Deepdive: a Data Management System for Automatic Knowledge Base Construction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Probabilistic Databases
Series ISSN: 2153-5418 SUCIU • OLTEANU •RÉ •KOCH M SYNTHESIS LECTURES ON DATA MANAGEMENT &C Morgan & Claypool Publishers Series Editor: M. Tamer Özsu, University of Waterloo Probabilistic Databases Probabilistic Databases Dan Suciu, University of Washington, Dan Olteanu, University of Oxford Christopher Ré,University of Wisconsin-Madison and Christoph Koch, EPFL Probabilistic databases are databases where the value of some attributes or the presence of some records are uncertain and known only with some probability. Applications in many areas such as information extraction, RFID and scientific data management, data cleaning, data integration, and financial risk DATABASES PROBABILISTIC assessment produce large volumes of uncertain data, which are best modeled and processed by a probabilistic database. This book presents the state of the art in representation formalisms and query processing techniques for probabilistic data. It starts by discussing the basic principles for representing large probabilistic databases, by decomposing them into tuple-independent tables, block-independent-disjoint tables, or U-databases. Then it discusses two classes of techniques for query evaluation on probabilistic databases. In extensional query evaluation, the entire probabilistic inference can be pushed into the database engine and, therefore, processed as effectively as the evaluation of standard SQL queries. The relational queries that can be evaluated this way are called safe queries. In intensional query evaluation, the probabilistic Dan Suciu inference is performed over a propositional formula called lineage expression: every relational query can be evaluated this way, but the data complexity dramatically depends on the query being evaluated, and Dan Olteanu can be #P-hard. The book also discusses some advanced topics in probabilistic data management such as top-kquery processing, sequential probabilistic databases, indexing and materialized views, and Monte Carlo databases. -
Adaptive Schema Databases ∗
Adaptive Schema Databases ∗ William Spothb, Bahareh Sadat Arabi, Eric S. Chano, Dieter Gawlicko, Adel Ghoneimyo, Boris Glavici, Beda Hammerschmidto, Oliver Kennedyb, Seokki Leei, Zhen Hua Liuo, Xing Niui, Ying Yangb b: University at Buffalo i: Illinois Inst. Tech. o: Oracle {wmspoth|okennedy|yyang25}@buffalo.edu {barab|slee195|xniu7}@hawk.iit.edu [email protected] {eric.s.chan|dieter.gawlick|adel.ghoneimy|beda.hammerschmidt|zhen.liu}@oracle.com ABSTRACT in unstructured or semi-structured form, then an ETL (i.e., The rigid schemas of classical relational databases help users Extract, Transform, and Load) process needs to be designed in specifying queries and inform the storage organization of to translate the input data into relational form. Thus, clas- data. However, the advantages of schemas come at a high sical relational systems require a lot of upfront investment. upfront cost through schema and ETL process design. In This makes them unattractive when upfront costs cannot this work, we propose a new paradigm where the database be amortized, such as in workloads with rapidly evolving system takes a more active role in schema development and data or where individual elements of a schema are queried data integration. We refer to this approach as adaptive infrequently. Furthermore, in settings like data exploration, schema databases (ASDs). An ASD ingests semi-structured schema design simply takes too long to be practical. or unstructured data directly using a pluggable combina- Schema-on-query is an alternative approach popularized tion of extraction and data integration techniques. Over by NoSQL and Big Data systems that avoids the upfront time it discovers and adapts schemas for the ingested data investment in schema design by performing data extraction using information provided by data integration and infor- and integration at query-time. -
Finding Interesting Itemsets Using a Probabilistic Model for Binary Databases
Finding interesting itemsets using a probabilistic model for binary databases Tijl De Bie University of Bristol, Department of Engineering Mathematics Queen’s Building, University Walk, Bristol, BS8 1TR, UK [email protected] ABSTRACT elegance and e±ciency of the algorithms to search for fre- A good formalization of interestingness of a pattern should quent patterns. Unfortunately, the frequency of a pattern satisfy two criteria: it should conform well to intuition, and is only loosely related to interestingness. The output of fre- it should be computationally tractable to use. The focus quent pattern mining methods is usually an immense bag has long been on the latter, with the development of frequent of patterns that are not necessarily interesting, and often pattern mining methods. However, it is now recognized that highly redundant with each other. This has hampered the more appropriate measures than frequency are required. uptake of FPM and FIM in data mining practice. In this paper we report results in this direction for item- Recent research has shifted focus to the search for more set mining in binary databases. In particular, we introduce useful formalizations of interestingness that match practical a probabilistic model that can be ¯tted e±ciently to any needs more closely, while still being amenable to e±cient binary database, and that has a compact and explicit repre- algorithms. As FIM is arguably the simplest special case of sentation. We then show how this model enables the formal- frequent pattern mining, it is not surprising that most of the ization of an intuitive and tractable interestingness measure recent work has focussed on itemset patterns, see e.g. -
Open-World Probabilistic Databases
Open-World Probabilistic Databases Ismail˙ Ilkan˙ Ceylan and Adnan Darwiche and Guy Van den Broeck Computer Science Department University of California, Los Angeles [email protected],fdarwiche,[email protected] Abstract techniques, from part-of-speech tagging until relation ex- traction (Mintz et al. 2009). For knowledge-base comple- Large-scale probabilistic knowledge bases are becoming in- tion – the task of deriving new facts from existing knowl- creasingly important in academia and industry alike. They edge – statistical relational learning algorithms make use are constantly extended with new data, powered by modern information extraction tools that associate probabilities with of embeddings (Bordes et al. 2011; Socher et al. 2013) database tuples. In this paper, we revisit the semantics under- or probabilistic rules (Wang, Mazaitis, and Cohen 2013; lying such systems. In particular, the closed-world assump- De Raedt et al. 2015). In both settings, the output is a pre- tion of probabilistic databases, that facts not in the database dicted fact with its probability. It is therefore required to de- have probability zero, clearly conflicts with their everyday fine probabilistic semantics for knowledge bases. The classi- use. To address this discrepancy, we propose an open-world cal and most-basic model is that of tuple-independent prob- probabilistic database semantics, which relaxes the probabili- abilistic databases (PDBs) (Suciu et al. 2011), which in- ties of open facts to intervals. While still assuming a finite do- deed underlies many of these systems (Dong et al. 2014; main, this semantics can provide meaningful answers when Shin et al. 2015). -
A Modern History of Probability Theory
A Modern History of Probability Theory Kevin H. Knuth Depts. of Physics and Informatics University at Albany (SUNY) Albany NY USA 4/29/2016 Knuth - Bayes Forum 1 A Modern History of Probability Theory Kevin H. Knuth Depts. of Physics and Informatics University at Albany (SUNY) Albany NY USA 4/29/2016 Knuth - Bayes Forum 2 A Long History The History of Probability Theory, Anthony J.M. Garrett MaxEnt 1997, pp. 223-238. Hájek, Alan, "Interpretations of Probability", The Stanford Encyclopedia of Philosophy (Winter 2012 Edition), Edward N. Zalta (ed.), URL = <http://plato.stanford.edu/archives/win2012/entries/probability-interpret/>. 4/29/2016 Knuth - Bayes Forum 3 … la théorie des probabilités n'est, au fond, que le bon sens réduit au calcul … … the theory of probabilities is basically just common sense reduced to calculation … Pierre Simon de Laplace Théorie Analytique des Probabilités 4/29/2016 Knuth - Bayes Forum 4 Taken from Harold Jeffreys “Theory of Probability” 4/29/2016 Knuth - Bayes Forum 5 The terms certain and probable describe the various degrees of rational belief about a proposition which different amounts of knowledge authorise us to entertain. All propositions are true or false, but the knowledge we have of them depends on our circumstances; and while it is often convenient to speak of propositions as certain or probable, this expresses strictly a relationship in which they stand to a corpus of knowledge, actual or hypothetical, and not a characteristic of the propositions in themselves. A proposition is capable at the same time of varying degrees of this relationship, depending upon the knowledge to which it is related, so that it is without significance to call a John Maynard Keynes proposition probable unless we specify the knowledge to which we are relating it. -
A Compositional Query Algebra for Second-Order Logic and Uncertain Databases
A Compositional Query Algebra for Second-Order Logic and Uncertain Databases Christoph Koch Department of Computer Science Cornell University, Ithaca, NY, USA [email protected] ABSTRACT guages for querying possible worlds. Indeed, second-order World-set algebra is a variable-free query language for uncer- quantifiers are the essence of what-if reasoning in databases. tain databases. It constitutes the core of the query language World-set algebra seems to be a strong candidate for a core implemented in MayBMS, an uncertain database system. algebra for forming query plans and optimizing and execut- This paper shows that world-set algebra captures exactly ing them in uncertain database management systems. second-order logic over finite structures, or equivalently, the It was left open in previous work whether world-set alge- polynomial hierarchy. The proofs also imply that world- bra is closed under composition, or whether definitions are set algebra is closed under composition, a previously open adding to the expressive power of the language. Compo- problem. sitionality is a desirable and rather commonplace property of query algebras, but in the case of WSA it seems rather unlikely to hold. The reason for this is that the algebra con- 1. INTRODUCTION tains an uncertainty-introduction operation that on the level Developing suitable query languages for uncertain data- of possible worlds is nondeterministic. First materializing a bases is a substantial research challenge that is only cur- view and subsequently using it multiple times in the query is rently starting to get addressed. Conceptually, an uncertain semantically quite different from composing the query with database is a finite set of possible worlds, each one a re- the view and thus obtaining several copies of the view def- lational database. -
Answering Queries from Statistics and Probabilistic Views∗
Answering Queries from Statistics and Probabilistic Views∗ Nilesh Dalvi Dan Suciu University of Washington, Seattle, WA, USA 1 Introduction paper we will assume the Local As View (LAV) data integration paradigm [17, 16], which consists of defin- Systems integrating dozens of databases, in the scien- ing a global mediated schema R¯, then expressing each tific domain or in a large corporation, need to cope local source i as a view vi(R¯) over the global schema. with a wide variety of imprecisions, such as: different Users are allowed to ask queries over the global, me- representations of the same object in different sources; diated schema, q(R¯), however the data is given as in- imperfect and noisy schema alignments; contradictory stances J1; : : : ; Jm of the local data sources. In our information across sources; constraint violations; or in- model all instances are probabilistic, both the local sufficient evidence to answer a given query. If standard instances and the global instance. Statistics are given query semantics were applied to such data, all but the explicitly over the global schema R¯, and the probabil- most trivial queries will return an empty answer. ities are given explicitly over the local sources, hence We believe that probabilistic databases are the right over the views. We make the Open World Assumption paradigm to model all types of imprecisions in a uni- throughout the paper. form and principled way. A probabilistic database is a probability distribution on all instances [5, 4, 15, 1.1 Example: Using Statistics 12, 11, 8]. Their early motivation was to model im- precisions at the tuple level: tuples are not known Suppose we integrate two sources, one show- with certainty to belong to the database, or represent ing which employee works for what depart- noisy measurements, etc. -
Uva-DARE (Digital Academic Repository)
UvA-DARE (Digital Academic Repository) On entity resolution in probabilistic data Ayat, S.N. Publication date 2014 Document Version Final published version Link to publication Citation for published version (APA): Ayat, S. N. (2014). On entity resolution in probabilistic data. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:01 Oct 2021 On Entity Resolution in Probabilistic Data Naser Ayat On Entity Resolution in Probabilistic Data Naser Ayat On Entity Resolution in Probabilistic Data Naser Ayat On Entity Resolution in Probabilistic Data Academisch Proefschrift ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof.dr. D.C. van den Boom ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel op dinsdag 30 september 2014, te 12.00 uur door Seyed Naser Ayat geboren te Esfahan, Iran Promotors: prof. -
A Brief Overview of Probability Theory in Data Science by Geert
A brief overview of probability theory in data science Geert Verdoolaege 1Department of Applied Physics, Ghent University, Ghent, Belgium 2Laboratory for Plasma Physics, Royal Military Academy (LPP–ERM/KMS), Brussels, Belgium Tutorial 3rd IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis, 27-05-2019 Overview 1 Origins of probability 2 Frequentist methods and statistics 3 Principles of Bayesian probability theory 4 Monte Carlo computational methods 5 Applications Classification Regression analysis 6 Conclusions and references 2 Overview 1 Origins of probability 2 Frequentist methods and statistics 3 Principles of Bayesian probability theory 4 Monte Carlo computational methods 5 Applications Classification Regression analysis 6 Conclusions and references 3 Early history of probability Earliest traces in Western civilization: Jewish writings, Aristotle Notion of probability in law, based on evidence Usage in finance Usage and demonstration in gambling 4 Middle Ages World is knowable but uncertainty due to human ignorance William of Ockham: Ockham’s razor Probabilis: a supposedly ‘provable’ opinion Counting of authorities Later: degree of truth, a scale Quantification: Law, faith ! Bayesian notion Gaming ! frequentist notion 5 Quantification 17th century: Pascal, Fermat, Huygens Comparative testing of hypotheses Population statistics 1713: Ars Conjectandi by Jacob Bernoulli: Weak law of large numbers Principle of indifference De Moivre (1718): The Doctrine of Chances 6 Bayes and Laplace Paper by Thomas Bayes (1763): inversion -
BAYESSTORE: Managing Large, Uncertain Data Repositories with Probabilistic Graphical Models
BAYESSTORE: Managing Large, Uncertain Data Repositories with Probabilistic Graphical Models Daisy Zhe Wang∗ , Eirinaios Michelakis∗ , Minos Garofalakisy∗ , and Joseph M. Hellerstein∗ ∗ Univ. of California, Berkeley EECS and y Yahoo! Research ABSTRACT Of course, the fundamental mathematical tools for managing un- certainty come from probability and statistics. In recent years, these Several real-world applications need to effectively manage and reason about tools have been aggressively imported into the computational do- large amounts of data that are inherently uncertain. For instance, perva- main under the rubric of Statistical Machine Learning (SML). Of sive computing applications must constantly reason about volumes of noisy special note here is the widespread use of Graphical Modeling tech- sensory readings for a variety of reasons, including motion prediction and niques, including the many variants of Bayesian Networks (BNs) human behavior modeling. Such probabilistic data analyses require so- and Markov Random Fields (MRFs) [13]. These techniques can phisticated machine-learning tools that can effectively model the complex provide robust statistical models that capture complex correlation spatio/temporal correlation patterns present in uncertain sensory data. Un- patterns among variables, while, at the same time, addressing some fortunately, to date, most existing approaches to probabilistic database sys- computational efficiency and scalability issues as well. Graphical tems have relied on somewhat simplistic models of uncertainty that can be models have been applied with great success in applications as di- easily mapped onto existing relational architectures: Probabilistic informa- verse as signal processing, information retrieval, sensornets and tion is typically associated with individual data tuples, with only limited pervasive computing, robotics, natural language processing, and or no support for effectively capturing and reasoning about complex data computer vision. -
Maximum Entropy: the Universal Method for Inference
MAXIMUM ENTROPY: THE UNIVERSAL METHOD FOR INFERENCE by Adom Giffin A Dissertation Submitted to the University at Albany, State University of New York in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy College of Arts & Sciences Department of Physics 2008 Abstract In this thesis we start by providing some detail regarding how we arrived at our present understanding of probabilities and how we manipulate them – the product and addition rules by Cox. We also discuss the modern view of entropy and how it relates to known entropies such as the thermodynamic entropy and the information entropy. Next, we show that Skilling's method of induction leads us to a unique general theory of inductive inference, the ME method and precisely how it is that other entropies such as those of Renyi or Tsallis are ruled out for problems of inference. We then explore the compatibility of Bayes and ME updating. After pointing out the distinction between Bayes' theorem and the Bayes' updating rule, we show that Bayes' rule is a special case of ME updating by translating information in the form of data into constraints that can be processed using ME. This implies that ME is capable of reproducing every aspect of orthodox Bayesian inference and proves the complete compatibility of Bayesian and entropy methods. We illustrated this by showing that ME can be used to derive two results traditionally in the domain of Bayesian statistics, Laplace's Succession rule and Jeffrey's conditioning rule. The realization that the ME method incorporates Bayes' rule as a special case allows us to go beyond Bayes' rule and to process both data and expected value constraints simultaneously. -
UC Berkeley UC Berkeley Electronic Theses and Dissertations
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Bounds on the Entropy of a Binary System with Known Mean and Pairwise Constraints Permalink https://escholarship.org/uc/item/1sx6w3qg Author Albanna, Badr Faisal Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Bounds on the Entropy of a Binary System with Known Mean and Pairwise Constraints by Badr Faisal Albanna A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Michael R. DeWeese, Chair Professor Ahmet Yildiz Professor David Presti Fall 2013 Bounds on the Entropy of a Binary System with Known Mean and Pairwise Constraints Copyright 2013 by Badr Faisal Albanna 1 Abstract Bounds on the Entropy of a Binary System with Known Mean and Pairwise Constraints by Badr Faisal Albanna Doctor of Philosophy in Physics University of California, Berkeley Professor Michael R. DeWeese, Chair Maximum entropy models are increasingly being used to describe the collective activity of neural populations with measured mean neural activities and pairwise correlations, but the full space of probability distributions consistent with these constraints has not been explored. In this dissertation, I provide lower and upper bounds on the entropy for both the minimum and maximum entropy distributions over binary units with any fixed set of mean values and pairwise correlations, and we construct distributions for several relevant cases. Surprisingly, the minimum entropy solution has entropy scaling logarithmically with system size, unlike the possible linear behavior of the maximum entropy solution, for any set of first- and second-order statistics consistent with arbitrarily large systems.