Renormalization and Coarse-Graining of Loop Quantum Gravity Christoph Charles

Total Page:16

File Type:pdf, Size:1020Kb

Renormalization and Coarse-Graining of Loop Quantum Gravity Christoph Charles Renormalization and Coarse-graining of Loop Quantum Gravity Christoph Charles To cite this version: Christoph Charles. Renormalization and Coarse-graining of Loop Quantum Gravity. General Relativity and Quantum Cosmology [gr-qc]. Universit´ede Lyon, 2016. English. <NNT : 2016LYSEN053>. <tel-01429887> HAL Id: tel-01429887 https://tel.archives-ouvertes.fr/tel-01429887 Submitted on 9 Jan 2017 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Numéro National de Thèse : 2016LYSEN053 THESE de DOCTORAT DE L’UNIVERSITE DE LYON opérée par l’Ecole Normale Supérieure de Lyon Ecole Doctorale N° 52 Physique et astrophysique de Lyon Discipline : Physique Soutenue publiquement le 25/11/2016, par : Christoph CHARLES Renormalization and Coarse-graining of Loop Quantum Gravity Renormalisation et coarse-graining de la gravitation quantique à boucle Devant le jury composé de : Noui, Karim Maître de conférences Université de Tours Rapporteur Dittrich, Bianca Faculty member Perimeter Institute Rapporteur Freidel, Laurent Faculty member Perimeter Institute Président Speziale, Simone Chargé de recherche Université d’Aix-Marseille Examinateur Samtleben, Henning Professeur ENS de Lyon Examinateur Livine, Etera Directeur de recherche ENS de Lyon Directeur de thèse christoph charles RENORMALIZATIONANDCOARSE-GRAININGOF LOOP QUANTUM GRAVITY RENORMALIZATIONANDCOARSE-GRAININGOFLOOP QUANTUM GRAVITY christoph charles November 2016 Christoph Charles: Renormalization and Coarse-graining of Loop Quan- tum Gravity, , © November 2016 “Together, or not at all” — Amy Pond To my parents to whom I owe nearly everything. To my wife who has always been supportive. ABSTRACT The continuum limit of loop quantum gravity is still an open problem. Indeed, no proper dynamics in known to start with and we still lack the mathematical tools to study its would-be continuum limit. In the present PhD dissertation, we will investigate some coarse-graining methods that should become helpful in this enterprise. We concen- trate on two aspects of the theory’s coarse-graining: finding natural large scale observables on one hand and studying how the dynamics of varying graphs could be cast onto fixed graphs on the other hand. To determine large scale observables, we study the case of hyper- bolic tetrahedra and their natural description in a language close to loop quantum gravity. The surface holonomies in particular play an important role. This highlights the structure of double spin networks, which consist in a graph and its dual, which seems to also appear in works from Freidel et al. To solve the problem of varying graphs, we consider and define loopy spin networks. They encode the local curvature with loops around an effective vertex and allow to describe different graphs by hidding them in a coarse-graining process. More- over, their definition gives a natural procedure for coarse-graining allowing to relate different scales. Together, these two results constitute the foundation of a coarse- graining programme for diffeomorphism invariant theories. vii RÉSUMÉ Le problème de la limite continue de la gravitation quantique à boucle est encore ouvert. En effet, la dynamique précise n’est pas connue et nous ne disposons pas des outils nécessaires à l’étude de cette limite le cas échéant. Dans cette thèse, nous étudions quelques méthodes de coarse-graining (étude à gros grains) qui devraient contribuer à cette entreprise. Nous nous concentrons sur deux aspects du flot: la détermination d’observables naturelles à grandes échelles d’un côté et la manière de s’abstraire du problème de la dynamique à graphe variable en la projetant sur des graphes fixes de l’autre. Pour déterminer les observables aux grandes distances, nous étu- dions le cas des tétraèdres hyperboliques et leur description naturelle dans un langage proche de celui de la gravitation quantique à boucle. Les holonomies de surface en particulier jouent un rôle important. Cela dégage la structure des double spin networks constitués d’un graphe et de son dual, structure qui semble aussi apparaître dans les travaux de Freidel et al. Pour résoudre le problème des graphes variables, nous considérons et définissons les loopy spin networks. Ils encodent par des boucles la courbure locale d’un vertex effectif et permettent ainsi de décrire différents graphes en les masquant via le processus de coarse-graining. De plus, leur définition donne un procédé naturel systématique de coarse-graining pour passer d’une échelle à une autre. Ensemble, ces deux principaux résultats posent le fondement d’un programme de coarse-graining pour les théories invariantes sous dif- féomorphismes. viii PUBLICATIONS [1] Christoph Charles and Etera R. Livine. “Ashtekar-Barbero holon- omy on the hyperboloid: Immirzi parameter as a cutoff for quantum gravity.” In: D92.12 (2015), p. 124031. doi: 10.1103/ PhysRevD.92.124031. eprint: 1507.00851. [2] Christoph Charles and Etera R. Livine. “Closure constraints for hyperbolic tetrahedra.” In: 32.13 (2015), p. 135003. doi: 10. 1088/0264-9381/32/13/135003. eprint: 1501.00855. [3] Christoph Charles and Etera R. Livine. “The closure constraint for the hyperbolic tetrahedron as a Bianchi identity.” In: (2016). eprint: 1607.08359. [4] Christoph Charles and Etera R. Livine. “The Fock Space of Loopy Spin Networks for Quantum Gravity.” In: 48.8 (2016), p. 113. doi: 10.1007/s10714-016-2107-5. eprint: 1603.01117. ix ACKNOWLEDGMENTS I was told this is the hardest part to write. It is certainly most difficult not to forget someone as so many have helped in one way or another. The order of mention should not be taken to represent anything and certainly does not reflect the amount of work these people provided. First and foremost, I want to give a very special thanks to my ad- visor, doctor Etera Livine, who has mentored me, taught me and guided me during the whole thesis. Etera, it took some time to adapt to each other but in the end, I’m grateful. I’m grateful for learning to work with people with different approaches but I’m more especially grateful for all the sacrifices you made and the help you provided as a mental support, most notably in the end. You have introduced the world of research to me and taught me to love it enough to continue. I discovered quantum gravity and more specifically loop quantum gravity thanks to you. For all this, I want to say thank you. Thank you also to all of the defense committee members, doctor Laurent Freidel, doctor Henning Samtleben, doctor Bianca Dittrich, doctor Karim Noui and doctor Simone Speziale. All of you have been kind enough to answer every e-mail, to wait when I had some trouble getting all the information in time and have been flexible enough to accommodate all the difficulties. Thank you also for the help you gave when I had administrative issues. I also want to thank the administrative team of the ENS of Lyon, which is one of the most effective I have ever met. But most impor- tantly, I am always impressed by their willingness to help, their kind- ness and the support they provide. I must thank most particularly Myriam Friat who has borne with me for at least two weeks in the last run for the Ph.D. defense and helped me at every step of the process. My labmates have been of tremendous help too and it is difficult not to omit someone. I want to thank all of them for welcoming me in the first place, for all the discussions about nearly everything, but also for all the support and the encouragement they provided. Thank you to Michel Fruchart, David Lopes Cardozo, to Daniele Malpetti and to Baptiste Pezelier. A particular thank you must be addressed to Michel who have taken the trouble of listening to me talking for hours about quantum gravity just to help me clarify my ideas. His help cannot be overstated. I also want to thank Christophe Göller whose internship I had the chance to oversee. He encouraged me a lot, allowed some very interesting conversations and made the summer work a bit more xi lifeful. I want to thank him more specifically for the help he provided on some quite lengthy computations. I want to thank all my close friends who have been an incredible and inexhaustible source of courage and joy, namely, Chérif Adouama, Ivan Bannwarth, Dimitri Cobb, Siméon Giménez and Cyril Philippe. Thank you for all the discussions. Thank you Cyril for our talks on epistemology guiding my research. Thank you Dimitri for your help in math, where your knowledge is quickly exceeding mine. Thank you Ivan and Chérif for all the discussions about the Ph.D. life and your attentive ear. Thank you Siméon for the numerous conversations, the way too many jokes and the galaxy savings. I am also thinking about my flatmates though this group inter- sects with the previous one. Thank you Nathanaël Dobé and Mar- jorie Dobé, thank you Cyril Philippe, thank you Siméon Giménez, thank you Dimitri Cobb, thank you Maxime Kristanek and thank your Alexandre Drouin. Thank you for all the time playing, sharing meals and talking. Thank you for the good food and wine we shared and thank you for the less good burgers and coke we shared. I also want to thank people from church who have always been keen to ask for news and have been of great support: Gilles and Yvette Campoy, Denis and Maïlys Blum, Jonah and Amy Haddad, Alexandre and Suzanne Sarran.
Recommended publications
  • Effective Field Theory from Spin Foam Models :3D Example
    Effective field theory from spin Foam models :3d example Laurent Freidel Pennstate 2007 Background independent Loop Quantum Gravity in a nutshell Background independence: what the quantum geometry is at Planck scale cannot be postulated its needs to be determined dynamically •Hamiltonian quantisation: gravity is a gauge theory 2 SU(2) Yang-mills phase space (A,E) + constraints i1 (Γ, j , i ) (15) •Kinematical Hilbert space is spannede v by j1 j5 j2 spin network: graph colored by su(2) rep j6 j4 i4 Wave function i3 Ψ(Γ,je,iv)(A) i2 j3 (16) •Eigenstates of Geometrical operators, Area, Vol = trj(h (A)) (17) discrete spectra quantized space◦ geometry s’ 2 •Dynamics:Area !encodedΨΓ,je,i vin= spin8πγ foamlP modelsje(j eallowing+ 1) ΨΓ ,jthee,iv (18) e R Γ + ... computation of transition amplitudes∈!∪ "between Spin networks states: quantum spacetime geometry s 2 Area!Ψ(Γ,je,iv) = 8πγlP je(je + 1) Ψ(Γ,je,iv) (19) # e R Γ ( ∈!∪ " $ %& ' 3 2 VolΨΓ,je,iv = 8πγlP vje,iv ΨΓ,je,iv (20) # v R Γ ( * ∈!∪ ) F (A) E (21) ∝ Area(! H) = A (22) H = tr([E, E]F (A)) (23) Hj(i) (24) i ! i S(g) Dg e lP (25) + K (j) k (l d ) (26) F ∝ F P j ! k [Xi , Xj] = ilP #ijkX (27) m sin(κm)/κ (28) → S3 SU(2) (29) ∼ X ∂ (30) ∼ P 2 (Γ, je, iv) (15) Ψ(Γ,je,iv)(A) (16) v v Ue Pe + [Ωe, Pe] = 0 (0.32) = trj(h (A)) (17) ◦ ∂!e=v 2 S = tr(XeGe) (0.33) Area!ΨΓ,je,iv = 8πγlP je(je +T1ra)nsΨitioΓn,jaem,ipvlitudes between spin network state(1s a8)re defined by e e R Γ s, s! = A[ ], (11) ∈ ∪ ! "phys F ! " ! F:s→s! v v ! δXe = Ue Φwhvere the[nΩotaeti,onΦanvtic]ip=ates t0he interpretation of such amplitudes as defining the physical (0.34) scala−r product.
    [Show full text]
  • The Black Hole Information Paradox and Relative Locality Arxiv
    The black hole information paradox and relative locality Lee Smolin∗ Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2J 2Y5, Canada October 24, 2018 Abstract We argue that the recently proposed principle of relative locality offers a new way to resolve the black hole information puzzle. Contents 1 Introduction 2 2 A possible resolution of the BH information paradox 5 2.1 The usual statement of the black hole information paradox . 5 2.2 The point of view of an observer at the formation of the black hole . 6 2.3 The point of view of the observer at the final evaporation . 7 arXiv:1108.0910v1 [gr-qc] 3 Aug 2011 3 Conclusion 8 ∗[email protected] 1 1 Introduction The black hole information paradox1 has challenged theorists of quantum gravity since first proposed by Hawking[1]. One much discussed view has been that some kind of non- locality is required to resolve the puzzle[4]. A recently proposed framework for quantum gravity phenomenology, called relative locality[5, 6, 7, 8] does feature a very controlled form of non-locality. We argue here that the kind and scale of non-locality implied by relative locality is sufficient to resolve the black hole information paradox. Whatever the quantum theory of gravity that describes nature is, we have good reason to suspect that it involves a dissolving of the usual notion of locality in spacetime. It is therefore of interest to characterize exactly how non-locality first appears in physical phenomena in experimental regimes where one of the Planck scales becomes evident.
    [Show full text]
  • At the Corner of Space and Time
    At the Corner of Space and Time by Barak Shoshany A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Physics Waterloo, Ontario, Canada, 2019 c Barak Shoshany 2019 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. External Examiner: Karim Noui Associate Professor University of Tours Supervisors: Laurent Freidel Faculty Perimeter Institute for Theoretical Physics Robert Myers Faculty Perimeter Institute for Theoretical Physics Internal Members: Robert Mann Professor University of Waterloo John Moffat Professor Emeritus University of Toronto Internal-External Member: Florian Girelli Associate Professor University of Waterloo ii Author’s Declaration This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Statement of Contributions This thesis is based on the papers [1], co-authored with Laurent Freidel and Florian Girelli, the papers [2, 3], of which I am the sole author, and additional unpublished material, of which I am the sole author. iv Abstract We perform a rigorous piecewise-flat discretization of classical general relativity in the first-order formulation, in both 2+1 and 3+1 dimensions, carefully keeping track of curvature and torsion via holonomies. We show that the resulting phase space is precisely that of spin networks, the quantum states of discrete spacetime in loop quan- tum gravity, with additional degrees of freedom called edge modes, which control the gluing between cells.
    [Show full text]
  • Redalyc.Physics of Deformed Special Relativity: Relativity Principle Revisited
    Brazilian Journal of Physics ISSN: 0103-9733 [email protected] Sociedade Brasileira de Física Brasil Girelli, Florian; Livine, Etera R. Physics of deformed special relativity: relativity principle revisited Brazilian Journal of Physics, vol. 35, núm. 2B, junio, 2005, pp. 432-438 Sociedade Brasileira de Física Sâo Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=46415793011 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 432 Brazilian Journal of Physics, vol. 35, no. 2B, June, 2005 Physics of Deformed Special Relativity: Relativity Principle Revisited Florian Girelli and Etera R. Livine Perimeter Institute, 31 Caroline Street North Waterloo, Ontario Canada N2L 2Y5 Received on 23 December, 2004 In many different ways, Deformed Special Relativity (DSR) has been argued to provide an effective limit of quantum gravity in almost-flat regime. Unfortunately, DSR is up to now plagued by many conceptual problems (in particular how it describes macroscopic objects) which forbids a definitive physical interpretation and clear predictions. Here we propose a consistent framework to interpret DSR. We extend the principle of relativity: the same way that Special Relativity showed us that the definition of a reference frame requires to specify its speed, we show that DSR implies that we must also take into account its mass. We further advocate a 5- dimensional point of view on DSR physics and the extension of the kinematical symmetry from the Poincare´ group to the Poincare-de´ Sitter group (ISO(4; 1)).
    [Show full text]
  • 2+1D Loop Quantum Gravity on the Edge,” Phys
    2+1D Loop Quantum Gravity on the Edge Laurent Freidel∗ and Barak Shoshany† Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, Canada, N2L 2Y5 Florian Girelli‡ Department of Applied Mathematics, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1 April 3, 2020 Abstract We develop a new perspective on the discretization of the phase space structure of gravity in 2+1 dimensions as a piecewise-flat geometry in 2 spatial dimensions. Starting from a subdivision of the continuum geometric and phase space structure into elementary cells, we obtain the loop gravity phase space coupled to a collection of effective particles carrying mass and spin, which measure the curvature and torsion of the geometry. We show that the new degrees of freedom associated to the particle-like elements can be understood as edge modes, which appear in the decomposition of the continuum theory into subsystems and do not cancel out in the gluing of cells along codimension 2 defects. These new particle-like edge modes are gravitationally dressed in an explicit way. This provides a detailed explanation of the relations and differences between the loop gravity phase space and the one deduced from the continuum theory. Contents 1 Introduction 2 arXiv:1811.04360v4 [gr-qc] 1 Apr 2020 2 Piecewise-DG-Flat Manifolds in Two Dimensions 6 2.1 TheCellularDecomposition . ........... 6 2.2 TheDGConnectionInsidetheCells . ........... 7 2.3 The DG Connection Inside the Disks . ........... 8 2.4 Continuity Conditions Between Cells . ............. 12 2.5 Continuity Conditions Between Disks and Cells . ............... 13 2.6 Summary......................................... ..... 14 2.7 The Chern-Simons Symplectic Potential .
    [Show full text]
  • New Tools for Loop Quantum Gravity with Applications to a Simple Model Enrique F
    New tools for Loop Quantum Gravity with applications to a simple model Enrique F. Borja, Jacobo Díaz-Polo, Laurent Freidel, Iñaki Garay, and Etera R. Livine Citation: AIP Conf. Proc. 1458, 339 (2012); doi: 10.1063/1.4734429 View online: http://dx.doi.org/10.1063/1.4734429 View Table of Contents: http://proceedings.aip.org/dbt/dbt.jsp?KEY=APCPCS&Volume=1458&Issue=1 Published by the American Institute of Physics. Additional information on AIP Conf. Proc. Journal Homepage: http://proceedings.aip.org/ Journal Information: http://proceedings.aip.org/about/about_the_proceedings Top downloads: http://proceedings.aip.org/dbt/most_downloaded.jsp?KEY=APCPCS Information for Authors: http://proceedings.aip.org/authors/information_for_authors Downloaded 07 Nov 2012 to 131.188.201.33. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions New tools for Loop Quantum Gravity with applications to a simple model Enrique F. Borja∗,†, Jacobo Díaz-Polo∗∗, Laurent Freidel‡, Iñaki Garay§,∗ and Etera R. Livine¶,‡ ∗Institute for Theoretical Physics III, University of Erlangen-Nürnberg, Staudtstraße 7, D-91058 Erlangen (Germany). †Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC. Facultad de Física, Universidad de Valencia, Burjassot-46100, Valencia (Spain). ∗∗Department of Physics and Astronomy, Louisiana State University.Baton Rouge, LA,70803-4001. ‡Perimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo ON,Canada N2L2Y5. §Departamento de Física Teórica, Universidad del País Vasco, Apdo. 644, 48080 Bilbao (Spain). ¶Laboratoire de Physique, ENS Lyon, CNRS-UMR 5672, 46 Allée d’Italie, Lyon 69007, France. Abstract. Loop Quantum Gravity is now a well established approach to quantum gravity.
    [Show full text]
  • Amplitudes in the Spin Foam Approach to Quantum Gravity
    Amplitudes in the Spin Foam Approach to Quantum Gravity by Lin-Qing Chen A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Physics Waterloo, Ontario, Canada, 2017 c Lin-Qing Chen 2017 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. External Examiner Jesus Fernando Barbero Gonzalez Prof. Supervisor Lee Smolin Prof. Co-supervisor Laurent Freidel Prof. Internal Member Niayesh Afshordi Prof. Committee Member Bianca Dittrich Prof. Internal-external Examiner Eduardo Martin-Martinez Prof. ii This thesis consists of material all of which I authored or co-authored: see Statement of Con- tributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Statement of Contributions The construction of the holomorphic Spin Foam model and the calculation of Pachner Moves have been done in collaboration with Andrzej Banburski and Jeff Hnybida, which was supervised by Laurent Freidel. The asymptotics is based on work in collaboration with Andrzej Banburski. The rest of the original results are based solely on my own work. The publications related with this thesis: L. Q. Chen, “Bulk amplitude and degree of divergence in 4d spin foams,” Phys. Rev. D 94, no. 10, 104025 (2016) A. Banburski and L. Q. Chen, “Simpler way of imposing simplicity constraints,” Phys. Rev. D 94, no. 10, 104003 (2016) A.
    [Show full text]
  • Letter of Interest Key Topics in Quantum Gravity
    Snowmass2021 - Letter of Interest Key Topics in Quantum Gravity Thematic Areas: (check all that apply /) (TF01) String theory, quantum gravity, black holes (TF02) Effective field theory techniques (TF03) CFT and formal QFT (TF04) Scattering amplitudes (TF05) Lattice gauge theory (TF06) Theory techniques for precision physics (TF07) Collider phenomenology (TF08) BSM model building (TF09) Astro-particle physics & cosmology (TF10) Quantum Information Science (TF11) Theory of neutrino physics Contact Information: Daniele Oriti (Ludwig-Maximilians-Universitat¨ Munchen,¨ Germany) [[email protected]] Authors: Jan de Boer (University of Amsterdam, The Netherlands) Bianca Dittrich (Perimeter Institute, Waterloo, Canada) Astrid Eichhorn (CP3-Origins, University of Southern Denmark, Denmark) Steven B. Giddings (University of California Santa Barbara, USA) Steffen Gielen (University of Sheffield, UK) Stefano Liberati (SISSA, Trieste and INFN, Trieste, Italy) Etera R. Livine (ENS Lyon, France) Dieter Lust¨ (MPI fur¨ Physik and Ludwig-Maximilians-Universitat¨ Munchen,¨ Germany) Daniele Oriti (Ludwig-Maximilians-Universitat¨ Munchen,¨ Germany) Kyriakos Papadodimas (CERN, Geneva, Switzerland) Antonio D. Pereira (Universidade Federal Fluminense, Niteroi, Brazil) Mairi Sakellariadou (King’s College London, UK) Sumati Surya (Raman Research Institute, Bangalore, India) Herman L. Verlinde (Princeton University, USA) Abstract: Understanding the quantum nature of spacetime and gravity remains one of the most ambitious goals of theoretical
    [Show full text]
  • Black Holes in Loop Quantum Gravity Alejandro Perez
    Black Holes in Loop Quantum Gravity Alejandro Perez To cite this version: Alejandro Perez. Black Holes in Loop Quantum Gravity. Rept.Prog.Phys., 2017, 80 (12), pp.126901. 10.1088/1361-6633/aa7e14. hal-01645217 HAL Id: hal-01645217 https://hal.archives-ouvertes.fr/hal-01645217 Submitted on 17 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Black Holes in Loop Quantum Gravity Alejandro Perez1 1 Centre de Physique Th´eorique,Aix Marseille Universit, Universit de Toulon, CNRS, UMR 7332, 13288 Marseille, France. This is a review of the results on black hole physics in the framework of loop quantum gravity. The key feature underlying the results is the discreteness of geometric quantities at the Planck scale predicted by this approach to quantum gravity. Quantum discreteness follows directly from the canonical quantization prescription when applied to the action of general relativity that is suitable for the coupling of gravity with gauge fields and specially with fermions. Planckian discreteness and causal considerations provide the basic structure for the understanding of the thermal properties of black holes close to equilibrium. Discreteness also provides a fresh new look at more (at the mo- ment) speculative issues such as those concerning the fate of information in black hole evaporation.
    [Show full text]
  • Book of Abstracts
    The 5th Conference of the Polish Society on Relativity 24 - 27 September 2018 BOOK OF ABSTRACTS WEBPAGE: http://ift.uni.wroc.pl/~potor5/ MAIL: [email protected] List of participants Giovanni Amelino-Camelia (Naples) Wojciech Kulczycki (Cracow) Michał Artymowski (Cracow & Warsaw) Sofya Labazova (Moscow) Paolo Aschieri (Alessandria) Taejin Lee (Kangwon) Abhay Ashtekar (Pennsylvania) Jerzy Lewandowski (Warsaw) Eric Bergshoeff (Groningen) Jerzy Lukierski (Wroclaw) Krzysztof Bolejko (Sydney) Patryk Mach (Cracow) Gioele Botta (Warsaw) Shahn Majid (London) Iwo Białynicki-Birula (Warsaw) Edward Malec (Cracow) Arkadiusz Błaut (Wroclaw) Tomáš Málek (Prague) Andrzej Borowiec (Wroclaw) Przemysław Małkiewicz (Warsaw) Lennart Brocki (Wroclaw) Michal Marvan (Opava) Bernd Brügmann (Jena) Lionel Mason (Oxford) Piotr Chruściel (Vienna) Jerzy Matyjasek (Lublin) Adam Chudecki (Lodz) Jakub Mielczarek (Cracow & Marseille) Ewa Czuchry (Warsaw) Djordje Minic (Virginia) Marcin Daszkiewicz (Wroclaw) Sergey Odintsov (Barcelona) Denis Dobkowski-Ryłko (Warsaw) Andrzej Odrzywołek (Cracow) Remigiusz Durka (Wroclaw) Marcello Ortaggio (Prague) Polina Dyadina (Moscow) Tomasz Pawłowski (Warsaw) Filip Ficek (Cracow) Michał Piróg (Cracow) Laurent Freidel (Waterloo) Istvan Racz (Budapest & Warsaw) Andrzej Frydryszak (Wroclaw) Marek Rogatko (Lublin) Jakub Gizbert-Studnicki (Cracow) Giacomo Rosati (Cagliari) Krzysztof Głód (Cracow) Szymon Sikora (Cracow) Giulia Gubitosi (Nijmegen) Andrzej Sitarz (Cracow) Zbigniew Haba (Wroclaw) Tomasz Smołka (Warsaw) Orest Hrycyna (Warsaw)
    [Show full text]
  • Dual Loop Quantizations of 3D Gravity
    Dual loop quantizations of 3d gravity Clement Delcamp,a;b Laurent Freidel,a Florian Girellic aPerimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada bDepartment of Physics & Astronomy and Guelph-Waterloo Physics Institute University of Waterloo, Waterloo, Ontario N2L 3G1, Canada cDepartment of Applied Mathematics University of Waterloo, Waterloo, Ontario N2L 3G1, Canada E-mail: [email protected], [email protected], [email protected] Abstract: The loop quantization of 3d gravity consists in defining the Hilbert space of states satisfying the Gauß constraint and the flatness constraint. The Gauß constraint is enforced at the kinematical level by introducing spin networks which form a basis for the Hilbert space of gauge invariant functionals. The flatness constraint is implemented at the dynamical level via the Ponzano- Regge state-sum model. We propose in this work a dual loop quantization scheme where the role of the constraints is exchanged. The flatness constraint is imposed first via the introduction of a new basis labeled by group variables, while the Gauß constraint is implemented dynamically using a projector which is related to the Dijkgraaf-Witten model. We discuss how this alternative quantization program is related to 3d teleparallel gravity. arXiv:1803.03246v1 [gr-qc] 8 Mar 2018 1 Introduction General relativity is an example of totally constrained system. Upon quantization, the order in which the constraints are imposed implies a choice of representation for the quantum theory. Changing such order then provides different representations of the same quantum theory. Indeed, each constraint generates a type of symmetry and the physical Hilbert space is defined in terms of representations of such symmetries.
    [Show full text]
  • About Lorentz Invariance in a Discrete Quantum Setting
    About Lorentz invariance in a discrete quantum setting Etera R. Livine∗ Perimeter Institute, 35 King Street North Waterloo, Ontario Canada N2J 2W9 Daniele Oriti† Department of Applied Mathematics and Theoretical Physics Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, England, EU and Girton College, University of Cambridge Cambridge CB3 0JG, England, EU ABSTRACT A common misconception is that Lorentz invariance is inconsistent with a discrete spacetime structure and a minimal length: under Lorentz contraction, a Planck length ruler would be seen as smaller by a boosted observer. We argue that in the context of quantum gravity, the distance between two points becomes an operator and show through a toy model, inspired by Loop Quantum Gravity, that the notion of a quantum of geometry and of discrete spectra of geometric operators, is not inconsistent with Lorentz invariance. The main feature of the model is that a state of definite length for a given observer turns into a superposition of eigenstates of the length operator when seen by a boosted observer. More generally, we discuss the issue of actually measuring distances taking into account the limitations imposed by quantum gravity considerations and we analyze the notion of distance and the phenomenon of Lorentz contraction in the framework of “deformed (or doubly) special relativity” (DSR), which tentatively provides an effective description of quantum gravity around a flat background. In order to do this we study the Hilbert space structure of DSR, and study various quantum geometric operators acting on it and analyze their spectral properties. We also discuss the notion of spacetime point in DSR in terms of coherent states.
    [Show full text]