ζRETAζEOUS RESEARCH ELSEVIER Research 26 (2005) 113-132 www.elsevier.comjlocate/CretRes www.elsevier.comjlocate/CretRes

Seasonal Seasonal temperature fluctuations in the high northern ,. ,. latitudes during the Cretaceous Period: isotopic evidence from Albian Albian and Coniacian shallow-water invertebrates of the Talovka Talovka River Basin ,Kor ・yak Upland , Russian Far East

Yuri Yuri D. Zakharov a,へ Olga P. Smyshlyaeva a, Kazushige Tanabe b , Yasunari Shigeta C , Haruyoshi Haruyoshi Maeda a , Alexander V. Ignatiev a, Tatiana A. Velivetskayaa , Tamara B. Afanasyeva a, Alexander M. POpOV a, Vladimir V. Golozubov a, Anatoly Anatoly A. Kolyada e,Anna K. Cherbadzhi a,Kazuyoshi MOI 匂aD

aFar aFar Easlern Geological Inslilllle of Far Easlern Brall C:" of R lI ssiall Acade l1l Y of Sciellces ,Slo 加 iya Prospecl 159 ,Vladi l' oslok 690022 , Russia bUni l' ersily of Tokyo ,7 ・3・1,HO l1 go ,B lIl1 kyo ・kll ,Tokyo 113 ・0033 ,Japall cNaliollal cNaliollal Science M lI seu l1l, Tokyo ,3 ・23 ・1 Hyakll l1 il1-c1 IO ,Shi l1 juku-kll ,Tokyo 169 ・0073 ,Japa l1

d Kyoto U I1Il 'ersi げ,Kit 仏sl!i ra ll' a Oi ll' ake-cl lO, Sakyo ・kll ,Kyoto 606 ・822 ,Jap 仰 eClosed eClosed joint slock compally "Koryakgeoldobytdw" ,Lugo l' α'ya slr. 18 ,Ko ゲ688810 ,R lI ssia Accepted Accepted in revised form 15 November 2004 vailable A vailable online 17 January 2005

Abstract Abstract

Palaeot とmperatures during the Albian-< ごoniacian in the northernmost Pacific have been determined on the basis of oxygen isotopic isotopic analysis of well-preserved brachiopod and molluscan shells from the Koryak Upland ,Far East Russia. Those obtained from the calcitic brachiopod shells from the Albian range from 12.5 to 22.7 oc. The lower temperature level corresponds to winter seasons seasons and the higher reflects summer temperatures. Probable winter isotopic palaeotemperatures ,日 uctuating from 10.9 to about 14.1 14.1 oC ,were obtained from Coniacian bivalve shells. Presumed spring and autumn isotopic palaeotemperatures for the Coniacian , ftuctuating ftuctuating from 14.1 to 17.7 0 C ,were obtained from rhynchonellid brachiopods and bivalves , all with calcitic shells ,and ammonoids with aragonitic shells. Presumed summer isotopic palaeotemperatures varied between 18.5 oC to 22 .4 oC. The new and previously previously published data suggest a short-term presence of polar ice during the Cretaceous (early Maastrichtian) only in the Southern Southern Hemisphere on the Antarctic continen t. Evidence pertaining to the Northern Hemisphere seems to suggest only occasional short-lived short-lived subfreezing conditions. These most probably occurred during polar winters in the early Valanginian , late Coniacian~ early early Santonian and early Maastrichtian. Temperatures in northern high latitudes during the course of even these winter seasons were probably not low enough for the formation of permanent sea ice. This may be a result of the lack of a continental massif in the North Pole area and a significant amelioratinge 町ect of oceanic heat-transport poleward through the straits of Turgai and the Western Interior of North America. @ 2005 EIsevier Ltd. All rights reserved.

KeY lI' ords: Crelaceous; Oxygen isotopes; Carbon isolopes; Seasona1 palaeotemperatures; Palaeoproductivity; Palaeosalinity; Invertebrates; Talovka; Koryak Koryak Upland

‘- * Corresponding author. E-mail E-mail address:yurizakh@mai l. ru (Y.D. Zakharov).

0195 ・6671/$ ・see front matter @ 2005 Elsevier Ltd. AII righls reservcd. doi: doi: 10.10 16/j.cretres.2004.1 ... 1. 005 114 114 Y.D. Zakharo¥' el α1. / Crelaceous Researc !t 26 (2005) 113-132

1. 1. Introduction Upland , northern Kamchatka (Fig. 1). During the Barremian-Paleogene this basin was at a palaeolatitude According to Price (1999) ,throughout the Mesozoic of approximately 69 0 N (Spicer et al., 2002). Mate- Era high-latitude warmth was the norm , although rial used for isotopic analysis consisted of: (1) brachio- limited limited polar ice at times is not a myth but was a reality. pod shells with fibrous structure from the Albian Barerra Barerra et al. (1 987) and Barerra (1 994) have provided Kedrovskaya Formation along the Melkaya River proof of rather low late Campanian-Maastrichtian (6 samples); (2) aragonitic and calcitic inoceramid shell water water temperatures for both the Seymour Island shelf material from the Cenomanian Mamet Formation of (Antarctica) (Antarctica) (ca. 4- 9 OC) and the equatorial Pacific the right bank of the Talovka River (1 0 samples); and deep-sea deep-sea sites (ca. 7-14 OC) based upon isotope data on (3) exceptionally well-preserved shells of brachiopods , benthic benthic foraminifera. The existence of low temperatures bivalves , gastropods and diverse ammonoids from the in in southern high latitudes during the early Maastrichtian Coniacian Penzhinskaya Formation exposed along the was recently confirmed by the isotopic investigation of lower reaches of the Talovka River (87 samples). Some Huber et al. (1995) of planktic foraminifera [10 oC; pH Coniacian mollusc shells from Hokkaido ,which retain e町ect on foraminiferal o l8 0 (Zeebe , 2001) not taken into original mineralogy and microstructure ,were also in- account]. account]. Similar evidence has been obtained from vestigated. Maastrichtian Maastrichtian macrofauna of James Ross Island , Zolotarev et a1. (1 974) and Evseev et al. (1 999) recog- Antarctica Antarctica (Pirrie and Marshall , 1990): 9.32-14.84 oC nized seasonal layers in shells of the Recent bivalves (仕 om bivalves) , 10.61-14.81 oC (仕 om nautiloids) ,9.93- Swiftopecten swifti (Bernardi) and Mizuhopecten 12.35 12.35 oC (from ammonoids: Gunnarites) , 10.17 oC (仕 om yessoensis (Jay) from the Sea of Japan. Only a single a belemnite rostrum). cycle of temperature ftuctuation was discovered within Recently Recently M iIl er et al. (1 999) have established the each annual shell layer of Swiftopecten Sltψ i, indicated coincidence coincidence of O l8 0 increases in both Maastrichtian on the surface of the shell by steep ridges (Fig. 2). deep-water deep-water benthic foraminifera of the Antarctic ,South Zolotarev et al. (1974) determined that the formation of Atlantic Atlantic and Indian-Pacific basins ,and Maastrichtian ridges in this species is initiated by increased (fairly low-Iatitude low-Iatitude surface-dwelling planktic foraminifera ofthe warm) temperatures at the beginning of the summer Pacific ,by comparison with Late Campanian foraminif- (1 2-16 OC) ,and that the first stage in the formation of era. era. They put forward two interpretations to account for wide bands (growth increments) occur at the maximum the the coincidence of these events: (1) the development of temperature (25.5 OC). Maximum linear growth of shells a moderate-sized ice sheet during the early Maastrichtian , under the inftuence of the highest summer temperatures and (2) a global decrease in both deep and tropical sea- is about 2 mm during 1-2 weeks. Subsequent fo 口nation surface surface temperatures during this period. Since the events of annual layers in the autumn and winter takes place mentioned above correlate with a large (3 0-4 0 m) ,rapid , under the gradual lowering of temperature (to 4.5 OC). earliest earliest Maastrichtian sea-level fall , inferred from the No pronounced morphological indicators ,correspond- New Jersey sequence-stratigraphic record , they incline ing to the coldest seasons , are present on the shell mainly to the first interpretation , supporting a glacio ・ surface; completion of growth of each wide band takes eustatic eustatic cause for the sea-levellowering. place in the spring. Lowermost isotopic palaeotemperatures for Creta- Samples for our isotopic analyses were carefully ceousnorthern high latitudes (5.3-10 .4 OC) (Ditchfield , removed from the shells using a special method. 1997) 1997) have been obtained from early Valanginian Material was taken from narrow areas along growth belemnite belemnite rostra of Svalbard; relatively low isotopic striations on the surface of the shell that crossed all shell palaeotemperatures palaeotemperatures for the Maastrichtian (1 0.2- layers except the innermost , covering allliving chambers 16.9 16.9 OC) have been recently obtained by us from early in ammonoids and gastropods ,and the inner surface of Maastrichtian Maastrichtian brachiopods of the western Koryak brachiopod and bivalve valves. This enabled shell Upland (Zakharov et al., 2000). material formed during di 汀erent seasons of the year to We focus in this paper on palaeotemperature fluctua- be identified. tions tions in high latitudes of the Northern Hemisphere The following were used to determine diagenetic during during the Albian-Coniacian to distin alteration in the organogenic carbo

‘' ‘' 2. 2. Material and methods

Macrofossil Macrofossil samples for isotope analyses were col- lected lected by a Russian-Japanese Geological Expedition team in in 1999 from the Talovka River Basin , western Koryak Y.D. Y.D. Zakhar O¥' et al. / Cretaceous Research 26 (2005) JJ3-132 115

マ ~ ~ 今マ

、~ 令心

~ω 々~ω ~ .q.. .q..

Fig. Fig. 1. Location of the Talovka River Basin ,Koryak Up1and. Localities: 727. Melkaya River (Kedrovskaya Formation ,Albian); 725 ,726 ,Bolshoy Vylgilveem Vylgilveem Creek (Mamet Formation ,Cenomanian); 724 ,Tyngyrginkuyul Creek (Mamet Formation ,Cenomanian); 712 ,723 ,lower reaches of the Talovka Talovka Ri ver (Penzhinskaya Formation ,Coniacian).

Oxygen and carbon isotope measurements were made using a (German) Finnigan MAT-252 mass spectrometer spectrometer at the Analytical Centre of the Far Eastern Geological Geological Institute ,Vladivostok. The laboratory gas standard standard was calibrated relative to calcite NBS (Na- tional tional Bureau of Standards) 19 and equals 1. 8 ::!:: 0.10% 。 for for oxygen relative to PDB (Pee Dee belemnite) and -0.75 -0.75 ::!:: 0.10%0 for carbon. Reproducibility of replicate A T, OC standards standards was always better than 0.10%0 ・In calculating 卑 the the temperatures , since icecaps were not present during 111 most most of the Cretaceous Period ,a o l8 0 of -1. 2%0 PDB 22 問山 (equivalent (equivalent to -1. 0"00 SMOW) was thought to be 『 ‘‘‘‘~‘‘ appropriate. appropriate. Two scales were used for palaeotemper- 18 μVI1 唄 B L-- .~ I ature ature calculation: those of Anderson and Arthur f111 II .;¥ ,I 14 14 I'‘ I (Epstein (Epstein et al., 1953; Craig and Gordon , 1965; Anderson ‘臼『 a ・ j !? •• and Arthur , 1983) for calcitic material and Grossman ---.! 14 10 10 ・『 . ・・ ・圃 ・ and Ku (1 986) for aragonitic materia l. 、‘‘‘司. X-ray X-ray anaJyses were carried out using a DRON ・3 6 ,, 4 V diffractor diffractor following the method of Davis and Hooper 園 -~ (1963). (1963). Ca and Mg contents in the carbonates in- vestigated vestigated were determined using the method of com- 40 50 60 70 80 90 100 110 120 plexometric plexometric titration (8erlin and Khabakov ,1966 , 1968; Distance from shell beak ,mm Krasnov and Pozdnyakova , 1982; Cherbadzhi , 1984). 8erlin 8erlin and Khabakov (1 968) made palaeotemperature Fig. 2. Recent Sn ずiopecten slI' ifti (Bernardi) shell from Japan sea. A , determinations determinations from belemnites using a CajMg method , cross section. B,isotopic temperatures of growth (Zolotarev et al., 1974). 1974). Black rectangles and squares indicate the width of the areas but but it is more usual these days to cite MgjCa molar along growth striations on shell surfaces from which materia1 was ratios ratios rather than CajMg ratios (Lear et al., 2002). taken for ana1ysis. 116 116 Y.D. Zakharol' et al. / Cretac 抗 llI S Researclr26 (2005) 113-132

18 l3 3. 3. O 0 ,o C and Mg/Ca ratios in fossils analyses. The O l8 0 and O 13 C values for calcitic from from the Koryak Upland brachiopod samples range from -2.5 to -0.1%0 (corre- sponding sponding to palaeotemperatures of 12.5-22.7 OC) and ln ln the Talovka River Basin ,all material for isotopic from -2.0 to -1. 3%0' respectively (Table 1) ,and MgjCa I investigation investigation was obtained from the three levels: (1) ratios in the shells range from 5.25 to 5.87 mmol mol- . Albian ,Melkaya River ,a tributary of the Ainyn River; (2) (2) Cenomanian , Bolshoy Vylgilveem and Tynogyrgin- 3.2. Upper Mamet Formation (upper Lower kuyul kuyul creeks area; (3) Coniacian , lower reaches of the Cenomanian) Talovka Rive r. The Cenomanian ammonoid fauna from the Talovka 3.1. 3.1. Kedrovskay α Formation (Albian) River Basin has been described by Alabushev (1 987 , 1995a ,b) and Alabushev and Wiedmann (1 994b). The ammonoid assemblage in the Kedrovskaya Formation of the Ainyn River Basin has been described 3 .2 .1. Bolshoy Vylgilveem in in detail by A vdeiko (1 968) and briefly by Alabushev At the mouth of Bolshoy Vylgilveem Creek , 29.3 km (1 987 ,1989a ,b,1995a ,b) ,and Alabushev and Wiedmann above the mouth of the Talovka River (Litvinov et al., (1994a). (1994a). 1999) ,Cenomanian sediments of the Mamet Formation On the left bank of the Melkaya River , about 10 km are exposed (Fig. 3) as follows: above its mouth , sediments of the formation are exposed 4. 4. Dark grey siltstone with large calcareous-marly in in descending order , as follows:

boulders boulders (725 ・5).... ・H ・...・ H ・...・ H ・...・ H ・....・ H ・.....・ H ・...・ H ・.35m 5. 5. Grey siltstone with small marly boulders of irregular Yields ammonoids (Anagaudryceras sp. ,M αrshallites

shape shape (l arge boulders are rare).... ・H ・....・ H ・...・ H ・...12-14 m sp.). 4. 4. Greyish green siltstone with interlayers of mudstone 3. Greyish green ,fine-grained sandstone with lenses of and abundant of large marly boulders (727-1 ,a1 ,4; 727 ・ coquinoid calcareous sandstone and rare interlayers of

2・1-13 ト...... 5.5 m dark grey siltstone (7 25 ・3; 725-4 ・1-3) ....・ H ・H ・H ・-… .5.0m Yields Yields brachiopods (Penzhinothyris plana Smirnova) , Contains bivalves (l noceramus pennatulus Pergament). bivalves bivalves (l noceramus sp よ ammonoids (Beudanticeras 2. Moderate-sized pebble conglomerate and coquinoid sp. , Hulenites sp よand plant remains (Metasequoia sp.). calcareous sandstone with large slumped blocks of 3. 3. Greyish green siltstone with small ,noticeably scarcer sandstone.... ・H ・-……....・ H ・....・ H ・-…....・ H ・-…...・ H ・...・ H ・..3.0m large large marly boulders (727 ・1・2) …....・ H ・...・ H ・...・ H ・H ・.. 15 m Contains bivalves (l noceramus sp ふ Contains Contains brachiopods (Penzhinothyris plana Smirnova). 1. Greyish green ,fine-grained , cross-bedded sandstone 2. 2. Greyish green , fine-grained , greywacke sand- with thin interlayers of grey siltstone and lenses of stone. …….日…….日…….“…….日…….日…….口…… …….日…….日…….日…….. …….口…….. …….. …….日…….日…….. .υ …….日…….口…….日…….口…….日…….日…….日…….日…….日…….日…….日…….日…….日…….日…….口…… …….日…….日…….. .υ …….日…….日…… .υ ………….. .υ …….日…….υ …….日…….日…… …….日…….日…….日…….日…….日…….日…….日…….リ…….日…….日…….日…….日…….日…….日…….“…….リ…….. …….“…….日….日 .. .0.1 ロ2m coquinoid calcareous sandstone (725 ・1・1, 725 ・

1. 1. Greyish green siltstone 川w it 出h small marly boul- 2,la)... ・H ・.....・ H ・...... 2.5 m ders. ….日 .. ….日 .. ….日 .. ….日 .. ….日 .. ….口 .. ….日 .. …....….口 .. ….日 .. ….日 .. ….日 .. ….日 .. 日….日 .. ….日 .. ….日 .. ….日 .. …...….日 .. ….日 .. ….日 .. ….日 .. ….日 .. ….日 .2 .3 m Contains bivalves (Bairostrina COllcentricus costatus Yields Yields brachiopods , gastropods , and ammonoids Nagao and Matsumoto , lnoceramus pennatulus Perga- (An α'gaud りr. yceras sp. ,M ω'sh ωα lli μtes? sp. ,Sc~ 伊ponocerαS ment). s叩p.) in small boulders from talus (σ72 幻7- ト3均). The total thickness of the formation in this section is The thickness of the formation in 出hi 也s section 臼s 46m. 3お5一-37m. Both aragonitic elements of Bairostrina concentricus Penzlu 的not 的hyr 臼i. 's pla αω nαshells with a well-preserved costatus (725 ・1・1) and calcitic prismatic layers of i白ibro 刀ous structure (727-2-1 ,3 ,6 ,め)8 were used for isotopic lnoceramus pennatulus (725 ・4・2, 3) shells from members

Table Table 1 Carbon and oxygen isotope analyses of Albian calcitic brachiopod shclls (Pellz !r; llotlryris plalla Smirnova) from the Kedrovka Formation of Melkaya River River (L , length) Sample Location Diagenetic alteration O 13 C (PD8) O l8 0 (PD8) T oC (L in mm) eyoo) Shell Shell structure Cathodo-Iuminescence Colour (:Y oo) (by (by 25 kV) vvvvvvL 戸、戸、両』曲、戸、戸、wwηwwwwwww戸、声』aaaaaa臥 727 ・2・1 L = 15 Well preserved fibrous Silvery-white -1. 6 -0.1 12.5 LKL 727-2 ・2 L = 38 Well preserved fibrous Silvery-white -4.5 -2.5 22.7 niv 727-2-3 727-2-3 L 35 Well preserved 自brous 民 Silvery-white -2.1 -1. 6 18.6 = L 曲、戸、肉、且 727-2 ・6 L = 20 Well preserved 自brous , Silvery-white -1. 3 -1. 5 18.2 wdWLhL 727-2-8 727-2-8 L = 20 Well preserved fibrous Silvery-white -2.0 -1. 6 18.6 民 727-2-9 ・la L = 10 (3 shells) Well preserved fibrous Silvery-white -1. 8 -1. 1 16.5 Y.D. Y.D. Zakharo l' et al. / (・ retaceo /l s Research 26 (2005) 113-132 117

Sample number IO 13 C(%o ,PDB) O18 0(%o ,PDB) o 123 4 ・4 -3 -2 -1 0 ZECmEO

ロ ~25 ・ 5;725 ふ1, 2 ωυ ;7 25-3 ・725-4-2 .3 726 ・1,2 725 ・1; 725 ・1・1,2, 3.4, 5

E3conglomemte E ヨJsa 叩附n叫1d

E ヨsiltstone 巨ヨ~bou批11刷帥凶Idd白erofma刷 nar 附削 1a 削町削a創訂副rl '1 l

園町;て Jfkistone Eヨf伽a飢叫u

ロヨ bed 伽 lents E ヨg酔抑eω01 均o句gi 同凶ωω1 削ro ol凶凶u1氏t Tal ovka 巴コ aragon 巨コJc ω叫州‘仏印al 此刷州1叫北制Ic刷 附ci 恥it t舵e

0 200 400 6OOm

l3 Fig. Fig. 3. ol l! O and O C values in the aragonitic and calcitic elements of inoceramid shells from upper Lower Cenomanian strata of the Mamet Formation ,Talovka River section (Bolshoy Vylgiliveem Creek) , Koryak Upland.

1 and 3 were used for isotopic investigation. Rather low values (up to 2.8%0) (Table 2). Low δ18 0 values (-3.0 l8 O 0 values , ranging from -3.2 to -2.0%0' were derived and -3.1%0) were also encountered in ca 1c ite of 13 from well-preserved Inoceramus when O C values are fragments of prismatic layers from inoceramid bivalves; 13 positive positive (1.3-2 .5 %0) and aragonite content reaches 100 0/0 values of O C vary between 0.3 and 1. 1 %0' Isotopic data l8 (Table (Table 2). A single O 0 value (-2.3%0)' corresponding on the aragonitic (95::!:: 5 0/0) ammonoid Desmoceras to to a more-or-less reliable temperature (21.7 OC) ,was (Pseudouhligella) j, αljJ onicum she l1, however ,show un- l8 obtained obtained from one fragment of the prismatic layer. usua l1 y high O 0 values , changing from -0.9 to -0.1 -0.1 %0) and corresponding to palaeotemperatures of .2.2. 3.2.2. Tynogyrginkuyul 15.9-17.7 0C. The MgjCa ratio in calcitic prismatic I An exposure of the Mamet Formation located 25 km layer of an Inoceramus she l1 is 5.90 mmol mol- . above the mouth of the Talovka River and 2 km above the the mouth of Tynogyrginkuyul Creek (Litvinov et al., 1999) 1999) is represented by the two members (Fig. 4): 3.3. Upper Penzhinskaya Formation (Coniacian) 2. 2. Oark grey siltstone with interlayers of greyish green Cretaceous ammonoids (including Eorhaeboceras , sandstone sandstone containing prismatic inoceramid bivalve Hypophylloceras ,Yokoy αmη1α ocer α. ム】Yezoi 臼te 白s) and ino-

fragments fragments …...・ H ・..…...・ H ・.....・ H ・..…...・ H ・H ・H ・.....・ H ・..…・ 10 m Cαeramid bivalves (Sphenoce ωrαmη1US nαum η1α nni Y okoyamaω ) 1. 1. Greyish green ,fine-grained sandstone with interlayers from the lower reaches of the Ta 叫lovka River were of sandy siltstone ,and lenses and boulders of coquinoid 白rst investigated by Pokhialainen (1 985) ,Alabushev ca 1c areous sandstone (734 ・14 , 15)7 .…....・ H ・....・ H ・.25.0m and Alabusheva (Alabushev and Alabusheva , 1988; Yields Yields bivalves (Bairostrina concentricus costatus Nagao Alabushev , 1989a; Alabushev and Wiedmann ,1994a ,b). and Matsumoto , Inoceramus pennatulus Pergament , They used E.S. Alekseev's co l1 ection (I ocality 152) Na l1 nonavis sp.) and ammonoids [Desm0 ceras and their own co l1 ections (I ocality 20) for this pur- (Pseudouhligella) (Pseudouhligella) japonicum (Yabe) , Hypophylloceras pose. pose. Inoceramid bivalves found here usua l1 y range sp. ,Marshallites sp. , Puzosia? sp.]. through Coniacian-Campanian deposits in the Far East As for the previous section , the ara 司agoni 江tic B αi かl' ψ怯ostrin ωα (Pokhialainen , 1985). They discussed the Santonian- Cω on 町ce ωntr; たcu 凶s cω ost 吋tαω tu 附IS shells examined (724-10 , 15; 724 ・ Campanian strata exposed in the lower course of l8 12-4 , 6) are characterized by rather low O 0 values , the Talovka River on the basis of ammonoid data 日uctuating from -2.9 to -1. 7%0' in spite of their high (Alabushev and Alabusheva , 1988; Alabushev and aragonite aragonite content (87-100 0/0) and mainly positive O 13 C Wiedmann ,1 994c). ニ∞

Table Table 2 Carbon and oxygen isotope composition of Cenomanian aragonitic and calcitic mollusc shells (ammonoid and inoceramid bivalves) from the Mamet Formation of the Talovka River Sample Species Locality (Creek) Location Diagenetic alteration O 13 C (PDB) O l8 0 (PDB) “T" T (H and L in mm)Aragonite Primary Admixture Colour (%。 )(%J OC OC (%) calcite (%) 724-1-1 724-1-1 Desmoceras (Pseudouhligella) Tynogyrginkuyul H = 25 98 士2 0 Silvery-white -0.2 -0.3 16.8 japonic lI m (Yabe) TTTT ・ L 白 P3F303pa-Eilli LULULULu・ uJUJUJVdnnnnoooooboboboEyyyyvavobobobob1nnnn 民 uuuuv'UJvdvd uuuu υ vvvvp-F--Favvdvdvdvdwwww 1.‘ceee 724-1-3 724-1-3 Same shell H = 20 100 -0.1 -0.5 17.7 ・ L 白 ・ ・ 『 1 民 E 向』白』戸 1.• 724-1 -4 Same shell 且伊且 H = 19 ]00 υ ‘,‘-0.9 -0.1 15.9 -b ・ L 白 ・ ・ 1 民 vou I 1 ・ 724-1-5 724-1-5 Same shell H=13 95 士5 且 -0.9 -0.3 16.8 NSEE ・ L ・- ・ Fal 民 pa 1.E 724-2-1 724-2-1 Bairoslrilla concelllricus cosla lU s H = 25 100 Ceolite (trace) iv ‘ 4.2 -1. 0 19.8 Nagao and Matsumoto TTTTTTTT.mv.g.mv.g.mv.g.g.L 11111111 白リ白 日 品問問・ 『ミミミ・¥円、内室町内定号、州 yyyyyyyynnnnnnnn000000ooobOEO-obo-oEHbobvdvdvdvdvdvdvdvdvavav--Fnnnnnnnn民 uuuuuuuuyyyyyyyyuuuuuuuu weaeaa--Hae砂HFCC-H9uqasmm 724-2-2 724-2-2 Same shell H = 35 97 士3 Ceolite (trace) 4.0 .4 L -1. 6 22 民 G古川明、官m 724-3-3 724-3-3 Illoceramus pellllalulus Pergament H = 20 100 υ 2.9 -0.5 17.7 L 白 剖 72 4- 5 Bairoslr;na concelllricus costatus 民 H = 22 100 UAUnU 砂 3.3 -0.8 19.0 L 民 GGWGmmem 724-7 724-7 Bairostrina concelllriclls costatlls ・ H = 43 97 土3 3.8 -0.7 L 18.5 724-9 724-9 Bairostr;na concelllr;cus costatus ・v 民 H = 25 90 士3 -1. 6 -2.5 26 .4 L l凸 凸 h 724-1 724-1 Ino c:e ramus sp. V且 民 Prismatic layers 0 Uυnuhu 0 .3 -3.1 25 .4 L 724-10 724-10 Bairostrina concelllriclls costatlls vav 民 H = 30 -100 志川町 -0.3 -1. 7 22.9 L 剖 伊 民 砂 724-12-1 724-12-1 Ba;rostr;na cOllcentr; α, IS costatus ・ H = 20 93 士3 Lamellar silicates 2.8 -1. 8 23.3 22 (tra ∞) 。∞ 210032122211101181J3852 724-12-4 724-12-4 Ba;roslr;na concelllr;clls costatus Tynogyrginkuyul H = 30 -100 White -2.1 24.6 『内 l-- bha Ba;rostrina Ba;rostrina conce lU ricus costatus Tynogyrginkuyul Prismatic layers 724-12-5 724-12-5 O 00000000000000 White -3.0 25.0 724-12 ・6 Ba;rostr;na COllcenlr;cus costatus Tynogyrginkuyul 20 87 3 H = :t Cream -2 .4 25.9 芯。。じごとし 724-15 724-15 Ba;ro 叫 r;lla cOllcelltr;cus costatus Tynogyrginkuyul H = 16 96 :t 3 Li ght cream -2.9 28 .1 725-1 725-1 Bair ω ,trina concentricus costatus Bolshoi Vylgilveem H = 30 93 :t 5 Silvery-cream -2.] 24.6 725-1-1 725-1-1 Ba iJ 明暗,tr iJ w com:entricus costatus Bolshoi Vylgilveem H = 30 100 Li ght cream -2.0 24.2 725-1-2 725-1-2 Inoceramus penlla lU /us Pergament Bolshoi Vylg i1 veem H = 30 100 Light cream -21.2 25.1 wlhqiN 后 725-1 ・3 Same shell Bolshoi Vylgilveem H 124 100 = Li ght cream 3A3km3705-1. 5 22.0 725-1-4 725-1-4 Same shell Bolshoi Vylgilveem H = 157 100 Light cream -0.6 18.1 725-1-5 725-1-5 Same shell Bolshoi Vylgilve 伐emn1 H = 188 100 Li ght cream -0.6 18.1 nunu 725- 4- 2 Inom併r戸~m Prismatic layers 0 White -3.2 25.9 725- 4- 3 In 叩ocer α111 ωus pem η11 αtω u/u. σ's Bolsh 】oωi Vy 川Ig 副ilveem n1 Prismatic layers 0 White -2.3 21. 7 725-5-1 725-5-1 ペAllag αu叫のL1ち,'c:e ra αs sp. Bolshoi Vylgilveem H = 30 97 土3 α.-SiO 、 Cream 0.1 15.1 725 ・5・2 Same shell Bolshoi Vylgilveem H=13 98 土3 Cream -0 .4 17.2 726-1 726-1 Illoceramus pe l1l wtulus Bolshoi Vylgilveem H = 30 88 :t 5 Ceolite (1 ittle) Li ght cream -2.6 26.8 726-2 726-2 h lO ceramus pellnatulus Bolshoi Vylgilveem H = 25 100 CaS04 H 20 (trace) Cream -1. 8 23.3

High O l8 0 values might have been caused by freshening inftuence (H ,height). Y.D. Y.D. Zakl Ul rol' et al. / Crelaceous Research 26 (2005) 113-132 119

E ~ I Sample ]I number 3i E 3i υ

UiZA E

E ヨ sandy siltstone

0200 400 5OOm

Fig. Fig. 4. O 18 0 and O 13 C values for the aragonitic ammonoid Desmoceras (Pseudouhligella)japollicum (Yabe) and the aragonitic and calcitic elements of inoceramid inoceramid shells from upper Lower Cenomanian strata of the Mamet Formation , Talovka River section (Vylgilveem Creek area) ,Koryak Upland. For key to lithologies , see Fig. 3.

The upper beds of the section in this area that we Nannonavis sp.] , gastropods (H α, rpogodes sp. , Semifusus investigated ,locality 719 , are exposed about 12 km sp よscaphopods (Dentalium sp.) ,ammonoids [Baculites south-east south-east of the mouth of the Talovka River; its lower sp. , Gaudryceras denseplicatum (Jimbo) , Kossmaticeras beds beds (l ocality 723) are situated about 7 km to the north japonicum Matsumoto ,Mesopuzosia yubarenzis (Jimbo) , (west (west of the large islet near the sharp bend in the river). Phyllopachyceras sp. , Tetr α'gonites glabrus (Jimbo) , South South of the locality , Cretaceous exposures are absent; Yezoites sp. Yokoyamaoceras sp.] ,and plant remains therefore ,we believe that the outcrops we have studied [Metasequoia sp. (dominant) ,Ginkgo sp.]. correspond correspond to those of Alekseev and Alabushev. Covered interval about 20-25 m thick. Our re-examination of the mollusc assemblages 6. Greyish green siltstone with rare marly boulders (in

mentioned mentioned above showed that the fauna of Kossmatl ・ talus) (7 13 ・1・1; 713-2 ・3) ....・ H ・-…....・ H ・-… .2-3 m exposed ceras ceras japonicum Matsumoto ,M esopuzosia yubarensis Contains bivalves [Acila (Truncacila) sp. ,Nannonavis (Jimbo) ,micro- and macroconchs of Yezoites pseudoae- sachalinensis (Yokoyama)] ,ammonoids [Gaudryceras qualis qualis (Yabe) [microconch previously described as denseplicatum (Jimbo )]. Otoscaphites Otoscaphites klamathensis (Anderson)] ,and rare Inocer- Shells of three ammonoid species from the lower αmus uwajimensis (Yehara) and Sphenoceramus yokoya ・ portion portion of the U pper member were analyzed: Gaudry ・ mai (Nagao and Matsumoto) , is known from the 0 ceras ceras denseplicatum (713 ・1・1,97 /0 aragonite) ,Kossma ・ Coniacian Coniacian of Hokkaido , suggesting that the upper 0 0 ticeras ticeras japonicum (95 10) ,and Baculites sp. (713 ・5,90 /0). Penzhinskaya Penzhinskaya Formation is of Coniacian age. It is An aragonitic gastropod shell , Semifusus sp. (ca. 100% appropriate appropriate to mention here that Alabushev (in aragonite , with only small portion α-Si0 2),and a calcitic Alabushev Alabushev and Wiedmann , 1994c) apparently made an bivalve shell , Nannonavis sp. , were also studied. o18 0 error error when he included data on a massive conglomerate values in the ammonoid shells ftuctuate from -1.6 to and a cross-stratified sandstone ,now considered to be -0.3%0 -0.3%0 (o 13 C values range from -0.9 to 0.2%0); o18 0 0ligocene , in his description of the Cretaceous section. values values in the Nannonavis shell range from -1. 1 to In In separate exposures at the base of a high terrace we -0.7%0 -0.7%0 (o 13 C = 1. 1- 1. 2%0) and the MgjCa ratio ftuc- recorded recorded the following units of the upper part of the 1 18 tuates tuates from 5.4 4 to 5.85 mmol mol- ; the O 0 value in Penzhinskaya Penzhinskaya Formation (Figs. 5 ,6). the the Semifusus shell is -0.9%0 (o 13 C = 0.1 %0) (Table 3). The shells of three ammonoid species from the middle 3 .3 .1. Upper member portion of the upper member were analyzed: Baculites 0 7. 7. Greyish green s i1 tstone with abundant marly boulders sp. (713 ・5a ・3,89 /0 aragonite) ,Mesopuzosia yubarensis 0 (713-2 -4; 713-4a; 713 ふ 1; 713 ふ 3; 713-5a ・3; 713 ・5b; (713 ・6d ・2,100 /0) and Kossmaticer ωjaponicum (713 ・7・ 713 ・6-1 , 2; 713 ・6a-2; 713 ・6b-e; 713 ・6d ・1, 2; 713 ・7・1-4; 1,96 0/ 0 aragonite; 713 ・7・2,91 0/0;713-7-3 ,97 0/0; 713 ・7・4 713-13 ・1-4; 714-1; 721 ・1,2,4- 8,10 , 11; 721 ・3・1, 2; 721 ・ 95 0/ 0; 713-13-1 ,95 0/ 0; 713 ・13-2 ,87 0/0; 713 ・13 ・3,95 0/ 0, 18 13 9・1; 723 ・5) ・… ...... 22 m 713 ・13-4 ,93 0/ 0). O 0 and O C values in them vary Yields Yields rhynchonellid brachiopods , bivalves [Acila between -1.6 and -0.8%0 and -3.6 and -0.8%0' respec- (Truncacila) (Truncacila) sp. , Grammatodon sp. , Inoceramus sp. , tively (Table 5). The oliSO value for a single fragment of 120 120 Y.D. Zaklwr Ol' et al. / Cretaceolls Researclt 26 (2005) 113-132

isotopically isotopically investigated was taken from she l1 s of the l8 bivalves bivalves AcU αand Nannonavis: o 0 and O l3 C values t1 uctuate from -1.8 to -0.7%0 and from 0.2 to 1.6 , respectively; respectively; Mg/Ca ratios change from 5.16 to I 5.55 5.55 mmol mol- . The lowest palaeotemperatures determined from calcitic calcitic and aragonitic invertebrate shells of the upper member are J1.7 and 16 .4 oC ,respectively; the highest are are 19.5 and 22 .4 oC. Average palaeotemperatures from 32 32 calcitic and 21 aragonitic samples are 15.5 and 19.2 , respecti respecti vely. .3.2. 3.3.2. M iddle member 5. 5. Greyish greeQ siltstone with lenses of dark grey

calcareous calcareous sandstone and large boulders of marl (712 ・

1 ,la; 712 ・2・1-3) ....・ H ・-…...・ H ・-…...・ H ・.....・ H ・...・ H ・...・ ...3.0m Contains Contains remains of sponge colonies , bivalves (Nallnonavis (Nallnonavis sp よ scaphopods (Dentalium sp.) ,ammo- noids noids [Gaudryceras sp. , Mesopuzosiajubarensis (Jimbo) , Mesopuzosia Mesopuzosia sp.]. Covered Covered interval about 15-20 m thick. 4. 4. Dark grey , sandy siltstone with small calcareous- marly marly boulders (in talus) (720 ・1,a1 , 1b; 720 ・2・3; 722 ・1-

4, 8; 722 ・3・4; 722 ・5・1,2,2a).... ・H ・....・ H ・.. less than 2-3 m Contains Contains bivalves [Acila (Truncacila) sp. , Inoceramus sp. , Nannonavis sp.] , gastropods , ammonoids [Anagaudl ァceras sp. ,Gaud l' yceras sp. , Hypophylloceras sp. , Kossmaticeras japonicum Matsumoto ,Scalarites sp. , Tetragonites Tetragonites popetensis Yabe ,Yokoyamaoceras katoi (Jimbo)] ,and plant remains (Metasequoia sp ふAppar- ently ently from this portion of the section rare specimens of Inoceramus Inoceramus uwajimensis (Yehara) and micro- and macroconchs macroconchs of Yezoites pseudoaequalis (Yabe) were collected collected by H. Maeda. Covered Covered interval about 40-55 m thick. Fig. Fig. 5. Sketch map showing Coniacian outcrops in the Talovka River 3. Dark grey sandy siltstone with abundant lenses and Basin. Basin. For key to Ii thologies , see Fig. 3. large boulders of marl (715 ・1-3 ,8,9,11 , 13; 715 ・10 ・2;

722 ・10 , 11; 722-12-1 -4)… H ・H ・.....・ H ・...・ H ・H ・H ・...about 5m

I3 Yields bivalves (Nam lO navis sp よ gastropods ,scapho ・ an aragonitic inoceramid shell is ー0.2%0 (o C = 0.0%0); l8 pods (Dentalium sp よ ammonoids (Gaudryceras sp. , O 0 values in the calcitic bivalve Ac i/ a and Nannona~is 13 Kossmaticeras japonicum Matsumoto , Tetragonites po ・ shells shells range from -0.9 to 0.1 %0 (o C = 0.2- 1. 2%0) and for for the rhynchonellid brachiopod shell the value is petensis Yabe) and plant remains (Ginkgo sp. ,Meta- sequoia sequoia sp ふ -1. 4roo (o I3 C = 1. 6%0)' The Mg/Ca ratio in calcitic I Covered interval about 80-85 m thick. bivalves bivalves changes from 5.08 to 5.80 mmol mol- . From the upper portion of the upper member the Analysis of the lower portion of the middle member aragonitic aragonitic shells of four ammonoid species ,Mesopuzo ・ involved the use of aragonitic shells of three ammonoid sia sia yubarensis (97 0/ 0 aragonite) , Yesoites sp. (aragonite species: Kossmaticeras japonicum (715 ・1,95 0/0 aragonite; 0 0 bearing , with a small admixture of a. -Si0 2 and MnC0 3), 715 ・2,93 10; 715 ・3,95 /0; 715 ・6,97%) ,Gaudl フ'ceras sp. 0 Gaudryceras Gaudryceras denseplicatum (81 % aragonite , with traces (715 ・10 ・2,78 0/ 0, with a trace of a. -Si0 2; 715 ・11 ,100 /0; ofα ・Si0 2 and MnC0 3) and Kossmaticeras japollicum 722 ・12 ・1,93 0/ 0, with traces of 昨 Si0 2,clinoptilolite and 0 (90 ー95% ,aragonite , with traces of a. -Si0 2 and c1 inopti ・ lamenar silicates; 722 ・12 ・2,93 10

IoIite) ,and a gastropod H ω, 'pogodes sp. (100 0/ 0 arago- nite) nite) were analyzed. ol8 0 values in the former t1 uctuate from -1. 1 to -0.2%0 (o I3 C values fluctuate from -2.8 to 0.1%0); 0.1%0); the O l8 0 value in the gastropod shell is -0.1% 。 (o I3 C = l .3 roo) (Table 3). Primary calcitic material Y.D. Y.D. Zaklwro¥' el al. / Crelaceoll .'i Research 26 (2005) 113-132 121

|.£ ms8 |.£ 号 E5 JzE eLz Ea4 'ロ JSEO 〉 P、11 戸g Sample number 8180(% ,pDB)813C(% ,pDB)Mg/Ca(mmol mol 勺 国 .L2E 1 0 1.4.2 0 2 4.7 5.0 5.3 5.6 5.9

るー・・ .・ 1- 721 ・ l ム4ふ,~,!,~, !O~II~ .三量 E 721 ・3・1,2; 721-9 ・1,2; T=1 正事茄-:f白 ""'1 11 1 r ・・ 医三 吉宮芸 トー・ー・一一 7~ 主i About

D8E 語云三 22 714 ・1; 713 ・6-1.2 ・ ~三蚕?Eiヨ益三 J134414;71 ,34, 14 T=11.7 羽衣 l..110.. 1_ h吉3EL 三で三竺:7 P13 ・4a; 713 ・h ・1, 2,3; 」二 ED- 111 I 1: J. rt" .r "P' 7二:二五民ご 713 ・5・a・3・1;713 品 ;713 ・斗T= ユ11 i.3 ,里Glllll irlllll l' 、一 ・・ 4・ 6a ・2;713 ・6b ,6c ,6d ,6e; 、

蚕子二一千fヨ翌 F 区Ik凶伽献町H~、771l13 叩電10ー61ヲー74ミ1一.-8 ー72.7193K12J112 3711e-H25E tJ7-ι1A311 5ヲ守 IT=12 思rTilI lll II rr.

~~…65- T= 叫唱 ¥

空陸讐 3 ・712-1 ,la; 7山 2.3 T=1 まま 16 引 JI~ IP

35-i 35-i I 1 1 1 1 I 1 1 1 1 1 1 I 1/ 722 ・3,4; 720 ・la ,lb; 1111111111111 Y ト・ 720 ・1; 720 ・8・3 ロ皇2 陛益出]:叫 7…叫;r I....L・ ~ II IA: 30 ・ 6;722-1.2 Mω 判宝 川 F ~722・ ~-J.~ ULLI_IJ_I_ Ul I11 L 3 面舎三~ 5 r?~5 ・ l ユ 3.6.7.8 ,9.11.12. mA b ・ 1- ・ー・ 13; 715-9-2 ,3;715-10-2; 日=12.1 開 ー-- 思 ---722 ・12 ・1,2,3,4, 5 80- 85 85 l

ド_.-. ー一--- 5, 6,8; 718 ・13 ・7;718 ・15

匡ヨ lenses ca of 1c areo … 巴冨 lenses of calcare … ndstone 仁己 pla 町叩…n l8 13 Fig. Fig. 6. O 0 and O C values in the aragonitic ammonoid and gastropod and ca ¥c itic brachiopod and bivalve shells from Coniacian sediments of the Penzhinskaya Penzhinskaya Formation ,left bank of the lower reaches of the Talovka River; see Figs. 3 and 4 for further information. l8 [n [n the middle portion of the middle member the shells -2.7 to 1. 2%0' respectively (Table 4). O 0 values in the of of five ammonoid species were analyzed: Tetragonites shells of the calcitic bivalves Aci/a and Nannonavis range popetensis popetensis (722 ・8, aragonite preserved , with traces of α- from -0.6 to 0.0%0; o 13 C values fluctuate from -0.5 tl 。

Si0 2,MnC0 3 and clinoptilolite) ,Sca/arites sp. (722 ・5・1, 2.0% 11' MgjCa ratios in the bivalves range from 5.54 to 96% aragonite; 722-5 ・2a ,94 0/ 0) ,An α'gaudryceras sp. 5.64 mmol mol- '. I8 (722 ・1,97 0/ 0; 722-2 , 93 0/ 0) and Yokoyamaoceras katoi O 0 values in the shells of two ammonoid species , 0 l8 l3 0 (720 ・2・3,93 /0 , with a trace of cx-Si0 2). O 0 and O C Gaudryceras sp. (712 ・la ,96 /0 aragonite) and Mesopu- values values in them fluctuate from -1.6 to 0.1 %0 and from zosia sp. (712 ・2・1,100 010; 712 ・2・2,98 0/0 , with a trace of Table Table 3 N Carbon and oxygen analyses isotope of Coniacian calcitic and aragonitic mollusc shells from the upper Penzhinskaya Formation (upper member) of the lower reaches of the Talovka River and t、』 Lοwer Haborogawa Formation of Hokkaido (Yutakazawa River) (H ,height ,D ,diameter ,L ,length) I3 l8 Sample Species Location Diagenetic alteration O C O 0 T (H ,L and D 一一一一一一 (PDB) (%,) (PDB) (%,) 。C 、 Aragonite Primary Admixture Colour m mm) (%) calcite (%) 針劃劃劃 LULULULu vvvvhva'zaE戸、白』白』由』 713-1-1 713-1-1 Gaudryceras denseplicutum (Jimbo) H = 18 97:!: 3 o α-Si0 (trace) eeee1vdvdvdV'!wwww‘ 0.2 -0.9 19 .4 2 .• 713-2-1 713-2-1 Acila (Truncacillaj sp. H= 11 0 100 ‘ 1.1 -0.8 15.3 ,且,.• 713 ・2・2 Same shell H = 7.5 0 100 ‘ 1. 2 0.1 11. 7 aa .• 713 ・2・2a Same shell H 7.6m 0 100 ‘ = W -1. 5 -0.5 14 .1 713-2-3 713-2-3 Nallnonavis sachalillellsis H = 13 0 100 、 0.9 -0.9 15.7 (Yokoyama) LFH=棺>4Jnu 713-3a ・2 Rhynchonellida o 100 Silvery-white 1. 6 -1. 4 17.8 ほn 713-5a-1 713-5a-1 Illoceramlls sp. -100 0 Silvery-white 0.0 -0.2 16 .4 -b『 ・t0 713 ・5-1 Kossmaticeras japollicllm 95 :!: 5 o Mn C0 3 (small) Cream -0.8 -0.3 16.8 ・ Matsumoto Nshnpnq 白ツ凸 +一+一,、 nunU nUAUnunu'E't'IAnuJ7'ヲ-令3 吋品句ヲ-ヲ-8auTa unynuhυJ 713 ・5 Baclllites sp. H = 7 (septum) α-Si0 2 (trac 沼), c1 inoptilolite (small) Silvery-white 一一一一一一-1. 6 oonunununUAUAυ句、 4 且守口ヲ勾 713-5a ・3 Baculites sp. D=7 d Clinoptilolite (small) Silvery-white -1. 6 ミミミ・¥円高 lli--1111111111Aυnυ白 ・ unυ E'l'l'l'l'『 713 ・5a ・2 Nallllollavis sp. H = 8 White -0.7 2JA 713-5a ・4 Same shell H = 30 White -0. ,3 3nMJ υAUAUnυnυnununUAυ白 白リ 4司 713-5 ・2 Nallllollavis sp. D =47 White -0.7 『五 hυnυ 1・ Jn勾 713 ・5-3 Same shell H =42 White -1.1 VA ヲ-n ツ司 713 ・5-4 Same shell H =40 White -0.7 『 E 白 2JqJqJ内向。号、 713-5-6 713-5-6 Same shell H = 33 υ White リ ツ凸 -0 .4 』 I 凸 白 'l'lnunυnu 'E『 υAυnυ υ UAU008 J 713 ・5-7 Same shell H =21 White -0.9 白 713-5-8 713-5-8 Same shell H = 17 unυ White -0.9 ・E 守1 N22 ・ ,、今 --EJA3 713 ・5-9 Same shell H = 14 White -0.8 白 白リ υAυ 斗'』 EOO--a・ 再 713-5-11 713-5-11 Same shell H = 5 White -0.5 『『 bha Aunυ E・ Id 713 ・5-12 Same shell H =2 Whitc -1. 4 ハリ・ 凸 -E-E ・ UAUAUnu EAUAU'EAU・ -'l'l 713 ・5-5 Nalll lO navis sp. H = 37 White -0.5 『 芯。。しごと 凸 白 Q''qJOMGJEa EAυunu UAυnυnunu 斗『 713-6-2 713-6-2 Gastropod (Semifllsus sp.) H = 30 α-Si0 2 (small) White -0.9 IaaTOO司 FOOAU 713-6b 713-6b Nanno l1 a l' is sp. H = 26 White -0.9 白 司 υ'lnu F 713- 6f Na l1l1 ol1 a l' is sp. H = 20 White -2.1 』 'a-E MlhhN 713 ・6d-2 Mesopuzosia yubarellsis (Jimbo) H =95 Cream -0.8 4吋 3弓 3令 713 ・6e Acilla (Tru l1 cacilla) H = 5 Silvery-white 0.2 hokkaidoensis hokkaidoensis (Nagao) 713-7-1 713-7-1 Kossmat;ceras japonicllm H =25 96:!: 4 。 Silvery-white -1.1 -1. 2 20.6 Matsumoto nυnυhunυ 713-7-2 713-7-2 Same shell H = 20 91 :!: 5 Clinoptilolite (trace) Silvery-white -3.5 -1. 0 19.8 713 ・7-3 Same shell H= I1 97:!: 3 Cream -1. 0 -1. 0 19.8 713-7 -4 Kossmaticeras japonicum H = 26 95 :!: 5 Clinoptilolite (small) Silvery-white -1. 7 -1.1 20.3 --白リ 713-12 713-12 Acila (Trrmcacila) sp. H= II o White 1. 3 -0.2 12.9 υ白 713-13-1 713-13-1 Kossmaticeras japonicum H = 50 95 :!: 5 ル Si0 2 (small) ,ceolite (trace) Silvery-white -2.5 -1. 0 19.8 白リ白 713-13-2 713-13-2 Same shell H =42 87 :!: 5 α-Si0 2 (small) Silvery-cream -3.5 -1. 4 21. 6 UAUA 713 ・13 ・3 Same shell H =40 95:!: 5 α-Si0 2 (small) BaC0 3(?) Silvery-cream -2.3 -1. 6 22 .4 713-13-4 713-13-4 Same shell H = 25 93:!: 5 α-Si0 2 (small) ,ceolite (trace) Silvery-cream -3.6 -0.9 19 .4 721-2 721-2 Mesopuzosia yllbare l1 sis (J imbo) H > 60 97:!: 3 リ白 Li ght-cream -0.1 -0.8 19.0 un 721 ・3-1 Gastropod (Harpogodes sp.) H=IO 100 Light-cream 1. 3 19.8 AU -1. 0 721-4 721-4 Nall l1 ol1Ul 'is sp. H = 25 o リ White 0.2 -1. 7 19.1 Y.D. Y.D. ZakharOl' et al. / Cretaceolls Research 26 (2005) JJ3- I3 2 123

m.AF. m.ONm.守.⑤-九一 m.0 A--.m-.-N。-.m か- 守- 沼- 。 昨 Si0 2: 712 ・2・3,100 0/ 0, with traces of α-Si0 2 and N 円 円 MnC0 3) from the upper portion of the middle member f1 uctuate from -0.3 to 0.0%0; ol3 C values range from -0.6 -0.6 to 2.5%0 (Table 4). ∞一ート N.--.-I---lN.olか.。--.-ー 守.-ーN.Nl .0l The lowest palaeotemperatures calculated from ー calcitic calcitic and aragonitic invertebrate shells from the middle middle member are 10.9 and 15.1 oC ,respectively; the highest highest are 16.5 and 22 .4 oC. Average palaeotemper- N.-m--∞m--mh.NI。N.0 m.- 守 -.-.Ni .0 .m

ー ー atures from seven calcitic and 21 aragonitic samples are Eg 13.6 and 18.3 oC ,respectively.

主主主 E 』 3.3.3. Lower member ..s::..s:: ..s::..s:: ..s::切 ・号室。。ω ~ ~ ~ど ES 2. Dark grey sandy siltstone with lenses and small 笠笠笠含む&~e; boulders of marl and rare interlayers of fine-grained 云云云宮> >哲 g U』 ~ ~主注冨 0000 記 G sandstone sandstone (717 ・1).... ・H ・.....・ H ・...・ H ・...・ H ・.....・ H ・...…...・ H ・.5m Contains Contains ammonoids (Gaudryceras sp.). 1. 1. Dark grey sandy siltstone with lenses and large 2=。 boulders of marl (7 18 ・1・1; 718 ・4; 718 ・10 ・2; 718 ・11-1 ; =Eos-υ 718 ・14-1-6 ,8) …・...... 3.0 m (=伺 Contains bivalves (Bairostrina concentricus costatus E Nagao and Matsumoto ,GO l1 iomya sp. , Inoceramus 伺 内向 {82-), )szo- 。。 tenuistriatus Nagao and Matsumoto ,Nam η110n αvi 臼s, 叩sp. ,) uu c c ammo ∞∞nlωoi 凶ds [Gα udr ηycer αω sd必'ense ψplic ωαIω um σJimboω)( ,Koss- ::E::E ::E::E 宮内 (=司 M M 円。ぁ,HOE-u maticeras japonicum Matsumoto , Scalarues sp. ,Tetra- 00 E 凶凶 gonues glabrus (J imbo) ,Yokoyamaoceras sp よand plant MU 闘) I t! t! I remains (Ginkgo sp ふ From the middle part of the lower member the shells of of four ammonoid species were investigated: Kossmati- 00000000 00 000 0 ceras japonicum (7 18 ・4,88% ,aragonite) , Tetragonues ーーー ー 0 glabrus glabrus (718 ・10 ・2,78 /0 , with traces of α-Si0 2 and m+-門判。。m m lame l1 ar silicate) ,Gaud り'ceras denseplicatum (718 ・14 ・1, 判明品目 判。か 0 0 。。- 98 /0 , with a trace of a-Si0 2・718 ・14-2 ,100 /0; 718 ・14 ・1 。。。 ∞ 。 0 95% , with a trace of a-Si0 2・718 ・14 ・4,94 /0 , with a trace 0 0 ofα-Si0 2: 718 ・14 ・5,100 /0; 718 ・14 ・6,100 /0) and Scalarites Scalarites sp. (718 ・14 ・8, ca. 100% , with traces of a-

ト。品 l8 。マONHZm.N-HZ N-HZmm Ew 町内八 Si0 2 and clinoptilolite). Their O 0 values fluctuate from mHZ門 WHE一八 13 HZ HZ 八 -1. 5 to -0.5%0' and O C values vary between -1. 0 and Z Z Z 2.3%0 (Table 5). ol8 0 values from Nannonavis and (osg Goniomya shells range from -1.0 to 0.2%0; o 13C values o- 。 E23 range from 0.2 to 2.1 roo and Mg/Ca ratios fluctuate from 一『)定三号司、号室、、き I 4.88 4.88 to 5.72 mmol mol- . 吋室町きとさえミ For the isotopic investigation of the upper portion of 陶芸ときに the lower member a shell of Gaudryceras sp. (717 ・1, l8 13 ・色明言~℃ 100 0/ 0 aragonite ,o 0 =一 0.6%0; o C = -2.6%0) was 0. Hqsh明 used (Table 5). 色宅 ・広明・仏師-角川缶詰 bhwasbeLMb~ zL Judging from the data obtained , the lowest palae- -a-shh-R問問句 町ミ』~田 =ωむ、さと と百室岡崎。同 otemperatures calculated from the calcitic and arago- 号 hqsa'h) s s Shahqkb 向whh之内 ~ ~ nitic invertebrate she l1 s of the lower member of the ωEh 阿国~吉町、戸‘、』 旬、匂』〈wmwK{明言、甲、 。ー~ 信的 。同 Coniacian succession are 11.3 and 17.7 oC ,respectively; 〈 苦言 ,司"-一・』 .... the are highest 16.1 and 22.1 oC , averaging 14.1 and (02 19.0 oC (from three calcitic and ten aragonitic samples).

句 u-v Overall ,isotopic palaeotemperatures calculated from ち (。ヵお Z)2 Coniacian invertebrates of the Talovka River section -・ゆ・N -,N ,@・・。-・-----Nu- fluctuate from 10.9 to 22 .4 oC , with an average value of a A m--N∞・・山・ロド一ぷ 0 -N-N-N-N -Nh-・∞OZ) 17.2 C( 仕om 42 ca 1c itic and 52 aragonitic samples). ト ト ト ト ト ト l8 Unusually Unusually low O 0 values recognized in the aragonitic N ~

Tab1c 4 Carbon and oxygen isotope ana1yses of ca1citic and aragonitic mollusc shells from the upper Penzhinskaya Formation (midd1e member) of the 10wer reaches of the Ta10vka River (H ,height ,0 , diameter) diameter)

Sample Species Location Diagenetic a1teration o13 C O l8 0 T oC (H in mm) (POB) (XK') (PDB) (:Y oo) Aragoni 総 Primary Admixture Co1our

(%) ca1cite (%) }、 -b nUAUAU 'E'E0yny4403385229119594 715-1 715-1 Kossmaticeras japollicum Matsumoto H = 27 95 :t 3 Cream 0.3 -0.9 ・Na 715-2 715-2 Same shell H = 25 93 士5 Cream -0.9 -0.9 』 司 ヲ面白 nbb 715-3 715-3 Same shell H = 23 95 :t 5 Cream -0 .4 -1. 5 4 υ白 4司 ununyP3『。 715 ・6 Same shell H = 20 97 :t 3 Cream 0.1 -1. 1 白 司 F・ 715-10-2 715-10-2 Gaudryceras sp. H =8 78 + 5 υAυ α-Si0 (trace) Cream -2.3 -1.1 4 2 2 ・ 715-11 715-11 Gaudi り'ceras sp. H = 7 100 Cream -1. 4 -1. 0 E ミ・¥門『ミむ町内定号、町内-弓む「内 υ白 ・E 722-12-1 722-12-1 Gaudryceras sp. H = 27 93 :t 5 a-Si0 2 (trace) ,clinoptilolite (small) Si1very-cream -0.2 0.0 白 ・『 722-12-2 722-12-2 Same shell H > 24 93 :t 5 υ Lamellar siliceous (trace) Silvery-cream -0.7 -0 .4 EI 白 ・守 722-12-3 722-12-3 Same shell H > 22 93 :t 3 UAυ Si1very-cream -0.5 -0 .4 Et' ・Eコヲ 722-12-4 722-12-4 Tetragonites popetells;s Yabc H=8 MnC0 3 (trace) , 1amellar siliceous (tracc) Silvery-cream -3.6 -0.1 ----nu凸リ ・ 722-12-5 722-12-5 Aci/a (Trullcaci/a) sp. H=6 Silvery-white -0.5 0.0 ・E-F3 722-5-1 722-5-1 Sca/arites sp. H > 22 96 :t 3 Si1very-cream 0.6 0.1 Est 弓 722-5-2a 722-5-2a Sca/arites sp. H = 13 94 + 5 Cream 1. 2 -0.1 ・-・dA 斗白 -bNa 722-5 ・3 NanllOlla l' ;S sp. H = 12 0 100 White 1. 2 -0.6 'i 722-5-6 722-5-6 Acila (Trullcacila) sp. H =8 0 100 White 1. 5 0.3 υ 4司 ヲ白 ヘ Tetragoll;tes Tetragoll;tes popet e/l s;s Yabe 佐 Si0 (trace) ,MnC0 (trace) , Si1very-white LM 722-8 722-8 H=6 O 2 3 1. 2 -1. 6 。。しご、 Clinoptilolite Clinoptilolite and amphibo1e (small) 715 ・9-2 Nannonav;s sa c/Ill/i llensis (Y okoyama) 0=5 O 100 White 0 .4 -0.8 15.3 722-1 722-1 Aflagaudryceras sp. H= 11 97 :t 3 Cream 0.3 -0.5 17.7 haw-- 、 722-2 722-2 Anagaudryceras sp. H= 15 93 :t 3 Cream 0.7 -0.6 18.1 -wh 720-2-3 720-2-3 Yokoyamaoceras kato; (Jimbo) H = 5 93 :t 5 α-Si0 2 (trace) ,MnC0 3 (trace) Silvery-cream -2.7 -1. 6 22 .4 720-2-3a 720-2-3a Small biva1ve (in association with H =4.5 0 100 White 0.6 0.0 12 .1 Yokoyamaoceras kat Ol) 副部副--a-----aaFE vvve戸』wwdJHJW4veeeaaa mmm 712-1a 712-1a Gaudryceras sp. H = 25 96 土3 且 -0.6 -0 .3 16.8 712-2-1 712-2-1 Mesopllzos;a sp. H = 80 (septum) 100 PLWFLV--V 2.4 -0.1 15.9

町 且 712-2-2 712-2-2 Same shell H = 79 (septum) 98 土2 α-Si0 (trace) ,笥 2 .4 0 15.5 2 C m 712-2 ・3 Same shell H = 78 (septum) 100 u 2.5 -0.1 15.9 Table 5 Carbon and oxygen isotope analyses of calcitic and aragonitic mollusc shells from the upper Penzhinskaya Formation (I ower member) of the lower reaches of thc Talovka River (H. height) l8 Sample Species Location Diagenetic alteration o lJ C O 0 T oC

(H in mm) Aragonite Primary Admixtu 陀 Colour (PDB) (%.,) (PDB) ("00) (%) calcite (%)

718 ・4 Ko. ・rsmaticeras japoflIC lI m Matsumoto H= 11 88 :t 3 0 Cream -1. 0 -1. 3 2 1. 1 718-9-2 718-9-2 Nam lO flavis sachalilleflsis (Yokoyama) H = 5 o 100 White 1. 3 0.2 11. 3 718-10 ・2 Tetragoflites glabrlls (Jimbo) H =9.5 78 :t 5 0 Laminar silicatesα ・Si0 2 (trace) White -0.5 -1. 5 22.0 718-12 718-12 Goniomya sp. H=13 o 100 Cream 2.1 -0.7 14.9

718 ・14 ・1 Galldryceras denseplicatllm (Jimbo) H = 32 98 :t 2 0 α-Si0 2 (trace) Silvery-cream -0.3 -0.6 18.1 718-14-2 718-14-2 Same shell H =27 100 0 Silvery-cream -0.5 -0.7 18.5 -b}、 718 ・14 ・3 Same shell H =24 95 :t 3 0 α-Si0 (trace) Silvery-cream -0.8 -0.9 19 .4 2 ・ 718-14-4 718-14-4 Same shell H =21 94 :t 3 0 ル Si0 (trace) Silvery-cream -0.3 -0.9 19 .4 N 2 むと言、24hhH~ 718-14-5 718-14-5 Same shell H = 16 100 0 Silvery-cream 0.2 -0.5 17.7 718-14-6 718-14-6 Same shell H = 12 100 0 Silvery-crcam 0.3 -0.6 18.1 718-14-8 718-14-8 Scalarites sp. H=IO 100 0 α-Si0 2 (trace) , c1 inoptilolite Silvery-crcam 2.3 -0.5 17.7 718-15 718-15 Nam lO llal'is sp. H =45 o 100 White 0.2 -1. 0 16.1 717 ・1 Galldryceras sp. Fragmcnt 100 0 Cream -2.6 -0.6 18.1 ・¥円高言内向。

hhh 泊三塁耳、 Table 6 Carbon and oxygen isotope composition of Coniacian calcitic and aragonitic mollusc shells from the upper Penzhinskaya Formation of the lower reaches of thc Talovka River (changed under -NAM conditions conditions of freshening or diagcnetic alteration) (H , height)

Sample olJC l8 “ oC 「 Species Species Member Location Diagenetic alteration O 0 T" 『さととN (H in mm) (PDB) {,.,) (PDB) ("00) Aragonite Aragonite (%) Primary Admixture Colour e calcite calcite (%) -wlζN 713-4-1 713-4-1 Grammatodofl sp. Upper H=IO Undetermined U ndctermined White -4.5 -6.9 40.9 713-4 713-4 Nallnollavis sp. Upper H = 23 Undetermined Undetcrmined Greyish-cream -6.7 -6.7 44.6 716-6e 716-6e Gastropoda Upper H = 20 Undetermined Undctermined White -14.2 -9.2 54.6 718-1 ・l Illoceramlls tefluistriatlls Lower 。 ル 2.1 -2.9 28.9 H = 20 90 土5 Si0 2 (trace MnC0 3, Cream Nagao and Matsumoto very small) 718-10-1 718-10-1 Tetragonites glabrus Lower H =8 45 :t 5 O Silvery-cream ー1. 5 -1. 9 23.7 (Jimbo) (Jimbo) 718 ・11 ・l Bairostrina COllcelllric lI s Lower H = 35 86 :t 3 。 Cream 4.7 -3.2 29 .4 costatus costatus Nagao and Matsumoto 718-11-2 718-11-2 Illoceramus sp. Lower H = 38 96 :t 4 O Cream 3.3 -3.9 32 .4 718-13-7 718-13-7 Kossmaticeras sp. Lower H = 30 88 :t 5 O α-Si0 2 (trace) -0.6 -2 .3 25.5 722-5-2 722-5-2 Scalarites sp. Middle H = 16 94 :t 5 0 Cream -0.9 -3.2 29 .4 722 ・5・2a Illoceramus sp. Middle Prismatic layers 0 100 White 3.7 -2.6 23.1 722-11 722-11 Tetragonites popetellsis Middle H =6 87 :t 5 0 Silvery-cream -3.6 -2.1 24.6

Yabe t、J v1 126 126 Y.D. Z lI kharol ' el al. /ιν el( l( 'I'O// .¥' !

Tablc Tablc 7

Sca so nal co ntra S l ntngc in iS0 10p に lcmp cralurc in high 1川 ilUd cs or 1h c No rth crn I-I cmi sphcrc: Kor ya k Upland. Talo v ka Ri vcr. during lh c Albian ( Kcdrovka Formalion )a nd Coniacian (Uppcr Pcnzhins ka y‘1 FO I"Il1川 ion)

Fo rma1ion (mc mb cr) LowcnnoSl Uppc rrno sl Sca sonal tcmper 川lI rc Avcrag c tcmp cra lU 問、 ・C (numb cr lcmp cra lurc (QC) Icmp cra1ur c (oC) CO lH ra sl (oC) 01 山 lalyzcd spcc im c ns)

Calcitc Calcitc Ara!!onitc Ca lci lC 1¥川 gO llll C Calcilc Ara!.!.onilc Uppc r Pcnzhinskaya 11.7 16 .4 19.5 22 .4 10. 7 15.5 19.2 (uppcr (uppcr Il1 cmbcr ) (32 spccim cll s) (21 spcc im cll s) Uppcr Uppcr PC ll zhinska ya 10.9 15. 1 16 .5 22 .4 11 .5 13.6 18.1 (midd lc mcmb cr) (7 spccimcll s) (20 spccimc 山) Uppcr Uppcr PCllzhinskaya 11. 3 17.7 16.1 22.1 10 .8 14.1 19.0 (I owcr mC l1l bc r) (3 spccimcll 品) (10 spccimcn s) Kcdrovsk ‘lya 12. 5 22 .4 9.0 17.9 (6 spccimcns)

clcm cnt s of so m c spccimcns of II1 ocera 11l lfS lellllislrialllS du rin g L alCC retaceo ll s wcrc ob tain ed fr o l11 th e isoto pi c (7 18-1-1 ,- 2.9 :Y. m) ancl Bair os lrilla co 附 I1 ln ClfS COSlat us c0 11l pos iti on of se mip clagi c for l11 s (山 111110noid s) elnd (7 18ー11-1 ,- 3.2 100 ・7 18・11- 2,-3.9 % 0,90 % a ncl 86 -90% lypicall y be nthic in vc rtebrat es (brachio pods ,bi va lv es aragonlte ,rcspec ll 、v吃叫 ely) (T εab le 6) ,εa 叫山tl 川11 1けhOll 唱gh onc frag- ζ111d gast ropo ds). Accord in g nc ¥V cv id cn cc fro l1l Campa mcn 川1l of Il1 0 ce 凹ra 山11 川111 日s sp. is char 口ac 口lerized by ‘a 匂“ 'n】旧or111 日 nian ammono id s and biva lves of I-I okkaido and l8 がBlS 勺Ov川川山al叶山山l凹ul但c (σ7 口13-釘52託tト-1 ‘ 0.2 100 )' Comparalivc ly low O 0 Sak halin (Kri lyo n) (Smy shl yaeva Cl al. ,2002 ; Zakha rov va lu cs were also fo und in a few all1 m onoid shcJl s, but el川 ,2003 ,2004) and Ca ll1 pan ianε Imm onoids ,bivalve s: ll1 0st 0 1" the sc h ave und ergo ne diagcnelic altcI 川 1011 ga stropod s and bc nthi c elnd planktic foraminifera al so (Tablc 7) ; thi s m ate rial was not u sed in ou r dctc rmi of H okka ido (Moriya cl al. ,2003) ,Lal e C rclacco ll s I1 Htion so f pa laco tc111pc rat ur es i.l mmonoicl shell s ¥V crc 11l 0st li ke ly scc rcted in ncar- bolt0 11l cond il io ns 、.v herc the ani m als spe nt m os t of thciI Ii fc in shall ow marine ba sin s. The 呂encral si milarit y 4. 4. Sc asonal aspccts of tc mpcraturc fluctuatioll bctw ce n th e isoto pi c tempcratllre cs timate s for C ampa- in in Il orfhcrn high latifudcs during thc nian

A

13-5-11 713-5-11 (l 4.I C) - Wint cr 3-5.9 713-5.9 (l 5. .f q Winlcr ー 713-5-6 (13. 7" C) 3-5-8 713-5-8 (J 5.7 0C) o p 一一 713-5 -5 (13.7q 7t3-5-7( 15.7 ・' C) -A lI tll ll1 ll 一一 7¥3 -5-4 (l 4.? o C) 一一 713.5-3 (16. 3 "C) I cm Spring ....J 13-5-2 (14.9 ・.C) '--' Nafll lOl/ avis

TOC " 17.8 713-5. 12 17 17 ¥ HF163 叱。主BJ | 1EFv-3't0FE4'1 5酔71ー1ー3-5 ー5.8司1 713 .5.7 '" '" 15 14. r - 713-5 ・9 " £ μ常ご 3 1.1 1.1 。 IU 20 ".mm 干 '" I '1 I S UI1l 11 Sp rin g"! I w Sprin g

Fig 7. .Sca so llal grow lhl Cm pCralllrc s ror Ih c calcilic bi 叫 11vc Nm Ill Q JU/ 1“ sp. r rom 1h c Coni acian Pcnzhinskaya For m 川 Ion .lcrt bank or thc lowcr rcachc s or th c Talovka IミIv cr Y.D. Y.D. Zakharm' el al. / Crelaceous R ω.earch 26 (2005) 113-132 127

CONIACIAN ALBIAN

TOC Semipelagic forms (ammonoids) Benthos Brachiopods Brachiopods Planispir aI forms Heteromorphs ~rachiop Bivalves Gastropods ' 23 トー一一一一ー--一一一--一一-一 一一一一ー 一一一一一一一一一一一一一ー -・・・・・ b ・---- ・・・・・ー 一一一 トー------一 伺 22 22 ' 21 ・ 。 。 。 20 20 。 080 080 I ,~ 19 ・ 。

18 ・ 一 •-・・・・・ b ・・・・・・4・・・・・・ー 17 ・ s句ω 吋.... 、蜘 6同 kh 『.

‘『h 『- 16 16 意書aE Eh 15 15 • 。h6『 ~困- • -----圃・ 一一一一一ー J-jj-j--j 一 14 J-jj-j--j i Ua Ua E3 13 13 ば 司:f 12 12 IQ • 11 11 • 10 10

Fig. Fig. 8. Seasonal growth temperatures for calcitic benthic and semipelagic shells from the Albian (Kedrovskaya Formation) and Coniacian (Penzhinskaya (Penzhinskaya Formation) of the Talovka Basin River (observations from 89 specimens).

engage in significant short-term vertical migrations in for a long period of time. However , rare occurrences the the water column (Moriya et al., 2003). of more or less active growth of some Callovian Isotopic Isotopic palaeotemperatures obtained from shells of (Cadoceras) (Zakharov et al., 2004) , Turonian the the brachiopod Penzhinothyris plana from the Albian (Tragodesmoceras) (Zakharov et al., 1999) , early Santo- Kedrovskaya Formation ftuctuate fairly widely ,from nian (Eupachydiscus) (Zakharov et al., 1999) and 12.5 12.5 to 22 .4 oC (O I8 0 values vary between -2.5 and Campanian-Maastrichtian (Gunnarites , Pachidiscidae) -0.1 -0.1 roo); we assume that the lower temperature level (Pirrie and Marshall , 1990) ammonoids that inhabited corresponds corresponds to winter months and the higher to the different latitudes at temperatures ranging from 3.7 summer season. (Sakhalin) through 9.9 (James Ross Island , Antarctica) A similar picture is apparent from the more to 13.3 oC (Russian Platform) are known; hence ,it is representative representative sampling of biogenic carbonates from difficult to generalise about the environmental inftuences the the Coniacian strata of the Penzhinskaya Formation on growth. (Figs. (Figs. 7 ,8). Isotopic palaeotemperatures interpreted as Isotopic palaeotemperatures for presumed spring and winter winter values obtained from Acila (Truncacila) sp. and autumn seasons during the Coniacian in the Koryak Nannonavis Nannonavis sachalinensis shells ftuctuate from 10.9 to Upland ftuctuated from 14.1 to 17.7 0C according to t8 14.1 14.1 oC (o 0 values change from -0.5 to 0.3%0)' data obtained from both the calcite of the bivalves Acila

It It is important to note that comparatively low (Truncacila) sp 吋 Goniomya sp. , Inoceramus sp. and isotopic isotopic palaeotemperatures from aragonitic ammo- Nannonavis sachalinensis (O 18 0 values vary between noids noids associated locally with the bivalves mentioned -1 .4 and -0.5%0)' and aragonite of the ammonoids above have not been obtained in spite of the highly Anagaud l' yceras sp. , Gaudryceras sp. , Kossmaticeras representative representative sampling (Fig. 9). This is apparent in japonicum ,M esopuzos i. αsp. ,Scalarites sp. and Tetra- both both ammonoids with regular convoluted shells and gonites popetenis (δ18 0 values ftuctuate from -0.7 to heteromorphs and may be a result of a slow-down in the 0.1%0)' growth of their shells during Arctic winter seasons when Presumed summer isotopic palaeotemperatures for temperatures temperatures were low and there was little or no sunlight the Coniacian period ftuctuate from 17.7 to 22 .4 oC 128 128 Y.D. Zakharol' el al. / Crelaceous Research 26 (2005) 113-132

may be because water temperature indications are A higher than those for the atmosphere. Contrary to Li and Keller's (1 999) opinion ,we suggest that oceanic heat heat transportation poleward prevailed during the Late Cretaceous. Cretaceous. At the present stage of our investigation , Coniacian palaeotemperatures palaeotemperatures for the Koryak Upland generaJJy seem to be 3-4 oC lower than those for the early Coniacian Coniacian of Hokkaido. Our data tie in with palae- obotanical obotanical results on the development of magnolias and the the domination of large-leafed plants in Kaivayam flora of of north-west Kamchatka in connection with a relative Anagaudryceras warming and increase in humidity during the Mid and Late Late Coniacian (Herman and Lebedev , 1991; Herman , TOC TOC 1996; Golovneva , 1998; Golovneva and Herman ,1998). B At the same time there were pronounced seasonal 20 20 variations during the deposition of the Talovka River 19 19 section , the lowest calculated palaeotemperatures for the 18.t 18.t lower , middle and upper members of exposed Coniacian 18 18 -r 718 ・M ・6 strata strata being 11. 3 oC (the di 町erence between winter and 17 17 summer temperatures ca. 10.8 OC) , 10.9 oC (seasonal di 町erence ca. 11. 5 OC) and 11. 7 oC (the seasonal di 町erence being ca. 10.7 OC) (Table 7). Strata exposed in in the lower reaches of the Talovka River are probably 12 12 20 __ 24 28 32 H ,mm latest Coniacian in age , taking into account both the seasonal seasonal contrasts noted above and the general fall in Summer Summer temperature in the Far East at the beginning of Santonian Santonian (Zakharov et al., 1999). Fig. Fig. 9. Seasonal growth temperatures for the aragonitic ammonoid Gaudl り'ceras dellsep /i calum (Jimbo) shell from the Coniacian Penzhin- skaya skaya Formation ,lower reaches of the left bank of the Talovka River. 5. Local freshening in Cenomanian and Coniacian according according to the calcite of the shells of a rhynchonellid It is known that a mid-Cretaceous global climatic 18 brachiopod brachiopod (O 0 =ー 1.4 %0) and the bivalve Nannona ・ optimum was achieved at some point between the 18 is l' is (O 0 values fluctuate from -2.1 to -0.5roo) ,and the Cenomania/Turonian transition and the mid Turonian aragonite aragonite of the ammonoids Anagaudryceras ,Baculites , (Jenkyns et al., 1994; Clarke and Jenkyns , 1999; Huber Gaudryceras ,Kossm αticer α's ,M esopuzosia ,Tetragonites , et al., 1999). Huber et al. (2002) suggested that global Yezoites Yezoites and Yokoyamaoceras (O 18 0 values fluctuate climate changed from a warm greenhouse state during from ー1. 6 to -0.5%0) and gastropod shells (O 18 0 = the late Albian-late Cenomanian to a hot greenhouse -0.9%0)' -0.9%0)' phase during the latest Cenomanian -e arly Campanian , Results Results of our oxygen isotopic investigation of well- and then cooled from the mid ・Campanian to the preserved preserved calcitic and aragonitic invertebrate shells from Maastrichtian. the the Coniacian succession appear ,therefore , to indicate The high palaeotemperatures obtained from some comparatively comparatively high summer temperatures in shallow well-preserved Cenomanian (Fig. 10) and Coniacian water water basins at this time , but average annual temper- (Fig. 11) inoceramid shells from the Koryak Upland atures atures for the Koryak Upland do not appear to have seem unlikely. In the Cenomanian Mamet Formation exceeded exceeded 14.9 oC (calculated only from calcitic bivalves (Tynogyrginkuyul and Bolshoy Vylgilveem creek sec- inhabiting inhabiting environments of normal salinity in which tions) some of the well-preserved shells of the bivalve steady steady growth was more or less possible throughout the Baios/rina concentricus costatus are composed almost year). year). entirely of aragonite (9 6- 100 0/0) ,which implies only On the basis of leaf-physiognomy ,Herman and diagenetic alteration. This suggests that comparatively Spicer Spicer (1996) expected somewhat lower temperatures low O 18 0 values in both the aragonite of inoceramid for for Alaska and Kamchatka during the Coniacian than bivalves and calcite of their prismatic layers , varying we have calculated: cold and warm month temperatures between -3.2 and -2.0%0' might be a result of about about 5.7 and 0.0 oC and 20.0 and 18.6 oC ,respectively; freshening of the environment ,reflecting local fresh- mean annual temperatures about 12.5 and 9.0 oC. This water inpu t. The presence of ammonoid shells with Y.D. Y.D. Zakharov et lll. / Crelaceoll .'i Research 26 (2005) 1/ 3-132 129

TOC TOC δ18 0 ,%0 T, -C 618 0 ,%。 -3.0 -3.0 活『 Possible Possible 14 uen ¥cFe K “ 32.4" “ 28.1" 附¥A凡 -3.8 -2.8 -2.8 / r ・3.6 -2.6 -2.6 / ・3.4 / ' “'2 5.9" -2 .4 ・3.2 / ・3.0 圃 -2.2 ヌ “ 28.9" ¥ ~ -2.8 -2.0 -2.0 p( - 戸 SSI h OC lJ I介'eshwater influence ¥ ト-2.6 “お .3" 『・- 司、 ・1. 8 ¥ー ぽ/ -2 .4 ~ ~吉明h -・・・・.... -・・------22.4 22.4 -1. 6 ト -2.2 r¥ r¥ -1. 4 -2.0 ¥ -1. 2 -1. 8 22.4 22.4 ..... ー...... -... ・1. 6 ;i ;i ¥ -1. -・---- 19.8 19.8 、 0 官喜千令 f ・1. 4 さ.骨 1 1 • -0.8 -0.8 入 -1. 2 -0.6 -0.6 可, ・1. 0 ¥ •' ' - "•• -0.8 -0.8 17.2 17.2 -0 .4 言 ••• ' • ・0.6 -0.2 -0.2 ' ー -0 .4 μF ノ 0 • ...... 15.1 15.1 ふ, 同・-- •• -0.2 0.2 0.2 J ゲ 0 -・・ F ...... ー_.... • • ~ぎ± ..... 15.1 15.1 -て ~ ~ ー, ト 0.2 5 4 3 2 0 -1 -2 5 4 3 2 1 0 -1 -2 -3 -4 E 己 am 附剛nm1m 】附n 13 ITJ 附 eramid 州b制肋i村v叫alves E 己 ammonoids 6 C ,%0 己 gastropods Fig. Fig. 10. Plots of O l8 0 and O 13 C data for aragonitic ammonoid and E inoceramid inoceramid bivalve shells from the upper Lower Cenomanian portion of the Mamet Formation ,Talovka River Basin. ~… 13 Fig. Fig. 11. Plots of OIHO and o c data for aragonitic ammonoid. “normal" が80 values ,日 uctuating from -0.5 to 0.1 %。 gastropod and inoceramid bivalve shells from the upper Lower Cenomanian portion of the Mamet Formation ,Talovka River Basin. suggests suggests that the Cenomanian ammonoids and some inoceramids inoceramids in the north Kamchatka region inhabited biotopes biotopes of differing local salinity. Talovka River section and Hokkaido. High values Some well-preserved Coniacian inoceramid she l1 s (5 .4 %0 and 4.7%0 respectively) were recorded from an from the Koryak Upland (three examples with 86- aragonitic Inoceramus sp. from the Yutakazawa River , l8 Hokkaido (Zakharov et al., 2001) ,and an aragonitic 90 0/ 0 aragonite) are characterized by very low O 0 values values (up to -3.9%0) that correspond to improbably Inoceramus she l1 (86 :t 3 0/ 0 ) from the lower member 13 high high isotopic paleotemperature; the concerned Penzhinskaya Formation. O C values for three other seem to have inhabited estuarine parts of basins or gulfs Inoceramus she l1 s from the same section are 2.1 , 3 .3 and 3.7 '1 00 ・ In many aragonitic ammonoid shells from the containing containing fresher water. The likely freshening of the 13 Koryak U pland basin seems to ha ve been more marked section O C values reach 2.5%0 but the average value in in the Cenomanian- Turonian (Zakharov et al., 2004) from 50 samples is only -0.4%0 ・The o 13C value for than than during the Coniacian. a calcitic rhynchonellid brachiopod she l1 is 1.6%0' and

for for the ca 1c itic bivalves Acil αand, Nannonavis and an aragonitic aragonitic gastropod shell they are about 1.5 and 0.1 %。 6. 6. Biological productivity of near-polar seas during respectively.

ー tbe Albian ,Cenomanian and Coniacian Fo l1 owing Norris (1996) ,some authors think that a strong positive size-related shift in δ13C values of 0.5% 。 13 l8 Anomalously high O C values ,reflecting high bi- or more ,O 0 values that are more negative than in ological ological productivity (A 1c ala ・Herrera et al., 1992) ,were coexisting taxa ,and relatively sma l1 size-related changes encountered encountered in a few mollusc she l1 s from the upper in Õ Il~O values in some fossil planktic foraminifera , Lower Cenomanian (4.2%0) and Coniacian of the indicate an association with algal photosymbionts 130 130 Y.D. Zakh ω.O l' et al. / Crel11CeOllS Research 26 (2005) 113-132

(Houston and Huber , 1998; Houston et al., 1999; Pearson Expedition Programme of Japan (grant no. 10041109) , et et al., 2001). MacLeod and Hoppe (1992) thought that RFBR grants (Russia) 02 ・05 ・65326 and 00 ・05-72035 inoceramid inoceramid bivalve species were also photosymbiotic. (j oin use grant). Our cordial thanks are due to G.P. However ,we prefer another explanation for the unusual Avdeiko and. I. F. Delemen for consultation on Creta- isotopic isotopic composition of inoceramid shells. ceous biostratigraphy and their he1 p in organizing field An association with symbiotic organisms to explain work in the Talovka River Basin in 1999 , to G.A. ,i I3 l8 unusually unusually high O C but low O 0 values in the shells Evseev for consultation on living bivalves ,and S.M. of of Cenomanian and Coniacian inoceramids from the Goryukhina and V. 1. Sapin for their assistance in X-ray Koryak Upland seems unlikely because representatives and luminescence analyses. The quality of the manu- of of the same species in other assemblages are charac- script was greatly improved by the comments of Hugh terized terized by “normal" values. The “isotopic e町ect" in C. Jenkyns and the work of the editor ,David J. Batten. inoceramid inoceramid bivalves of the Koryak Upland is most probably probably a result of freshwater influence connected with a humid climate in the region during the Cenomanian- References Turonian (Zakharov et al., 2004). Inoceramids yielding l8 I3 low O 0 and high O C values seem to have dwelt in Alabushev , A. I., 1987. Gastroplitin Ammonoids at the Lower and fresher fresher habitats , as noted above. Upper Cretaceous Boundary (North-East USSR). Preprint ,Sev- ero ・Vos1ochnogo Kompleksnogo Nauchno ・Issledovate l' skogo In- stituta stituta Da l' nevostochnogo Nauchnogo Tsentra Akademii Nauk SSSR ,Magadan ,26 pp. (in Russian). 7. 7. Conclusions Alabushev , A. I., 1989a. Morphogenesis of Albian and Early Cen- omanian Ammonitids of North-East USSR. Severo ・Vostochnyy Albian-Cenomanian and Coniacian isotopic palae- Kopleksnyy Nauchno ・Isslcdovate l' skiy Institut Da l' nevostochno ・ otemperatures otemperatures obtained from ca 1c itic brachiopod shells go Nauchnogo Tsentra Akademii Nauk SSSR ,Magadan , 104 pp. (in (in Russian). from the Kedrovskaya Formation and aragonitic- Alabushev , A. I., 1989b. Scaphitids and some other Late Cretaceous ca 1c itic invertebrate material from the Mamet and Ammonoids of the Far Eas t. Preprint , Severo ・Vostochnogo Penzhinskaya Penzhinskaya formations of the Koryak Upland are Kopleksnogo Nauchno ・Issledovate l' skogo Instituta Da l' nevos- 12.5-22 .4 oC ,15.9-2 1. 7 oC and 11. 3-22 .4 oC ,respec- tochnogo Nauchnogo Tsentra Akademii Nauk SSSR ,Magadan. tively. tively. Seasonal contrast seems to have been marked 56 pp. (in Russian). during during the Albian and particula r1 y the Coniacian in Alabushev ,A. , 1995a. Ammonite faunas and biostra1igraphy of the Albian Albian 10 Middle Cenomanian (Cretaceous) in western Koryak - northern northern high latitudes. Growth of both planispiral and Kamcha1ka ,NE Russia. Neues Jahrbuch fur Geologie und heteromorphic heteromorphic ammonoids apparently slowed down Palaon1ologie ,Abhandlungen 196 , 109-139. during during unfavourable winter months in the Coniacian Alabushev ,A. , 1995b. Albian- Turonian (Cretaceous) sedimentation at whereas whereas coexisting benthic organisms contain all sea- the Pacific slope of north-east Russia. Newsletters on Stratigraphy sonal sonal growth phases in their shells. A vailable stable 32 ,27 -4 3. Alabushev , A. I., Alabusheva ,A.V. , 1988. Dimorphism of Late isotopic isotopic data and information on the earliest Maas- Cretaceous ammonite YokoYllmaoceras jimboi Matsumoto. Pre- trichtian trichtian sea-lev e1 fall (Ditchfield , 1997; Miller et al., print ,Severo ・Vostochnogo Kompleksnogo Nauchno ・Issledova- 1999; 1999; Zakharov et al., 1999 , 2000) al1 0w us to assume te l' skogo Instituta Dal'nevostochnogo Nauchnogo Tsentra a short-term existence of Cretaceous polar ice only Akademii Nauk SSSR ,Magadan , 17 pp. (in Russian). Alabushev ,A. ,Wiedmann ,J. , 1994a. Palaeogeographic significance of during during the ea y Maastrichtian in the Southern Hemi- r1 the dis1ribution of Albian (Cretaceous) ammonite faunas in thc sphere sphere on the Antarctic continen t. Short-lived ,sub- Pacific coast of north-east Russia. Neues Jahrbuch fur Geologie freezing freezing conditions occurred occasionally in the North- und Palaontologie ,Abhandlungen 1994 (4) , 193-204. ern ern Hemisphere ,most probably during polar winter Alabushev ,A. ,Wiedmann ,J. , 1994b. A new ammonite ,Neogaslt ・0- months in the early Valanginian , late Coniacian --e ar1 y pliles kamclwlkellsis ,from the Lower Cenomanian (Cretaceous) of of North East Russia (with comments on rclated forms). Santonian Santonian and early Maastrichtian , but it was probably Neues Jahrbuch fur Geologie und Palaontologie , Monatshefte never never sufficiently cold for long enough for permanent 1994 (2) , 65-74. sea sea ice to form. This was possibly because of both the Alabushev ,A. ,Wiedmann ,J. ,199 4c. Ammonite fauna and genesis of lack lack of a continent in the North Pole region and a the Santonian/Campanian (Upper Cretaceous) boundary beds of significant significant ameliorating e町ect of oceanic heat-transport northwestern Kamchatka (north-east Russia). Neues Jahrbuch fur Geologie Geologie und Palaontologie , Monatshefte 1994 (9) , 528-536. poleward , mainly via the straits of Turgai and the Alcala ・Herrera ,J.A. ,Grossman , E. L., Gartner ,S. , 1992. Nannofossil Western Interior of North America. diversity and equitability and fine-fraction O 13 C across the Creluceous/Tertiary Creluceous/Tertiary bou

Acknowledgments

This This research was carried out with the financial support support of a Grant-in-Aid for the International Field Y.D. Y.D. Zakl Ul r Ol' et al. / Cretaceolls Research 26 (2005) 1/ 3-132 131

in in Sedimentary Geology. SEPM (Society for Sedimentary Geology) ical comparisons ,intraspecific variability and evidence for photo- Short Short Course Notes 10 ,pp. ト15 1. symbiosis. Marine Micropaleontology 36. 169-188.

Bare( ・ra ,E. , 1994. Global environmental changes preceding the Huber. B.T.. Hodell 司 D.A.. Hamilton ‘ Ch.P 叫 1995. Middle-Late Cretaceous-Tertiary Cretaceous-Tertiary boundary: Early-Late Maastrichtian transi- Cretaceous climate of thc southern high latitudes: stable isotopic tion. tion. Geology 22 , 877-880. evidence for minimal equator-to ・pole thermal gradients. Geo-

Barerra ,E. ,Huber ,B.T. ,Savin ,S.M 円 Shackelton , N .J., Webb ,P. ・N.. logical Society of America ,Bulletin 107 ,116 4- 1191. 1987. 1987. Antarctic marine temperature: late Campanian through carly Hube( 二B.T. ,Leckie ,R.M., Norris ,R.D. ,Bralower ,T .J., CoBabe , E.. ‘' ‘' Paleocene. Paleoceanography 2,21 -4 7. 1999. Foraminiferal assemblage and stable isotopic change across Berlin ,T.S. ,Khabakov ,A.V. , 1966. Chemical analytical determination the Cenomanian ・Turonian boundary in the subtropical North of of CajMg ratio in belemnite rostra as method of thermometry of Atlantic. Journal of Foraminiferal Research 29. 392 -4 17.

their their biotope in Cretaceous seas of the USSR. Geokhimiya 1966 Huber ,B.T 叫 Norr 色, R.D.. MacLeod , K.G.. 2002. Deep-sea paleo ・ (11) ,4 5- 53 (in Russian). temperature record of extreme warmth during the Cretaceous. Berlin ,T.S. ,Khabakov ,A.V. , 1968. Some results on palaeotemper- Geology 30 , 123-126. ature ature determination from belemnites , using CajMg method. Jenkyns ,H. C.. Gale ,A.S. ,Corfield ,R.M. , 1994. Carbon and oxygen Bulletin Bulletin Moskovskogo Obschestva Ispytateley Prirody Otdeleniye isotopc stratigraphy of the English Chalk and It alian Scaglia and Geologii Geologii 43 (1) , 42-51 (in Russian). its palacoclimatic significance. Geological Magazine 131 , 1-34. Cherbadzhi ,A.K. , 1984. CajMg method and stratigraphical dismem- Krasnov ,E.V. ,Pozdnyakova ,L. A. , 1982. CajMg Method in Marine berment berment of Ii mestone. In: Krasnov ,E.V. ,Buryi ,G. 1. Biology. Izdatel'stvo "Nauka" ,Moskva , 107 pp. (in Russian). (Eds.) , New Geological Data on Dalnegorsk Ore Region. Lear. C. H. ,Rozenthal ,Y. ,Slowey ,N. , 2002. Benthic foraminiferal Dalnevostochnyy Dalnevostochnyy Nauchnyy Tsenter Akademii Nauk SSSR , MgjCa-paleothermometry: a revised core-top calibration. Geo- Vladivostok , pp. 75- 80 (in Russian). chimica et Cosmochimica Acta 66 , 3375-3387. Clarke ,L .J., Jenkyns ,H. C., 1999. New oxygen isotope evidence for Li, L., Keller ,G. , 1999. Variability in Late Cretaceous climate and long-term long-term Cretaceous c1 imatic change in the South Hemisphere. deep waters: evidence from stable isotopes. Marine Geology 161 , Geology 27 , 699-702. 171-190.

Craig. Craig. H.Y 叫 Gordon ,L. J・, 1965. Isotopic oceanography: deuterium Litvinov ,A.F. ,Patoka ,M.G.. Markovsky , V.A. (Eds.) , 1999. Map of and oxygen-18 variations in the occans and marine atmosphere. minerals of Kamchatka area (scalc 1:500 ,000). VSEGEI , S t. Symposium on Marine Geochemistry , Marragansett. Marinc Petersburg (in Russian).

Laboratory Laboratory of U niversity of Rhode Island ,Occasional Publications MacLeod ,K.G. ,Hoppe ,K.A 叫 1992. Evidence that inoceramid 1965 1965 (3) , 277-374. bivalves were benthic and harbored chemosynthetic symbionts. Ditchfield ,P.W. , 1997. High northern palaeolatitudc -Creta- Geology 20 , 117-120. ceous ceous palaeotemperature variations: new data from Kong Karls M ilI cr ,K.G. ,Barrera ,E. ,0lsson ,R.K. ,Sugarman ,P .J., Savin ,S.M. , Land, Svalbard. Palaeogeography ,Palaeoclimatology ,Palaeoecol ・ 1999. Does icc drive early Maastrichtian eustasy? Geology 27 , ogy ogy 130 , 163-175. 783-786.

Davis ,T.T 吋 Hooper ,P.R. ‘ 1963. The determination of the calcite: Moriya. K. , Nishi. H. ,Kawahata ,H. ,Tanabe ,K. ,Takayanagi ,Y. , aragonite aragonite ratio in mollusc shells by X-ray di 汀'raction. Mineralogical 2003. Demcrsal habitat of Late Cretaceous ammonoids: evidence Magazine 33 ,608 -6 12. from oxygcn isotopes for the Campanian (Late Cretaceous)

Epstein ,S 叫 Buchsbaum ,R. ,Lowenstam ,H.A. ,Urey ,H. C.司 1953. northwestern Pacific thermal structure. Geology 31 , 167-170. Revised Revised carbonate-water isotopic tcmperaturc scale. Geoogical Norris 、R.D. , 1996. Symbiosis as an evolutionary innovation in the Society Society of America ,Bulletin 64 , 1315-1326. radiation of planktic foraminifera. Paleobiology 22 ,461 -4 80. Evseev ,G.A. ,Kiyashko , S. I., Ignatiev ,A.V. , 1999. Stablc oxygcn and Pearson ,P.N. ,Ditchfield ,P.W. ,Singano ,J. ,Harcourt-Bown ,G. , carbon carbon isotopes in ecology and palaeoecology of bivalvcs. Vcstnik Nicholas , C .J., 0lsson ,K. ,Shackleton ,N.J. ,Hall ,M.A. ,200 1. Dal'nevostochnogo Dal'nevostochnogo Otdeleniya Rossiyskoy Akademii Nauk 1999 Warm tropical sea surface temperatures in the Late Cretac (2) , 9-23 (in Russian). Golovneva ,L. B. , 1998. Evolution ofthe Cretaceous flo

E 132 132 Y.D. Zakharo¥' el al. / Crelaceous Research 26 (2005) 113-132

Palaeotemperature Palaeotemperature curve for the Late Cretaceous of the north- ratios ,Koryak Upland and Alaska. Journal of the Geological western western circum-Pacific. Cretaceous Research 20 ,685 -6 97. Society of Thailand 1, 11-34.

Zakharov ,Y.D 叶 Ignatiev ,A.V. ,Velivetskaya ,T.A 叫 Severinenko ,O.P. , Zakharov ,Y.D. ,Shigeta ,Y. ,Smyshlyaeva ,O.P. ,Velivctskaya , T .A.,

Tanabe ,K 叫 Shigeta ,Y. ,Maeda ,H 叫 Afanasyeva ,T.B. ,Popov ,A.M. , Popov ,A.M. ,Ignatiev ,A.V. , 2004. Recent Nautilus (isotopes and

Golozubov ,V.V 叫 Moriya ,K 吋 2000. Ea rly-Late C 問 ta ぽ ous c1 imate of problems of reconstruction of fossil habitats). Vestnik the the northern high latitudes: 問 sults from brachiopod and mollusc Da l' nevostochnogo Otdeleniya Rossiyskoy Akademii Nauk 2004 oxygen oxygen and carbon isotope ratios ,Koryak Upland. In: Geologic (2) , 70-78 (in Russian). _') Development Development in Asia during the Cretaceous - Geology ,Carbon Cycle , Zakharov ,Y.D. ,Smyshlyaeva ,O.P. ,Shigeta ,Y. ,Tanabe ,K. ,Maeda ,‘ and Biodiversity Changes. IGCP 434 , Second International Sympo- H. ,Ignatiev ,A.V. ,Velivetskaya ,T.A. ,Popov ,A. M. ,Afanasyeva , sium. sium. Diamond Jubilee Hall ,Yangon U niversity ,M yanmar , pp. 38-39. T.B. ,Moriya ,K. , 2003. Optimum growth temperatures for

Zakharov ,Y.D. ,Ignatiev ,A.V. ,Boriskina ,T.A. ,Velivetskaya ,T.A 叫 Campanian ammonoids in Sakhalin and Hokkaido on stable Smyshlyaeva ,O.P. ,Tanabe ,K. ,Shigeta ,Y. ,Maeda ,H. ,Popov , isotope data. Bulleten Moskovskogo Obschestva Ispytateley A.M. ,Golozubov ,V.V. ,Afanasyeva ,T.B. ,Moriya ,K. ,200 1. Priridy , Otdeleniye Geologii 78 (6) ,4ι56 (in Russian). Palaeozoic Palaeozoic and Mesozoic carbon-isotopic macrorhythms and Zeebe ,R.E. ,200 1. Seawater pH and isotopic paleotemperatures of macrocycles macrocycles of solar activity. Albertiana 25 , 28-35. Cretaceous oceans. Palaeogeography ,Palaeoclimatology ,Palae-

Zakharov ,Y.D. ,Ignatiev ,A.V 叶 Velivetskaya ,T.A. ,Smyshlyaeva , oecology 170 , 49-57.

O.P. ,Tanabe ,K. ,Shigeta ,Y. ,Maeda ,H. ,Afanasyeva ,T.B. , Zolotarev ,V.N. ,Zhirmunsky ,A.V. ,Krasnov ,E.V. ,Naidin ,D.P 叫 Popov ,A.M. ,Golozubov ,V.V. ,Bolotsky ,Y. L., Moriya ,K. , 2004. Teiss ,R.V. , 1974. Isotopic composition of oxygen and growth Early-Late Early-Late Cretaceous climate of the northern high latitudes: temperature of the shell of recent and fossil bivalvia. Zhurnal Results Results from brachiopod and mollusk oxygen and carbon isotope Obschey Biologii 35 , 792-797 (i n Russian).