Tris (1,3(Dihydroxy(2(Propyl) Amine, a Planar Trialkylamine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lactide/^Caprolactone Polymerization Behavior of Monomeric Aryloxytitanatrane
698 Bull. Korean Chem. Soc. 2007, Vol. 28, No. 4 Notes Synthesis, X-ray Structure, and /-Lactide/^Caprolactone Polymerization Behavior of Monomeric Aryloxytitanatrane Sang-deok Mun, Younjin Hong, and Youngjo Kim* Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea. *E-mail: 가[email protected] Received February 2, 2007 Key Words : Titanatrane, Mononuclear, Ring opening polymerization, Polylactide, Polycaprolactone The chemistry of atrane coordinated by the central nitro polymerization (ROP) of l-lactide (l-LA) or ^caprolactone gen atom as well as all three arms of deprotonated triethanol 任-CL) are now one of popular research fields in the homo amine ligand, imino-2,2',2''-triethanolate, has been inten geneous catalysis. In this regard, a new mononuclear tita- sively studied over the past few decades and its examples are natrane obtained was used as a catalyst for the ROP of l-LA now known across the periodic table.1 Most studies have and £-CL. focused on the use of main group elements such as silicon, The treatment of Ti(O-i-Pr)4 with 1 equivalent of 2,6-di- phosphorus, aluminum, and tin in the formation of atrane.1 tert-butylphenol and 1 equivalent of triethanolamine in THF In view of the well known significant number of similarities gave, after workup, novel mononuclear titanatranes 1 as in the chemistries of tin and titanium, relatively few reports orange-yellow crystals in 81% isolated yield. After recrystal have appeared concerning metallic titanatranes with a lization using toluene, 1 was used as a catalyst for making transannular N—Ti bond from bridgehead N atom in polylactide (PLA) and polycaprolactone (PCL). -
Electron Transfer and Modification of Oligosilanylsilatranes and Related
This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. Article pubs.acs.org/Organometallics Electron Transfer and Modification of Oligosilanylsilatranes and Related Derivatives † ‡ § Mohammad Aghazadeh Meshgi, Judith Baumgartner,*, Viatcheslav V. Jouikov,*, † and Christoph Marschner*, † Institut für Anorganische Chemie, Technische Universitaẗ Graz, Stremayrgasse 9, 8010 Graz, Austria ‡ Institut für Chemie, Universitaẗ Graz, Stremayrgasse 9, 8010 Graz, Austria § UMR 6226, Chimie et Photonique Moleculaires,́ Universitéde Rennes 1, 35042 Rennes, France *S Supporting Information ABSTRACT: Several silatranyl -substituted oligosilanes were prepared starting from bis(trimethylsilyl)silatranylsilanide. Electrochemical and theoretical investigations of some oligosilanes revealed that electrooxidation occurs by formation of a short-lived cation radical. This species undergoes structural relaxation to form a pair of conformers, with endo and exo relationships with respect to the Si−N interaction. Reaction of a 1,4-disilatranyl-1,4-disilanide with 1,2- dichlorotetramethyldisilane gave a mixture of cis and trans diastereomers of a cyclohexasilane with the trans isomer showing a diminished Si−N distance. ■ INTRODUCTION along the Si−N dative bond reflects the nature of Si−N − Among hypercoordinated silicon compounds silatranes (Figure bonding. In fact the Si N bonding neither is covalent nor is − 8 1) occupy a prominent position.1 4 The suffix “atrane” was based on intermolecular charge transfer. What happens with this unusual bond upon electron withdrawal, for instance during electrooxidation, is of a great interest (for classical bonds see ref 9) but is not known so far. -
The List of Extremely Hazardous Substances)
APPENDIX A (THE LIST OF EXTREMELY HAZARDOUS SUBSTANCES) THRESHOLD REPORTABLE INVENTORY RELEASE QUANTITY QUANTITY CAS NUMBER CHEMICAL NAME (POUNDS) (POUNDS) 75-86-5 ACETONE CYANOHYDRIN 500 10 1752-30-3 ACETONE THIOSEMICARBAZIDE 500/500 1,000 107-02-8 ACROLEIN 500 1 79-06-1 ACRYLAMIDE 500/500 5,000 107-13-1 ACRYLONITRILE 500 100 814-68-6 ACRYLYL CHLORIDE 100 100 111-69-3 ADIPONITRILE 500 1,000 116-06-3 ALDICARB 100/500 1 309-00-2 ALDRIN 500/500 1 107-18-6 ALLYL ALCOHOL 500 100 107-11-9 ALLYLAMINE 500 500 20859-73-8 ALUMINUM PHOSPHIDE 500 100 54-62-6 AMINOPTERIN 500/500 500 78-53-5 AMITON 500 500 3734-97-2 AMITON OXALATE 100/500 100 7664-41-7 AMMONIA 500 100 300-62-9 AMPHETAMINE 500 1,000 62-53-3 ANILINE 500 5,000 88-05-1 ANILINE,2,4,6-TRIMETHYL- 500 500 7783-70-2 ANTIMONY PENTAFLUORIDE 500 500 1397-94-0 ANTIMYCIN A 500/500 1,000 86-88-4 ANTU 500/500 100 1303-28-2 ARSENIC PENTOXIDE 100/500 1 THRESHOLD REPORTABLE INVENTORY RELEASE QUANTITY QUANTITY CAS NUMBER CHEMICAL NAME (POUNDS) (POUNDS) 1327-53-3 ARSENOUS OXIDE 100/500 1 7784-34-1 ARSENOUS TRICHLORIDE 500 1 7784-42-1 ARSINE 100 100 2642-71-9 AZINPHOS-ETHYL 100/500 100 86-50-0 AZINPHOS-METHYL 10/500 1 98-87-3 BENZAL CHLORIDE 500 5,000 98-16-8 BENZENAMINE, 3-(TRIFLUOROMETHYL)- 500 500 100-14-1 BENZENE, 1-(CHLOROMETHYL)-4-NITRO- 500/500 500 98-05-5 BENZENEARSONIC ACID 10/500 10 3615-21-2 BENZIMIDAZOLE, 4,5-DICHLORO-2-(TRI- 500/500 500 FLUOROMETHYL)- 98-07-7 BENZOTRICHLORIDE 100 10 100-44-7 BENZYL CHLORIDE 500 100 140-29-4 BENZYL CYANIDE 500 500 15271-41-7 BICYCLO[2.2.1]HEPTANE-2-CARBONITRILE,5- -
Template for Electronic Submission to ACS Journals
Understanding the role of Ti-rich domains in the stabilization of gold nanoparticles on mesoporous silica-based catalysts Alaina Moragues a, Begoña Puértolas b, Álvaro Mayoral c,d, Raúl Arenal c,d, Ana B. Hungría e, Sonia Murcia-Mascarós a, Stuart H. Taylor f, Benjamín Solsona g,*, Tomás Garcíab,*, Pedro Amorós a,* a Institut de Ciència dels Materials, Universitat de València, P.O. Box 22085, 46071 Valencia, Spain. b Instituto de Carboquímica (ICB-CSIC), C/ Miguel Luesma Castán 4, 50018 Zaragoza, Spain. c Laboratorio de Microscopias Avanzadas (LMA), Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, Mariano Esquillor, 50018 Zaragoza, Spain. d Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), María de Luna 11, 50018 Zaragoza, Spain. e Departamento de Ciencia de Materiales, Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz, Campus Río San Pedro, 11510 Puerto Real, Spain. f Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, United Kingdom. g Departamento de Ingenieria Quimica, Universitat de València, Avenida de la Universitat, 46071 Valencia, Spain. *Corresponding authors at: Institut de Ciència dels Materials, Universitat de València, P.O. Box 22085, 46071 Valencia, Spain (Pedro Amorós). E-mail addresses: [email protected], [email protected], [email protected] 1 ABSTRACT The preparation and stabilization of gold nanoparticles with a precise control of size and dispersion is highly attractive for a variety of applications, and a key aspect is thermal stability of the nanoparticles. This paper focuses on understanding the effect of TiO2-based nanodomains, dispersed on mesoporous silicas, and how they control gold nanoparticle stability. -