The Dynamic Nature of the Folded and Unfolded States of the Villin Headpiece Helical Subdomain

Total Page:16

File Type:pdf, Size:1020Kb

The Dynamic Nature of the Folded and Unfolded States of the Villin Headpiece Helical Subdomain The Dynamic Nature of the Folded and Unfolded States of the Villin Headpiece Helical Subdomain A Dissertation Presented by Lauren Wickstrom to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biochemistry and Structural Biology Stony Brook University May 2009 Stony Brook University The Graduate School Lauren Wickstrom We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, Hereby recommend the acceptance of this dissertation. Carlos Simmerling, Ph. D., Advisor Department of Chemistry, Stony Brook University Daniel P. Raleigh, Ph. D., Advisor Department of Chemistry, Stony Brook University Steven O. Smith, Ph. D., Chair Department of Biochemistry and Cell Biology, Stony Brook University Robert C. Rizzo, Ph. D., Third Member Department of Applied Mathematics and Statistics, Stony Brook University Marivi Fernandez-Serra, Ph. D., Outside Member Department of Physics and Astronomy, Stony Brook University This dissertation is accepted by the Graduate School Lawrence Martin Dean of the Graduate School ii Abstract of the Dissertation The Dynamic Nature of the Folded and Unfolded States of the Villin Headpiece Helical Subdomain by Lauren Wickstrom Doctor of Philosophy in Biochemistry and Structural Biology Stony Brook University 2009 The symbiotic relationship between experiment and simulation is necessary for a complete understanding of biomolecular structure and dynamics. Computational approaches can provide structural populations and atomic detail, and describe motion not visible on the macroscopic level, which can be used to interpret the experimental average ensemble as well develop new experiments. In turn, simulations rely on experimental observables for validation of a particular model or method. In this work, both tools are used collaboratively to study the structure of the folded and the unfolded states of proteins. Solution NMR and X-ray structures of the folded state are widely used as a reference for simulations and experiments. Recent work has shown that the denatured state contains structure that is important for understanding protein stability and the folding pathway. This knowledge can be utilized to understand and treat protein misfolding diseases. One of the key model systems, the 36-residue villin headpiece helical subdomain (HP36), was chosen for these studies because of its simple topology, small size and fast iii folding properties. Structures of HP36 have been determined using X-ray crystallography and NMR spectroscopy, but the two structures exhibited clear differences. Molecular dynamics simulations and experimental double mutant cycles were used to show that the X-ray structure is the better representation of the folded state in solution. Previous experimental evidence has suggested that there is residual structure in the denatured state of HP36. Fragment analysis has shown that the three individual helices of HP36 lack significant structure compared to a larger fragment containing the first two helices (HP21). These techniques, however, are low resolution and are unable to quantify low levels of helical structure and whether it occurs in the same regions as HP36. Simulations were used to quantify the structure in all of the fragments. The HP21 ensemble contains less helical structure than predicted by NMR experimental observables possibly due to deficiencies in sampling and the force field. To address these limitations, simulation methodology and models were investigated. iv Table of Contents Table of Contents .............................................................................................................. v List of Figures.................................................................................................................... x List of Tables................................................................................................................ xxvii List of Publications ...................................................................................................... xxix Acknowledgements ....................................................................................................... xxx 1. Introduction ............................................................................................................ 1 1.1 Symbiotic Relationship between Experiments and Computational Studies ..... 1 1.2 The Importance of Understanding Folded and Unfolded State Structure........ 2 1.2.1 What is the protein folding problem?................................................................ 2 1.2.2 Importance of the folded state........................................................................... 3 1.3 Studying the Unfolded State .................................................................................. 4 1.3.1 Why is studying the unfolded state important? ................................................. 4 1.3.2 Difficulties in resolving the unfolded state ensemble experimentally .............. 4 1.4 How Can Simulations Help Us Study the Protein Folding Problem?................ 6 1.4.1 The limitations of simulations........................................................................... 6 1.5 Simulation Methodology........................................................................................ 7 1.5.1 Force field.......................................................................................................... 7 1.5.2 Solvation............................................................................................................ 8 1.5.3 Enhanced sampling with replica exchange molecular dynamics .................... 10 1.6 Model System Used to Study Protein Folding – Villin Headpiece Helical v Subdomain.......................................................................................................................12 1.7 Aims of this Thesis................................................................................................ 14 2. Reconciling the Solution and X-ray Structures of the Villin Headpiece Helical Subdomain: Molecular dynamics and Double Mutant Cycles Reveal a Stabilizing Cation-pi Interaction ...................................................................................................... 16 2.1 Introduction .......................................................................................................... 17 2.2 Methods ................................................................................................................. 22 2.2.1 Computational ................................................................................................. 22 2.2.2 Data analysis.................................................................................................... 24 2.3 Results.................................................................................................................... 24 2.3.1 Simulations of the NMR structure................................................................... 24 2.3.2 Structural similarities to the NMR Family ...................................................... 32 2.3.3 Specific sidechain interactions........................................................................ 34 2.3.4 Simulations of the X-ray structure .................................................................. 37 2.3.5 Experimental investigation of the putative sidechain interactions.................. 38 2.4 Discussion.............................................................................................................. 45 3. The Unfolded State of the Villin Headpiece Helical Subdomain: Computational Studies of the Role of Locally Stabilized Structure ........................... 51 3.1 Introduction .......................................................................................................... 52 3.2 Methods ................................................................................................................. 56 3.2.1 Explicit solvent simulations ............................................................................ 56 3.2.2 Implicit solvent simulations ............................................................................ 58 3.2.3 Data analysis.................................................................................................... 59 3.3 Results.................................................................................................................... 61 3.3.1 Measuring convergence of the REMD simulations......................................... 61 3.3.2 Comparison of structural ensembles obtained using explicit and implicit solvent models............................................................................................................... 62 3.3.3 Summary of data analysis approaches............................................................. 64 3.3.4 Simulations of Ala10 ........................................................................................ 65 3.3.5 Conformational preferences for fragment HP-1.............................................. 66 3.3.6 HP-2 shows no significant residual structure.................................................. 73 3.3.7 Analysis of HP-3 ............................................................................................. 75 vi 3.4 Discussion.............................................................................................................. 77 3.4.1 What may stabilize the high population of helical structure in HP-1?............ 77 3.4.2 Comparison with
Recommended publications
  • Recent Advances in the Structural Biology of the 26S Proteasome
    The International Journal of Biochemistry & Cell Biology 79 (2016) 437–442 Contents lists available at ScienceDirect The International Journal of Biochemistry & Cell Biology jo urnal homepage: www.elsevier.com/locate/biocel Review article Recent advances in the structural biology of the 26S proteasome ∗ Marc Wehmer, Eri Sakata Department of Molecular Structural Biology, Max Planck institute of Biochemistry, 82152, Martinsried, Germany a r t i c l e i n f o a b s t r a c t Article history: There is growing appreciation for the fundamental role of structural dynamics in the function of macro- Received 28 June 2016 molecules. In particular, the 26S proteasome, responsible for selective protein degradation in an ATP Received in revised form 2 August 2016 dependent manner, exhibits dynamic conformational changes that enable substrate processing. Recent Accepted 3 August 2016 cryo-electron microscopy (cryo-EM) work has revealed the conformational dynamics of the 26S protea- Available online 4 August 2016 some and established the function of the different conformational states. Technological advances such as direct electron detectors and image processing algorithms allowed resolving the structure of the pro- Keywords: teasome at atomic resolution. Here we will review those studies and discuss their contribution to our 26S proteasome understanding of proteasome function. Cryoelectron microscopy © 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND Single particle analysis Structural biology license (http://creativecommons.org/licenses/by-nc-nd/4.0/). AAA+ ATPase Contents 1. Introduction . 437 2. Structural dynamics of the 26S proteasome . 438 3. Mechanical insights into the proteasome .
    [Show full text]
  • Topological Distribution of Four-A-Helix Bundles (Folding Motif/Solvent Accessibility/Helix Dipole) SCOTT R
    Proc. NatI. Acad. Sci. USA Vol. 86, pp. 6592-6596, September 1989 Biochemistry Topological distribution of four-a-helix bundles (folding motif/solvent accessibility/helix dipole) SCOTT R. PRESNELL* AND FRED E. COHEN*t Departments of *Pharmaceutical Chemistry and tMedicine, University of California, San Francisco, San Francisco, CA 94143-0446 Communicated by Frederic M. Richards, June 19, 1989 ABSTRACT The four-a-helix bundle, a common struc- suggest a set of bundle structures beyond those initially tural motif in globular proteins, provides an excellent forum for reviewed by Weber and Salemme (8). Further, we will the examination of predictive constraints for protein backbone describe robust topological characterizations and categori- topology. An exhaustive examination of the Brookhaven Crys- zations of the discovered structures. In light of our catego- tallographic Protein Data Bank and other literature sources has rization scheme, the past and current topological constraints lead to the discovery of 20 putative four-a-helix bundles. used for the prediction of protein structures containing four- Application of an analytical method that examines the differ- a-helix bundles are reevaluated. ence between solvent-accessible surface areas in packed and partially unpacked bundles reduced the number of structures to 16. Angular requirements further reduced the list ofbundles METHODS to 13. In 12 of these bundles, all pairs of neighboring helices To locate putative four-a-helix bundles, two independent were oriented in an anti-parallel fashion. This distribution is in observers employed the graphical display program MIDAS accordance with structure types expected if the helix macro (11) to inspect more than 300 globular protein structures from dipole effect makes a substantial contribution to the stability of the Brookhaven Protein Data Bank (12) (November 14, 1988).
    [Show full text]
  • Structural Plasticity of 4-Α-Helical Bundles Exemplified by the Puzzle-Like Molecular Assembly of the Rop Protein
    Structural plasticity of 4-α-helical bundles exemplified by the puzzle-like molecular assembly of the Rop protein Maria Amprazia,b, Dina Kotsifakib, Mary Providakib, Evangelia G. Kapetanioub, Georgios Fellasa, Ioannis Kyriazidisa, Javier Pérezc, and Michael Kokkinidisa,b,1 aDepartment of Biology, University of Crete, GR 71409 Heraklion, Crete, Greece; bInstitute of Molecular Biology and Biotechnology, Foundation of Research and Technology, GR 70013 Heraklion, Crete, Greece; and cSynchrotron SOLEIL, 91192 Gif-sur-Yvette, France Edited by José N. Onuchic, Rice University, Houston, TX, and approved June 20, 2014 (received for review December 12, 2013) The dimeric Repressor of Primer (Rop) protein, a widely used “loopless” mutant, the α-helical hairpin of the monomer is model system for the study of coiled-coil 4-α-helical bundles, is converted into a single helix (15, 16). The complete LLR mol- characterized by a remarkable structural plasticity. Loop region ecule is a tetramer that is completely reorganized relative to the mutations lead to a wide range of topologies, folding states, dimeric wild-type (WT) Rop, thereby becoming a hyper-ther- and altered physicochemical properties. A protein-folding study mostable protein (16). On the other hand, establishment of an of Rop and several loop variants has identified specific residues uninterrupted heptad periodicity through a two-residue insertion and sequences that are linked to the observed structural plasticity. in the loop produces minimal changes relative to WT in terms of Apart from the native state, native-like and molten-globule states structure and properties (12). Thus, these two mutants with have been identified; these states are sensitive to reducing agents uninterrupted patterns of heptads reveal that there is a consid- due to the formation of nonnative disulfide bridges.
    [Show full text]
  • Principles of Helix-Helix Packing in Proteins: the Helical Lattice Superposition Model Dirk Walther1*, Frank Eisenhaber1,2 and Patrick Argos1
    J. Mol. Biol. (1996) 255, 536–553 Principles of Helix-Helix Packing in Proteins: The Helical Lattice Superposition Model Dirk Walther1*, Frank Eisenhaber1,2 and Patrick Argos1 1European Molecular Biology The geometry of helix-helix packing in globular proteins is comprehen- Laboratory, Meyerhofstraße 1 sively analysed within the model of the superposition of two helix lattices Postfach 10.2209, 69012 which result from unrolling the helix cylinders onto a plane containing Heidelberg, Germany points representing each residue. The requirements for the helix geometry (the radius R, the twist angle v and the rise per residue D) under perfect 2Biochemisches Institut der match of the lattices are studied through a consistent mathematical model Charite´, der Humboldt- that allows consideration of all possible associations of all helix types (a-, Universita¨t zu Berlin, p- and 310). The corresponding equations have three well-separated Hessische Straße 3–4 10115 solutions for the interhelical packing angle, V, as a function of the helix Berlin, Germany geometric parameters allowing optimal packing. The resulting functional relations also show unexpected behaviour. For a typically observed a-helix ° − ° (v = 99.1 , D = 1.45 Å), the three optimal packing angles are Va,b,c = 37.1 , −97.4° and +22.0° with a periodicity of 180° and respective helix radii Ra,b,c = 3.0 Å, 3.5 Å and 4.3 Å. However, the resulting radii are very sensitive ° to variations in the twist angle v. At vtriple = 96.9 , all three solutions yield identical radii at D = 1.45 Å where Rtriple = 3.46 Å. This radius is close to that of a poly(Ala) helix, indicating a great packing flexibility when alanine is involved in the packing core, and vtriple is close to the mean observed twist angle.
    [Show full text]
  • Quantitative Analysis of Biomolecular NMR Spectra: a Prerequisite for the Determination of the Structure and Dynamics of Biomolecules
    Current Organic Chemistry, 2006, 10, 00-00 1 Quantitative Analysis of Biomolecular NMR Spectra: A Prerequisite for the Determination of the Structure and Dynamics of Biomolecules Thérèse E. Malliavin* Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie PhysicoChimique, 13 rue P. et M. Curie, 75 005 Paris, France. Abstract: Nuclear Magnetic Resonance (NMR) became during the two last decades an important method for biomolecular structure determination. NMR permits to study biomolecules in solution and gives access to the molecular flexibility at atomic level on a complete structure: in that respect, it is occupying a unique place in structural biology. During the first years of its development, NMR was trying to meet the requirements previously defined in X-ray crystallography. But, NMR then started to determine its own criteria for the definition of a structure. Indeed, the atomic coordinates of an NMR structure are calculated using restraints on geometrical parameters (angles and distances) of the structure, which are only indirectly related to atom positions: in that respect, NMR and X-ray crystallography are very different. The indirect relation between the NMR measurements and the molecular structure and dynamics makes critical the precision and the interpretation of the NMR parameters and the development of quantitative analysis methods. The methods published since 1997 for liquid-NMR of proteins are reviewed here. First, methods for structure determination are presented, as well as methods for spectral assignment and for structure quality assessment. Second, the quantitative analysis of structure mobility is reviewed. 1. INTRODUCTION parameters is fuzzy, because each NMR parameter is Nuclear Magnetic Resonance (NMR) became at the depending not only on the structure, but also on the internal beginning of 90's, a method of choice for structural biology dynamics of the molecule, and these two aspects are difficult in solution.
    [Show full text]
  • Structural and Mechanistic Characterization of the Bacterial Proteasome-Related Proteins Bpa and Dop
    Research Collection Doctoral Thesis Structural and Mechanistic Characterization of the Bacterial Proteasome-related Proteins Bpa and Dop Author(s): Bolten, Marcel Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010814710 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 23817 STRUCTURAL AND MECHANISTIC CHARACTERIZATION OF THE BACTERIAL PROTEASOME-RELATED PROTEINS BPA AND DOP A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by MARCEL BOLTEN M.Sc. in Chemical Biology, TU Dortmund born on 25.07.1986 citizen of Germany accepted on the recommendation of Prof. Dr. Eilika Weber-Ban Prof. Dr. Rudi Glockshuber Prof. Dr. Donald Hilvert 2016 Chapter3 of this thesis has appeared in the following publication: Bolten, M.1; Delley, C.L.1; Leibundgut, M.; Boehringer, D.; Ban, N. & Weber-Ban, E. Structural analysis of the bacterial proteasome activator Bpa in complex with the 20S proteasome. Structure 2016, 24, 2138–2151 doi: 10.1016/j.str.2016.10.008 1contributed equally Zusammenfassung Proteinhomöostase ist ein fundamentaler Prozess des Lebens und beschreibt die Kontrolle der Proteinkonzentrationen und der Funktionalität des Proteoms in le- benden Zellen. Ein wichtiger Aspekt dieses Kontrollprozesses ist der Proteinabbau, bei welchem Proteasen selektiv beschädigte oder nicht länger benötigte Proteine verdauen. Diese Aufgabe wird üblicherweise von kompartmentalisierenden Pro- teasekomplexen übernommen, die abgeschlossene Abbaukompartimente mit Zu- gangskontrolle besitzen, wodurch deren proteolytische Aktivität gegenüber dem Zytosol abgeschottet ist.
    [Show full text]
  • HASH: a Program to Accurately Predict Protein H Shifts from Neighboring Backbone Shifts
    J Biomol NMR DOI 10.1007/s10858-012-9693-7 ARTICLE a HASH: a program to accurately predict protein H shifts from neighboring backbone shifts Jianyang Zeng • Pei Zhou • Bruce Randall Donald Received: 25 October 2012 / Accepted: 5 December 2012 Ó Springer Science+Business Media Dordrecht 2012 Abstract Chemical shifts provide not only peak identities atoms (i.e., adjacent atoms in the sequence), can remedy for analyzing nuclear magnetic resonance (NMR) data, but the above dilemmas, and hence advance NMR-based also an important source of conformational information for structural studies of proteins. By specifically exploiting the studying protein structures. Current structural studies dependencies on chemical shifts of nearby backbone requiring Ha chemical shifts suffer from the following atoms, we propose a novel machine learning algorithm, a a limitations. (1) For large proteins, the H chemical shifts called HASH, to predict H chemical shifts. HASH combines can be difficult to assign using conventional NMR triple- a new fragment-based chemical shift search approach with resonance experiments, mainly due to the fast transverse a non-parametric regression model, called the generalized relaxation rate of Ca that restricts the signal sensitivity. (2) additive model, to effectively solve the prediction problem. Previous chemical shift prediction approaches either We demonstrate that the chemical shifts of nearby back- require homologous models with high sequence similarity bone atoms provide a reliable source of information for or rely heavily on accurate backbone and side-chain predicting accurate Ha chemical shifts. Our testing results structural coordinates. When neither sequence homologues on different possible combinations of input data indicate nor structural coordinates are available, we must resort to that HASH has a wide rage of potential NMR applications in other information to predict Ha chemical shifts.
    [Show full text]
  • Automatic 13C Chemical Shift Reference Correction for Unassigned Protein NMR Spectra
    Journal of Biomolecular NMR https://doi.org/10.1007/s10858-018-0202-5 ARTICLE Automatic 13C chemical shift reference correction for unassigned protein NMR spectra Xi Chen1,2 · Andrey Smelter1,3,4 · Hunter N. B. Moseley1,2,3,4,5 Received: 10 April 2018 / Accepted: 1 August 2018 © The Author(s) 2018 Abstract Poor chemical shift referencing, especially for 13C in protein Nuclear Magnetic Resonance (NMR) experiments, fundamen- tally limits and even prevents effective study of biomacromolecules via NMR, including protein structure determination and analysis of protein dynamics. To solve this problem, we constructed a Bayesian probabilistic framework that circumvents the limitations of previous reference correction methods that required protein resonance assignment and/or three-dimensional protein structure. Our algorithm named Bayesian Model Optimized Reference Correction (BaMORC) can detect and correct 13C chemical shift referencing errors before the protein resonance assignment step of analysis and without three-dimensional structure. By combining the BaMORC methodology with a new intra-peaklist grouping algorithm, we created a combined method called Unassigned BaMORC that utilizes only unassigned experimental peak lists and the amino acid sequence. Unassigned BaMORC kept all experimental three-dimensional HN(CO)CACB-type peak lists tested within ± 0.4 ppm of the correct 13C reference value. On a much larger unassigned chemical shift test set, the base method kept 13C chemical shift ref- erencing errors to within ± 0.45 ppm at a 90% confidence interval. With chemical shift assignments, Assigned BaMORC can detect and correct 13C chemical shift referencing errors to within ± 0.22 at a 90% confidence interval. Therefore, Unassigned BaMORC can correct 13C chemical shift referencing errors when it will have the most impact, right before protein resonance assignment and other downstream analyses are started.
    [Show full text]
  • Structural Basis for the Alternating Access Mechanism of the Cation Diffusion Facilitator Yiip
    Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP Maria Luisa Lopez-Redondoa,1, Nicolas Coudraya,1, Zhening Zhanga,2, John Alexopoulosa, and David L. Stokesa,3 aSkirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY 10016 Edited by Robert M. Stroud, University of California, San Francisco, CA, and approved January 31, 2018 (received for review August 24, 2017) YiiP is a dimeric antiporter from the cation diffusion facilitator representatives. Both superfamilies are characterized by internal family that uses the proton motive force to transport Zn2+ across sequence repeats which fold into two distinct domains. The con- bacterial membranes. Previous work defined the atomic structure of formational changes from IF to OF states are described as either + an outward-facing conformation, the location of several Zn2 bind- rocking-bundle or elevator-like movements of one domain relative ing sites, and hydrophobic residues that appear to control access to to the other, and these movements typically involve coordinated, the transport sites from the cytoplasm. A low-resolution cryo-EM symmetric structural changes in the respective repeats (15–17). structure revealed changes within the membrane domain that were CDF transporters, however, do not have an obvious sequence associated with the alternating access mechanism for transport. In repeat, and although many are reported to form homodimers, an the current work, the resolution of this cryo-EM structure has been X-ray structure of YiiP shows that independent transport sites are extended to 4.1 Å. Comparison with the X-ray structure defines the present within each monomer (18, 19).
    [Show full text]
  • Implications for Proteasome Nuclear Localization Revealed by the Structure of the Nuclear Proteasome Tether Protein Cut8
    Implications for proteasome nuclear localization revealed by the structure of the nuclear proteasome tether protein Cut8 Kojiro Takedaa, Nam K. Tonthatb, Tiffany Gloverc, Weijun Xuc, Eugene V. Koonind, Mitsuhiro Yanagidaa, and Maria A. Schumacherb,1 aG0 Cell Unit; Okinawa Institute of Science and Technology (OIST); 1919-1 Tancha, Onna, Okinawa, Japan; bDepartment of Biochemistry, Duke University Medical Center, Room 243A Nanaline H. Duke Building, Box 3711, Durham, NC 27710; cDepartment of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Unit 1000, Houston, TX 77030; and dNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892 Edited by Axel T. Brunger, Stanford University, Stanford, CA, and approved August 29, 2011 (received for review March 7, 2011) Degradation of nuclear proteins by the 26S proteasome is essential ultimately found to be a delay in the destruction of the mitotic for cell viability. In yeast, the nuclear envelope protein Cut8 med- cyclin and securin (13). However, the polyubiquitination of these iates nuclear proteasomal sequestration by an uncharacterized proteins was normal, suggesting a role for the proteasome. Sub- mechanism. Here we describe structures of Schizosaccharomyces sequent studies showed that Cut8 is responsible for sequestering pombe Cut8, which shows that it contains a unique, modular the 26S proteasome to the nucleus (10, 11). Cut8 was found to be fold composed of an extended N-terminal, lysine-rich segment localized to the nuclear envelope and overlapping the location that when ubiquitinated binds the proteasome, a dimer domain of the proteasome (17–21). An interaction between Cut8 and followed by a six-helix bundle connected to a flexible C tail.
    [Show full text]
  • Robust Denaturation of Villin Headpiece by Mos2 Nanosheet
    www.nature.com/scientificreports OPEN Robust Denaturation of Villin Headpiece by MoS2 Nanosheet: Potential Molecular Origin of the Received: 02 February 2016 Accepted: 02 June 2016 Nanotoxicity Published: 17 June 2016 Zonglin Gu1,*, Zaixing Yang1,*, Seung-gu Kang2, Jerry R. Yang2, Judong Luo3 & Ruhong Zhou1,2,4 MoS2 nanosheet, a new two-dimensional transition metal dichalcogenides nanomaterial, has attracted significant attentions lately due to many potential promising biomedical applications. Meanwhile, there is also a growing concern on its biocompatibility, with little known on its interactions with various biomolecules such as proteins. In this study, we use all-atom molecular dynamics simulations to investigate the interaction of a MoS2 nanosheet with Villin Headpiece (HP35), a model protein widely used in protein folding studies. We find that MoS2 exhibits robust denaturing capability to HP35, with its secondary structures severely destroyed within hundreds of nanosecond simulations. Both aromatic and basic residues are critical for the protein anchoring onto MoS2 surface, which then triggers the successive protein unfolding process. The main driving force behind the adsorption process is the dispersion interaction between protein and MoS2 monolayer. Moreover, water molecules at the interface between some key hydrophobic residues (e.g. Trp-64) and MoS2 surface also help to accelerate the process driven by nanoscale drying, which provides a strong hydrophobic force. These findings might have shed new light on the potential nanotoxicity of MoS2 to proteins with atomic details, which should be helpful in guiding future biomedical applications of MoS2 with its nanotoxicity mitigated. The most common two-dimensional (2D) nanomaterials are probably those carbon-based ones, such as graphene, graphyne and their derivatives, which have attracted tremendous interests in many fields including biomedicine 1–7 8 9 10 since its discovery .
    [Show full text]
  • Protein Folds in the All-Β and All-Α Classes
    P1: rpk/MKV P2: SDA/vks QC: rpk/AGR T1: rpk February 25, 1997 15:36 Annual Reviews AR031-21 AR031-21 Annu. Rev. Biophys. Biomol. Struct. 1997. 26:597–627 Copyright c 1997 by Annual Reviews Inc. All rights reserved PROTEIN FOLDS IN THE ALL-β AND ALL-α CLASSES Cyrus Chothia, Tim Hubard, Steven Brenner, Hugh Barns, and Alexey Murzin MRC Laboratory of Molecular Biology and Cambridge Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, United Kingdom KEY WORDS: β-sandwiches, β-propellers, β-helices, β-barrels, β-prisms, α-helix polyhedra, α-helix bundles, α-helix layer structures ABSTRACT Analysis of the structures in the Protein Databank, released in June 1996, shows that the number of different protein folds, i.e. the number of different arrange- ments of major secondary structures and/or chain topologies, is 327. Of these folds, approximately 25% belong to the all-α class, 20% belong to the all-β class, 30% belong to the α/β class, and 25% belong to the α β class. We describe the types of folds now known for the+ all-β and all-α classes, emphasizing those that have been discovered recently. Detailed theories for the physical determinants of the structures of most of these folds now exist, and these are reviewed. CONTENTS INTRODUCTION ...........................................................598 THE KNOWN PROTEIN FOLDS ...............................................598 Classification of Protein Structures and the Number of Folds ......................600 FOLDS IN THE ALL-β CLASS ................................................601
    [Show full text]