PDF, an Initial Mass Function for Individual Stars in Galactic Disks. I

Total Page:16

File Type:pdf, Size:1020Kb

PDF, an Initial Mass Function for Individual Stars in Galactic Disks. I The Astrophysical Journal, 726:27 (20pp), 2011 January 1 doi:10.1088/0004-637X/726/1/27 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. AN INITIAL MASS FUNCTION FOR INDIVIDUAL STARS IN GALACTIC DISKS. I. CONSTRAINING THE SHAPE OF THE INITIAL MASS FUNCTION Antonio Parravano1, Christopher F. McKee2, and David J. Hollenbach3,4 1 Universidad de Los Andes, Centro de F´ısica Fundamental, Merida´ 5101a, Venezuela 2 Physics Department and Astronomy Department, University of California at Berkeley, Berkeley, CA 94720, USA 3 NASA Ames Research Center, MS 245-3, Moffett Field, CA 94035, USA 4 SETI Institute, 515 N. Whisman Road, Mountain View, CA 94043, USA Received 2010 September 22; accepted 2010 October 28; published 2010 December 10 ABSTRACT We derive a semi-empirical galactic initial mass function (IMF) from observational constraints. We assume that the IMF, ψ(m), is a smooth function of the stellar mass m. The mass dependence of the proposed IMF is determined by five parameters: the low-mass slope γ , the high-mass slope −Γ (taken to be −1.35), the characteristic mass mch (∼ the peak mass of the IMF), and the lower and upper limits on the mass, m and mu (taken to be 0.004 and −Γ γ +Γ 120 M, respectively): ψ(m)d ln m ∝ m {1 − exp[−(m/mch) ]}d ln m. The values of γ and mch are derived from two integral constraints: (1) the ratio of the number density of stars in the range m = 0.1–0.6 M to that in the range m = 0.6–0.8 M as inferred from the mass distribution of field stars in the local neighborhood and (2) the ratio of the number of stars in the range m = 0.08–1 M to the number of brown dwarfs in the range m = 0.03–0.08 M in young clusters. The IMF satisfying the above constraints is characterized by the parameters γ = 0.51 and mch = 0.35 M (which corresponds to a peak mass of 0.27 M ). This IMF agrees quite well with the Chabrier IMF for the entire mass range over which we have compared with data, but predicts significantly more stars with masses <0.03 M; we also compare with other IMFs in current use and give a number of important parameters implied by the IMFs. Key words: evolution – stars: formation – stars: luminosity function, mass function sys 1. INTRODUCTION 2. the system IMF, ψ (m), in which each multiple stellar system and each single star is counted as one object with The initial mass function (IMF) is a fundamental ingredient its total mass; and for modeling any system containing stars—from clusters to 3. the effective system IMF (or effective IMF for short), galaxies to the luminous universe. Since the pioneering work ψeff(m), in which unresolved binaries are counted as single by Salpeter (1955), the IMF has been derived for a variety of stars with an effective mass meff. Note that Chabrier (2003b) systems, such as clusters of different ages, field stars, the galactic adopted a different terminology: he used the term “system bulge, globular clusters, and nearby galaxies. Comprehensive IMF” for ψeff and did not consider what we define as ψsys. studies by Miller & Scalo (1979), Scalo (1986), Kroupa (2001), The relation between the effective mass and the system mass and Chabrier (2003b, 2005) have provided the community depends on how the mass is determined. For stars with known with standard IMFs that have allowed the construction of distances (such as those in clusters), the absolute magnitude innumerable models with a common basis. A comprehensive of the system is observed and the effective mass is inferred review of the current state of IMF studies has been given by from a mass–magnitude relation. For field stars that do not Bastian et al. (2010). Earlier reviews of the theoretical and have independent distance determinations, a color–magnitude observational studies of the IMF are in Scalo (1998a) and relation is used to infer the absolute magnitude of the system (1998b), respectively. It is impressive that after more than and then a mass–magnitude relation is used to infer the effective half a century, the Salpeter work is still the accepted IMF for mass. Interestingly, Gould et al. (1996) showed that the stellar intermediate and high-mass stars. At low masses, the situation mass per unit area of Galactic disk inferred from the effective has evolved much more. The ever increasing sensitivity and IMF agrees reasonably well with that from the true IMF. It resolution of observations, together with the theoretical means of should be noted that theories of the IMF, such as those of inferring the stellar masses from the observable quantities, have Padoan & Nordlund (2002; see also Padoan et al. 2007) and ∼ resulted in the discovery of a turnover in the IMF at 0.5 M of Hennebelle & Chabrier (2008, 2009) predict the system and in a progressive reduction of the errors in the low-mass IMF. IMF, whereas observations that cannot resolve close binaries Only a few years ago, the existence of a flattening or a turnover determine an effective IMF. in the IMF at subsolar masses was controversial, but now its The goal of this paper is to infer the individual-star IMF for existence is well established. However, uncertainties in the IMF stars in the disk of the Galaxy. In this paper, we shall use the grow as mass decreases below the hydrogen-burning mass limit term “star” to refer to star-like objects, whether they burn nuclear ∼ ( 0.08 M ) into the realm of brown dwarfs (BDs). fuel or not, as well as stellar remnants. Thus, BDs, white dwarfs, One of the problems that plagues attempts to determine the neutron stars, and stellar-mass black holes (which are sometimes IMF is that of unresolved binary (or multiple) star systems. One referred to as “collapsed stars”) are included in the term “star.” can distinguish three different IMFs: The terminology for objects below the hydrogen-burning limit 1. the individual-star IMF, or “true” IMF, ψ(m), in which has not been fixed yet (e.g., see Basri 2003, Chabrier et al. each star that is a member of a multiple system is counted 2005); we use the term “brown dwarfs” for all stars below the separately; hydrogen-burning limit. Evolved objects such as white dwarfs 1 The Astrophysical Journal, 726:27 (20pp), 2011 January 1 Parravano, Mckee, & Hollenbach do not enter the IMF; the IMF thus covers BDs and main- which it forms, the rest being ejected by protostellar outflows sequence (i.e., hydrogen-burning) stars. We distinguish stars and, for massive stars, by photoevaporation; the formation of from planets, which form in circumstellar disks and have an binaries, etc., is due to fragmentation of the core; and finally, the excess of heavy elements (Chabrier et al. 2007; Whitworth multiplicity of stellar systems evolves with time. In each case, et al. 2007). In principle, free-floating planets could be confused the associated physical processes could in principle leave their observationally with BDs (e.g., Liu et al. 2002); based on mark on the IMF. We assume that these effects are not large and observations of extrasolar planets, such free-floating planets are in any case they tend to be averaged out by considering the total expected to have masses less than 10 Jupiter masses. population of stars from many different star-forming regions. In addressing this problem, we assume that the IMF for stars A significant departure from simplicity would occur if there in galactic disks is both universal and simple. is more than one distinct star formation mechanism. Indeed, Universality. Although significant variations in the IMF are several mechanisms have been suggested for the formation of observed in the disk of the Galaxy (e.g., Scalo 1998a), for the very low mass stars (VLMSs) and BDs (see the review by most part, these are consistent with random sampling from a Whitworth et al. 2007). Thies & Kroupa (2007) have argued that universal IMF (Elmegreen 1997, 1999; Kroupa 2002; Bastian observations of the distribution of the distances of separation et al. 2010). Fluctuations about the mean IMF can arise in IMF of binaries support the existence of a separate mechanism for models based on deterministic chaos (Sanchez´ & Parravano the formation of BDs and VLMSs. As they point out, there 1999). Evidence for evolution of the IMF with redshift is is no reason for the star formation mechanism to depend on summarized by Elmegreen (2009), but none of this evidence the hydrogen-burning limit, so there should be a significant deals specifically with disk galaxies. Treu et al. (2010) find that mass range in which the two mechanisms are both operative. In for a sample of early-type galaxies a Salpeter IMF provides that case, the total IMF would presumably still be smooth and light-to-mass ratios more consistent with observation than does relatively simple. a Chabrier (2003b) IMF, and conclude that massive early-type Contrary to our assumption of simplicity, some observations galaxies cannot have both a universal IMF and a universal do show features in the inferred IMF; for example, the mass dark matter halo. Van Dokkum & Conroy (2010) have directly function of nearby stars measured by Reid et al. (2002) has observed a large population of low-mass stars in elliptical upticks both at m 0.1 and at m 1.0 (throughout this galaxies and conclude that the IMF in massive star-forming paper, m is the stellar mass in units of solar masses).
Recommended publications
  • Quantifying the Uncertainties of Chemical Evolution Studies
    A&A 430, 491–505 (2005) Astronomy DOI: 10.1051/0004-6361:20048222 & c ESO 2005 Astrophysics Quantifying the uncertainties of chemical evolution studies I. Stellar lifetimes and initial mass function D. Romano1, C. Chiappini2, F. Matteucci3,andM.Tosi1 1 INAF - Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy e-mail: [donatella.romano;monica.tosi]@bo.astro.it 2 INAF - Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, 34131 Trieste, Italy e-mail: [email protected] 3 Dipartimento di Astronomia, Università di Trieste, via G.B. Tiepolo 11, 34131 Trieste, Italy e-mail: [email protected] Received 4 May 2004 / Accepted 9 September 2004 Abstract. Stellar lifetimes and initial mass function are basic ingredients of chemical evolution models, for which different recipes can be found in the literature. In this paper, we quantify the effects on chemical evolution studies of the uncertainties in these two parameters. We concentrate on chemical evolution models for the Milky Way, because of the large number of good observational constraints. Such chemical evolution models have already ruled out significant temporal variations for the stellar initial mass function in our own Galaxy, with the exception perhaps of the very early phases of its evolution. Therefore, here we assume a Galactic initial mass function constant in time. Through an accurate comparison of model predictions for the Milky Way with carefully selected data sets, it is shown that specific prescriptions for the initial mass function in particular mass ranges should be rejected. As far as the stellar lifetimes are concerned, the major differences among existing prescriptions are found in the range of very low-mass stars.
    [Show full text]
  • –1– 1. the Salpeter Initial Mass Function the Initial Mass Function Is
    –1– 1. The Salpeter Initial Mass Function The initial mass function is a function describing the distribution of stellar masses in a newly formed population (i.e. none of the stars have had a chance to loose mass or undergo supernova). The initial mass function, IMF, was first derived by Ed Salpeter in 1955, who found that: dN ξ(logM)= = k M −Γ = k M −1.35 (1) dlog(M) 1 1 A similar function is the mass spectrum dN = k M −α = k M −2.35 (2) dM 2 2 where α =Γ+1. The total mass is then the integral of this: Mmax −2.35 k2 −0.35 −0.35 Mtot = Mk2M dM = (Mmin − Mmax ) (3) ZMmin 0.35 This shows that most of the stellar mass is in low mass stars. On the other hand, if we calculate the total luminosity (and assuming L ∝ M 3), then Mmax 3 −2.35 k2k3 1.65 1.65 Ltot = k3M k2M dM = (Mmax − Mmin ) (4) ZMmin 1.65 which shows that the total luminosity is driven by the most massive stars. We know now that the IMF is not a strict power law, and we will examine the variations. –2– 2. The Field Star IMF One way of deriving the IMF is to use field stars. To show how this is done, we follow the seminal work of Miller & Scalo (1979). This goes in two steps. First, a present day mass function, PDMF or φ(logM) for main sequence stars is found. This is the number of stars per mass per unit area in the galaxy; it is integrated over the ”vertical” dimension of the disk.
    [Show full text]
  • Measuring the Stellar Initial Mass Function
    Credit: J. Gilbert Measuring the Stellar Initial Mass Function Andrew Hopkins Professor of Astronomy Australian Astronomical Optics, Macquarie University Credit: F. Kamphues IMF measurement approaches • Stellar: Directly measuring star counts and luminosity functions, calculating mass function from mass-luminosity relations, accounting for stellar evolution and dynamical evolution. • Galaxy: Stellar population synthesis (SPS) models compared to observed metrics, such as the Kennicutt method (Kennicutt 1983, ApJ, 272, 54), the Buat method (Buat et al., 1987, A&A, 185, 33), the “dwarf-to-giant” ratio method, and mass-to-light ratio methods. • Cosmic: Requiring self-consistency between luminosity and mass densities of galaxy populations. • Chemical abundances: Yields from SNe enrich subsequent stellar generations, and abundance measurements in stars can be used to infer the historical IMF. This can be a probe of each of the above, but is perhaps most relevant to a Galaxy IMF. A. M. Hopkins ESO Duologue: Initial Mass Function: Universal…or Not? 25 May 2020 The IMF vs astrophysics • I focus here on the IMF as measured (or rather, inferred) by various observational approaches. • There is a difference between whether the IMF is universal, and whether there is a universal physical process that produces an IMF. This distinction is important. • A universal IMF may be produced by a universal physical process, but a universal physical process doesn’t necessarily lead to a universal IMF (e.g., Narayanan & Davé 2012, MNRAS, 423, 3601; Hopkins 2013, MNRAS, 433, 170). • There continues to be an important question, not addressed here, around the underlying physical processes driving star formation, and whether or not they may be different at different epochs or in different environments.
    [Show full text]
  • Progenitor Mass Distribution for Core-Collapse Supernova Remnants in M31 and M33
    The Astrophysical Journal, 861:92 (13pp), 2018 July 10 https://doi.org/10.3847/1538-4357/aac6e1 © 2018. The American Astronomical Society. All rights reserved. Progenitor Mass Distribution for Core-collapse Supernova Remnants in M31 and M33 Mariangelly Díaz-Rodríguez1 , Jeremiah W. Murphy1, David A. Rubin2 , Andrew E. Dolphin3 , Benjamin F. Williams4 , and Julianne J. Dalcanton4 1 Department of Physics, Florida State University, Tallahassee, FL 32304, USA; [email protected], [email protected] 2 Space Telescope Science Institute, Baltimore, MD 21218, USA 3 Raytheon, Tucson, AZ 85734, USA 4 Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195, USA Received 2018 February 15; revised 2018 May 18; accepted 2018 May 18; published 2018 July 9 Abstract Using the star formation histories (SFHs) near 94 supernova remnants (SNRs), we infer the progenitor mass distribution for core-collapse supernovae. We use Bayesian inference and model each SFH with multiple bursts of star formation (SF), one of which is assumed to be associated with the SNR. Assuming single-star evolution, the +0.02 +0.45 minimum mass of CCSNe is 7.33-0.16M, the slope of the progenitor mass distribution is a =-2.96-0.25, and the maximum mass is greater than Mmax > 59M with a 68% confidence. While these results are consistent with previous inferences, they also provide tighter constraints. The progenitor distribution is somewhat steeper than a Salpeter initial mass function (α=−2.35). This suggests that either SNR catalogs are biased against the youngest SF regions, or the most massive stars do not explode as easily as lower mass stars.
    [Show full text]
  • The Stellar Initial Mass Function and Beyond
    Galactic Star Formation Across the Stellar Mass Spectrum ASP Conference Series, Vol. 287, 2003 J. M. De Buizer and N. S. van der Bliek, eds. The Stellar Initial Mass Function and Beyond Richard B. Larson Yale Astronomy Department, Box 208101, New Haven, CT 06520-8101, USA Abstract. A brief review is given of the basic observed features of the stellar IMF, and also of some of the theoretical ideas and simulations that may help to explain these features. The characteristic stellar mass of order one solar mass may derive from the typical masses of the observed star- forming clumps in molecular clouds, and the typical clump mass may in turn be determined mainly by the Jeans mass, as is true in many numer- ical simulations of cloud collapse and fragmentation. The Salpeter power law that approximates the IMF at higher masses is less well understood, but it may result from the effects of continuing gas accretion by the more massive forming stars together with the effects of interactions and mergers in dense forming stellar systems. The mass of the most massive star that forms in a cluster is observed to increase systematically with the mass of the cluster, and the most massive clusters may form stars that are massive enough to collapse completely to black holes. 1. Introduction It is almost 50 years since Salpeter (1955) published the first and still most famous paper on the stellar Initial Mass Function, or distribution of masses with which stars are formed, and showed that for masses between 0.4 and 10 solar masses it can be approximated by a declining power law.
    [Show full text]
  • Galactic Stellar and Substellar Initial Mass Function1
    Publications of the Astronomical Society of the Pacific, 115:763–795, 2003 July ᭧ 2003. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. Invited Review Galactic Stellar and Substellar Initial Mass Function1 Gilles Chabrier Ecole Normale Supe´rieure de Lyon, Centre de Recherche Astrophysique de Lyon, UMR CNRS 5574, 69364 Lyon Cedex 07, France; [email protected] Received 2003 March 31; accepted 2003 March 31 ABSTRACT. We review recent determinations of the present-day mass function (PDMF) and initial massfunction (IMF) in various components of the Galaxy—disk, spheroid, young, and globular clusters—and in conditions characteristic of early star formation. As a general feature, the IMF is found to depend weakly on the environment and to be well described by a power-law form for m տ 1 M, and a lognormal form below, except possibly for early star formation conditions. The disk IMF for single objects has a characteristic mass around m 0.08 M c ∼ , and a variance in logarithmic massj 0.7 , whereas the IMF for multiple systems has m 0.2 M andj 0.6 . ∼ c ∼ , ∼ The extension of the single MF into the brown dwarf regime is in good agreement with present estimates of L- and T-dwarf densities and yields a disk brown dwarf number density comparable to the stellar one, nBD n ∼ ∗ ∼ 0.1 pcϪ3.TheIMFofyoungclustersisfoundtobeconsistentwiththediskfieldIMF,providingthesamecorrection for unresolved binaries, confirming the fact that young star clusters and disk field stars represent the same stellar population. Dynamical effects, yielding depletion of the lowest mass objects, are found to become consequential for ages տ130 Myr.
    [Show full text]
  • Protostar Mass Functions in Young Clusters
    Protostar mass functions in young clusters Philip C. Myers Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 USA [email protected] Abstract. In an improved model of protostar mass functions (PMFs), protostars gain mass from isothermal cores in turbulent clumps. Their mass accretion rate is similar to Shu accretion at low mass, and to reduced Bondi accretion at high mass. Accretion durations follow a simple expression in which higher-mass protostars accrete for longer times. These times are set by ejections, stellar feedback, and gravitational competition, which terminate accretion and reduce its efficiency. The mass scale is the mass of a critically stable isothermal core. In steady state, the PMF approaches a power law at high mass due to competition between clump accretion and accretion stopping. The power law exponent is the ratio of the time scales of accretion and accretion stopping. The luminosity function (PLF) peaks near 1 L , due to inefficient accretion of core gas. Models fit observed PLFs in four large embedded clusters. These indicate that their underlying PMFs may be top- heavy compared to the IMF, depending on the model of protostar radius. keywords: ISM: clouds⎯stars: formation accepted for publication in The Astrophysical Journal 1. Introduction The mass function of stars at birth, or the initial mass function (IMF), is a fundamental property of stars, yet its origin remains a major unsolved problem in astrophysics. The IMF has similar properties of shape, mass scale, and high-mass slope among field stars, open clusters, and young clusters (Kroupa 2002, Chabrier 2005, Bastian et al.
    [Show full text]
  • A Study of Herbig Ae Be Star HD 163296: Variability in CO and OH Diana Lyn Hubis Yoder Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 5-2016 A Study of Herbig Ae Be Star HD 163296: Variability in CO and OH Diana Lyn Hubis Yoder Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Hubis Yoder, Diana Lyn, "A Study of Herbig Ae Be Star HD 163296: Variability in CO and OH" (2016). All Theses. 2348. https://tigerprints.clemson.edu/all_theses/2348 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. A Study of Herbig Ae Be Star HD 163296 Variability in CO and OH A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Physics and Astronomy by Diana Lyn Hubis Yoder May 2016 Accepted by: Dr. Sean Brittain, Committee Chair Dr. Mark Leising Dr. Jeremy King Dr. Chad Sosolik Abstract Spectra of the Herbig Ae Be star HD 163296 show variability in the CO and OH ro-vibrational emission lines. Documented here is the variance of OH emission lines between measurements separated by a period of three years. By comparing this variability to the variability of CO, we aim to determine whether the two are linked through an event such as disk winds. We find the profiles of OH and CO taken within three months of each other to have exceedingly similar profile shapes. However, the variability seen between the OH data sets needs further work to verify whether the changes we see are reproducible.
    [Show full text]
  • Ast 777: Star and Planet Formation Pre-Main Sequence Stars and the IMF
    Ast 777: Star and Planet Formation Pre-main sequence stars and the IMF https://universe-review.ca/F08-star05.htm The main phases of star formation https://www.americanscientist.org/sites/americanscientist.org/files/2005223144527_306.pdf The star has formed* but is not yet on the MS * it has attained its final mass (or ~99% of it) https://www.americanscientist.org/sites/americanscientist.org/files/2005223144527_306.pdf The star is optically visible and is a Class II or III star (or TTS or HAeBe) https://www.americanscientist.org/sites/americanscientist.org/files/2005223144527_306.pdf PMS evolution is described by the equations of stellar evolution But there are differences from MS evolution: ‣ initial conditions are very different from the MS (and have significant uncertainties) ‣ energy is produced by gravitational collapse and deuterium burning (This was mostly figured out 30-50 years ago so the references are old, but important for putting current work in context) But see later… How big is a star when the core stops collapsing? Upper limit can be determined by assuming that all the gravitational energy of the core is used to dissociate and ionized the H2+He gas (i.e., no radiative losses during collapse) Each H2 requires 4.48eV to dissociate —> this produces a short-lived intermediate step along the way to a protostar, called the first hydrostatic core (hinted at, though not definitively confirmed, through FIR/mm observations) How big is a star when the core stops collapsing? Upper limit can be determined by assuming that all the gravitational
    [Show full text]
  • American Scientist the Magazine of Sigma Xi, the Scientific Research Society
    A reprint from American Scientist the magazine of Sigma Xi, The Scientific Research Society This reprint is provided for personal and noncommercial use. For any other use, please send a request to Permissions, American Scientist, P.O. Box 13975, Research Triangle Park, NC, 27709, U.S.A., or by electronic mail to [email protected]. ©Sigma Xi, The Scientific Research Society and other rightsholders Protostars “Stellar embryology” takes a step forward with the first detailed look at the youngest Sun-like stars Thomas P. Greene natomists have been studying the of stellar birth is more than 400 light- in the past decade, astronomers have Aembryonic development of ani- years away. At such distances, a prena- now been able to observe these seclud- mals for centuries. Their detailed de- tal star the size of our Sun is exceed- ed stellar embryos. My colleagues and I scriptions of tissue growth may have ingly dim. have been among the privileged few to reached a high art, but a theoretical un- Despite such impediments, astro- witness some of the earliest stirrings of derstanding of how the embryo under- physicists have been able to piece to- a star’s life. goes its remarkable transformation gether the broad outlines of how a low- from a single cell to a crying infant lags mass (Sun-like) star forms. It’s a Baby Steps to Stardom far behind. Until recently, the field of surprisingly complex process. Al- The process of making a star begins in- astrophysics had been struggling with though it may involve the simplest of side enormous clouds of interstellar a nearly opposite problem.
    [Show full text]
  • Stellar Populations - Lecture IV
    Stellar Populations - Lecture IV RUSSELL SMITH Rochester 333 [email protected] http://astro.dur.ac.uk/~rjsmith/stellarpops.html Introduction to Astronomy & Astrophysics: Stellar Populations 2011/12 Lecture IV Homework** STELLAR POPULATIONS problem... ASSIGNMENT: MASS, LUMINOSITY AND THE IMF ** 1.) Assume a galaxy forms its stars in a single rapid burst, with a Salpeter initial mass function extending from 0.1 to 100 Msun. After 10 Gyrs have passed, divide the surviving stars into three groups: lower main-sequence upper main sequence (MS stars with mass > 0.75 Msun), lower main sequence (MS stars with mass < 0.75 Msun), and red giants. Calculate the fractional contribution of each group to the a) total *number* of surviving stars. b) total *mass* in surviving stars. c) total *luminosity* of the galaxy. Hints: *Assume the MS lifetime-vs-mass relation and RGB lifetimes as given -2.5in Lecture I. Ignore subsequentMS lifetime-mass evolutionary relationship:stages. TMS ~ 10 Gyr x (M/Msun) *For MS stars, assume luminosity-mass relation of (L/Lsun) = (M/Msun)^3.5. *Assume average➔ Main-sequence RGB luminosity isturn-off ~100 times mass higher at age than 10 the Gyr turn-off is Mluminosity.TO = 1 Msun Stars with mass ~1-2 Msun have RGB lifetimes ~1 Gyr 2.) It has sometimes been proposed that elliptical galaxies have a "bottom-heavy" initial mass function, e.g.➔ a power-lawMost massive with slope surviving -3.5 instead star ofmust the Salpeter have had -2.35. MS Calculate lifetime the ~9Gyr total luminosity contributions for the same three mass ranges for the bottom-heavy case.
    [Show full text]
  • A Universal Stellar Initial Mass Function? a Critical Look at Variations
    AA48CH10-Meyer ARI 23 July 2010 15:48 AUniversalStellarInitialMass Function? A Critical Look at Variations Nate Bastian,1 Kevin R. Covey,2,3 Michael R. Meyer4,5 1Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, United Kingdom; email: [email protected] 2Department of Astronomy, Cornell University, Ithaca, New York 14853; email: [email protected] 3Harvard Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 4Institute of Astronomy, ETH Zurich,¨ 8093 Zurich,¨ Switzerland; email: [email protected] 5Steward Observatory, The University of Arizona, Tucson, Arizona 85721 Annu. Rev. Astron. Astrophys. 2010. 48:339–89 Key Words First published online as a Review in Advance on chemical evolution of galaxies, galaxy evolution, star formation, stellar May 17, 2010 clusters, stellar populations, substellar objects The Annual Review of Astronomy and Astrophysics is online at astro.annualreviews.org Abstract This article’s doi: Whether the stellar initial mass function (IMF) is universal or is instead 10.1146/annurev-astro-082708-101642 sensitive to environmental conditions is of critical importance: The IMF in- Copyright c 2010 by Annual Reviews. ! fluences most observable properties of stellar populations and thus galaxies, All rights reserved and detecting variations in the IMF could provide deep insights into the star 0066-4146/10/0922-0339$20.00 formation process. This review critically examines reports of IMF variations, by California Institute of Technology on 01/21/14. For personal use only. with a view toward whether other explanations are sufficient given the evi- dence. Studies of the field, young clusters and associations, and old globular Annu. Rev. Astro.
    [Show full text]