.07 0.08 0.09 Mar 0.05 0.04 0.07 0.08 0.09 0.05 0.04 0.07 0.08 0.08 Apr 0.04 0.04 0.06 0.07 0.07 0.04 0.04 0.06 0.06 0.06 Table 38: Predicted travel times for reaches 4 and 5. Reach4traveltime Reach5traveltime Current Minimum 200GL 300GL 350GL Current Minimum 200GL 300GL 350GL (d) (d) IVT IVT IVT (d) (d) IVT IVT IVT (d) (d) (d) (d) (d) (d) Oct 8.4 19.2 15.8 15.0 14.6 17.2 38.7 32.1 30.3 29.5 No v 19.0 20.1 12.7 11.4 10.9 38.3 40.6 25.7 23.2 22.1 De c 19.6 20.1 10.9 9.6 9.1 39.5 40.6 22.1 19.6 18.6 Jan 17.5 20.1 10.4 9.1 8.7 35.3 40.6 21.3 18.6 17.8 Feb 17.6 20.1 11.0 9.8 9.3 35.6 40.6 22.4 19.9 18.9 Mar 18.3 20.1 12.1 10.6 10.0 36.9 40.6 24.5 21.7 20.5 Apr 20.3 20.1 14.6 13.4 12.7 40.8 40.6 29.5 27.1 25.7

Peter Cottingham & Associates 144 Evaluation of summer inter-valley water transfers from the Goulburn River

Table 39: Predicted daily temperature change in reaches 4 and 5. Reach4dailytemperaturechange Reach5dailytemperaturechange Current Minimum 200GL 300GL 350GL Current Minimum 200GL 300GL 350GL (°Cd 1) (°Cd 1) IVT IVT IVT (°Cd 1) (°Cd 1) IVT IVT IVT (°Cd 1) (°Cd 1) (°Cd 1) (°Cd 1) (°Cd 1) (°Cd 1) Oct 0.4 1.6 1.2 1.1 1.0 0.3 1.3 1.0 0.9 0.8 No v 1.7 1.9 0.9 0.8 0.7 1.4 1.6 0.7 0.6 0.6 De c 1.9 2.0 0.8 0.6 0.6 1.6 1.6 0.6 0.5 0.5 Jan 1.3 1.6 0.6 0.5 0.4 1.1 1.3 0.5 0.4 0.3 Feb 0.8 1.0 0.4 0.3 0.3 0.6 0.8 0.3 0.2 0.2 Mar 0.6 0.7 0.3 0.2 0.2 0.5 0.5 0.2 0.2 0.2 Apr 0.4 0.4 0.2 0.2 0.2 0.3 0.3 0.2 0.2 0.1

Peter Cottingham & Associates 145