<<

The of Hawking

Juan Maldacena

Institute for Advanced Study We will discuss recent progress on the problem Outline

• Black hole entropy = area of horizon • The fine grained gravitational entropy formula. Entropy = Minimal area • Compute the entropy of radiation coming out of black holes. • Get a result consistent with information conservation (as opposed to information loss). This will not be historical, will hopefully be pedagogical… Black holes have been in the news

We will mainly talk about aspects of black holes Black hole

Schwarzschild 1917

r dr2 ds2 = (1 s )dt2 + + r2d⌦2 r (1 rs ) 2 AAACR3icbZBLS8NAFIUn9VXrq+qym4siVMSS1IVuBB8g7lSwrdDGMJlM28GZJMxMhBL6b/wnrly78ie4UhTEpZPGhVYvzPBxzrlMcvyYM6Vt+8kqTExOTc8UZ0tz8wuLS+XllaaKEklog0Q8klc+VpSzkDY005xexZJi4XPa8m+OM791S6ViUXipBzF1Be6FrMsI1kbyym6gruuwD9tQdcyVSk9BJzIbIGEImxBoY29BCgFIQ7mVR+FH1kSHJpZFgs6ZoD3s1Q175XW7Zo8G/oLzDesHR3evhycVce6VHztBRBJBQ004Vqrt2LF2Uyw1I5wOS51E0RiTG9yjbYMhFlS56aiGIWwYJYBuJM0JNYzUnxspFkoNhG+SAuu+Gvcy8T+vnejunpuyME40DUn+UDfhoCPIOoWASUo0HxjARDLzrUD6WGKiTfOlkmnBGf/nv9Cs15ydWv0iqwPlU0QVtIaqyEG76ACdonPUQATdo2f0ht6tB+vF+rA+82jB+t5ZRb+mYH0BkoOtfg== r r =2G M/c2 AAAB/XicbVDLSsNAFJ34rPEV7dLNYBFc1SQKuhGKLnSjVLAPaGOYTCft0MkkzEyEEoqf4kpQELd+iCv/xkmbhbYeuHA4517uvSdIGJXKtr+NhcWl5ZXV0pq5vrG5tW3t7DZlnApMGjhmsWgHSBJGOWkoqhhpJ4KgKGCkFQwvc7/1SISkMb9Xo4R4EepzGlKMlJZ8qwyFL+E5dOGVfwtvjvCDa/pWxa7aE8B54hSkAgrUfeur24txGhGuMENSdhw7UV6GhKKYkbHZTSVJEB6iPuloylFEpJdNjh/DA630YBgLXVzBifp7IkORlKMo0J0RUgM56+Xif14nVeGZl1GepIpwPF0UpgyqGOZJwB4VBCs20gRhQfWtEA+QQFjpvMw8BWf253nSdKvOcdW9O6nULoo8SmAP7IND4IBTUAPXoA4aAIMReAav4M14Ml6Md+Nj2rpgFDNl8AfG5w8q/ZI9 s N

Time component of the metric goes to zero at some radius = . (rs sets the ``size’’ of the black hole). An observer at constant r, feels an infinite gravitational force! Einstein: ``this does not make any physical sense”

In other coordinates: (expanding around the Schwarzschild radius)

2 2 2 2 metric near r = rs in the t and r directions dsAAACCnicbZBNS8MwGMfT+TbrW9Wjl+AQvDjaKehFGHrxOMG9wFpHmqZbWJqUJBVG2dWTH8WToCBe/Qae/DZmWw+6+UDIj///eUief5gyqrTrflulpeWV1bXyur2xubW94+zutZTIJCZNLJiQnRApwignTU01I51UEpSEjLTD4fXEbz8Qqajgd3qUkiBBfU5jipE2Us+BkbqvwUsY+XIgDJ3AAiJfo8zcPafiVt1pwUXwCqiAoho958uPBM4SwjVmSKmu56Y6yJHUFDMytv1MkRThIeqTrkGOEqKCfLrJGB4ZJYKxkOZwDafq74kcJUqNktB0JkgP1Lw3Ef/zupmOL4Kc8jTThOPZQ3HGoBZwEguMqCRYs5EBhCU1f4V4gCTC2oRn2yYFb37nRWjVqt5ptXZ7VqlfFXmUwQE4BMfAA+egDm5AAzQBBo/gGbyCN+vJerHerY9Za8kqZvbBn7I+fwBsH5f4 = d⇢ ⇢ d⌧ The metric near r=rs is flat ds2 = d⇢2 ⇢2d⌧ 2 = (dx0)2 +(dx1)2 ,x0 = ⇢ sinh ⌧ ,x1 = ⇢ cosh ⌧ AAACYHicbVFNS8MwGE7r15zTbXrTS3AIE3W0U9CLIHrxOMGpsG4jTTMXliYlSYejbH/Sk+DJX2LaVdDNFwLP+3yQ9okfMaq043xY9srq2vpGYbO4VdreKVequ09KxBKTNhZMyBcfKcIoJ21NNSMvkSQo9Bl59kd3qf48JlJRwR/1JCLdEL1yOqAYaUP1K+NA9ZrwGgaeHAqDzmAOAk+jOJPOYD0J3nrO9NisJ/PFzZbZ6SwbaFRjTJPQU5QPYRr+kY37ei5hoXKpX6k5DScbuAzcHNRAPq1+5d0LBI5DwjVmSKmO60S6myCpKWZkWvRiRSKER+iVdAzkKCSqm2T9TOGRYQI4ENIcrmHG/k4kKFRqEvrGGSI9VItaSv6ndWI9uOomlEexJhzPLxrEDGoB07JhQCXBmk0MQFhS860QD5FEWJsnKRZNC+7iPy+Dp2bDPW80Hy5qN7d5HwVwAA5BHbjgEtyAe9ACbYDBp2VbW1bJ+rILdtmuzq22lWf2wJ+x978ByaGxKQ==

Constant r trajectory à accelerated observer

Looks locally like flat space Observer at constant radial position near ρ =0 à very large acceleration. If she does not accelerate à no force!. Just a coordinate singularity!

Time translation à acts like a boost at the horizon. Euclidean analogy ds2 = d⇢2 ⇢2d⌧ 2 = (dx0)2 +(dx1)2 ,x0 = ⇢ sinh ⌧ ,x1 = ⇢ cosh ⌧ AAACYHicbVFNS8MwGE7r15zTbXrTS3AIE3W0U9CLIHrxOMGpsG4jTTMXliYlSYejbH/Sk+DJX2LaVdDNFwLP+3yQ9okfMaq043xY9srq2vpGYbO4VdreKVequ09KxBKTNhZMyBcfKcIoJ21NNSMvkSQo9Bl59kd3qf48JlJRwR/1JCLdEL1yOqAYaUP1K+NA9ZrwGgaeHAqDzmAOAk+jOJPOYD0J3nrO9NisJ/PFzZbZ6SwbaFRjTJPQU5QPYRr+kY37ei5hoXKpX6k5DScbuAzcHNRAPq1+5d0LBI5DwjVmSKmO60S6myCpKWZkWvRiRSKER+iVdAzkKCSqm2T9TOGRYQI4ENIcrmHG/k4kKFRqEvrGGSI9VItaSv6ndWI9uOomlEexJhzPLxrEDGoB07JhQCXBmk0MQFhS860QD5FEWJsnKRZNC+7iPy+Dp2bDPW80Hy5qN7d5HwVwAA5BHbjgEtyAe9ACbYDBp2VbW1bJ+rILdtmuzq22lWf2wJ+x978ByaGxKQ==

Accelerated observer, at constant ρ.

ds2 = d⇢2 + ⇢2d✓2 =(dx0 )2 +(dx1)2 ,x0 = ⇢ sin ✓ ,x1 = ⇢ cos ✓ AAACYnicbVFbSyMxGM3Meh1vdX3Uh2ARFKXMVMF9KYiL4KOCVaHTDplMakMzyZB8s7QU+yf3aV982h9i5iJ4+yBwci4kOYkzwQ34/j/H/bGwuLS8suqtrW9sbjW2f94blWvKulQJpR9jYpjgknWBg2CPmWYkjQV7iMe/C/3hD9OGK3kH04z1U/Ik+ZBTApaKGpPEDNq4g5NQj5RFx7gGSQgjBqQU8WEyia4G/lFpsJtBUMD5ybwaPBn40ZU1FlkcGi6r8JvD+juVRJXBlRY1mn7LLwd/BUENmqiem6jxN0wUzVMmgQpiTC/wM+jPiAZOBXv2wtywjNAxeWI9CyVJmenPyoae8YFlEjxU2i4JuGTfJ2YkNWaaxtaZEhiZz1pBfqf1chj+6s+4zHJgklYHDXOBQeGibpxwzSiIqQWEam7viumIaELBforn2RaCz2/+Cu7breC01b49a15c1n2soF20jw5RgM7RBbpGN6iLKHpxFpwNZ9P573rutrtTWV2nzuygD+PuvQLb87I4 E E

Circle at constant ρ. Finite and circles in Euclidean time

Thermal partition function:

H Z = Tr[e ] = evolution in Euclidean time on a circle of length β

AAACBHicbVDJSgNBEO2JW4xb1JteCoPgxTATBb0IQS85RsiGyRh6OpWkSc9Cd48QhoAnP8WToCBe/QlP/o2d5aCJDwoe71VRVc+LBFfatr+t1NLyyupaej2zsbm1vZPd3aupMJYMqywUoWx4VKHgAVY11wIbkUTqewLr3uBm7NcfUCoeBhU9jND1aS/gXc6oNlI7e3AHV1CRTcD7BE6h5aGmUIIRuNDO5uy8PQEsEmdGcmSGcjv71eqELPYx0ExQpZqOHWk3oVJzJnCUacUKI8oGtIdNQwPqo3KTyQ8jODZKB7qhNBVomKi/JxLqKzX0PdPpU91X895Y/M9rxrp76SY8iGKNAZsu6sYCdAjjQKDDJTIthoZQJrm5FVifSsq0iS2TMSk48z8vkloh75zlC7fnueL1LI80OSRH5IQ45IIUSYmUSZUw8kieySt5s56sF+vd+pi2pqzZzD75A+vzB1etlSA=

A theory on a Euclidean circle is related to a system is thermal equilibrium.

T = 1 = 1

AAACMHicbVDLSgMxFM34tr6qLt0Ei+CqzOhCQYSiKC5cKFgVOqVk0jttMJMMyR2hDO3Wn3HlX7jVjaIgbv0K09aFrwOBwznnJrknSqWw6PvP3sjo2PjE5NR0YWZ2bn6huLh0bnVmOFS5ltpcRsyCFAqqKFDCZWqAJZGEi+hqv+9fXIOxQqsz7KRQT1hLiVhwhk5qFA/P6C7NaUBD7WI0jAAZpd0fYh6ahB6DamG7p+PeQcalaAJTPS4Ml9B18Uax5Jf9AehfEnyRUiXo3ezcj36cNIqPYVPzLAGFXDJra4GfYj1nBkX/ykKYWUgZv2ItqDmqWAK2ng/27dI1pzRprI07CulA/T6Rs8TaThK5ZMKwbX97ffE/r5ZhvF3PhUozBMWHD8WZpKhpvzzaFAY4yo4jjBvh/kp5mxnG0VVcKLgWgt87/yXnG+Vgs7xxGpQqe2SIKbJCVsk6CcgWqZAjckKqhJNb8kBeyKt35z15b977MDrifc0skx/wPj4BUiWq5w== Length of Euclidean circle x0 Euclidean AAAB7XicbVBNSwMxEJ2tX3X9qnr0EiyCp7JbBT0WRfBYwW0L7VqyadqGZpMlyYpl6W/wJCiIV3+QJ/+NabsHbX0w8Hhvhpl5UcKZNp737RRWVtfWN4qb7tb2zu5eaf+goWWqCA2I5FK1IqwpZ4IGhhlOW4miOI44bUaj66nffKRKMynuzTihYYwHgvUZwcZKwdOD173plspexZsBLRM/J2XIUe+Wvjo9SdKYCkM41rrte4kJM6wMI5xO3E6qaYLJCA9o21KBY6rDbHbsBJ1YpYf6UtkSBs3U3xMZjrUex5HtjLEZ6kVvKv7ntVPTvwwzJpLUUEHmi/opR0ai6eeoxxQlho8twUQxeysiQ6wwMTYf17Up+Is/L5NGteKfVap35+XaVZ5HEY7gGE7BhwuowS3UIQACDJ7hFd4c6bw4787HvLXg5DOH8AfO5w/S6Y5q E Circle in Euclidean time à finite temperature

Lorentzian 0 xAAAB63icbVBNSwMxEJ2tX3X9qnr0EiyCp7JbBT0WvXisaD+gXUs2zbahSXZJsmJZ+hM8CQri1V/kyX9j2u5BWx8MPN6bYWZemHCmjed9O4WV1bX1jeKmu7W9s7tX2j9o6jhVhDZIzGPVDrGmnEnaMMxw2k4UxSLktBWOrqd+65EqzWJ5b8YJDQQeSBYxgo2V7p4evF6p7FW8GdAy8XNShhz1Xumr249JKqg0hGOtO76XmCDDyjDC6cTtppommIzwgHYslVhQHWSzUyfoxCp9FMXKljRopv6eyLDQeixC2ymwGepFbyr+53VSE10GGZNJaqgk80VRypGJ0fRv1GeKEsPHlmCimL0VkSFWmBibjuvaFPzFn5dJs1rxzyrV2/Ny7SrPowhHcAyn4MMF1OAG6tAAAgN4hld4c4Tz4rw7H/PWgpPPHMIfOJ8/jWeNsg==

Accelerated observer measures a temperature!

1 1 T = = Unruh Bisognano Wichmann

AAACFnicbVBNS8NAFNzUrxq/oh69LBbBg5SkCnoRil48VmhroQlls922SzebsPsilNA/4cmf4klQEK+CJ/+N2zYH2zqwMMzM4+2bMBFcg+v+WIWV1bX1jeKmvbW9s7vn7B80dZwqyho0FrFqhUQzwSVrAAfBWoliJAoFewiHtxP/4ZEpzWNZh1HCgoj0Je9xSsBIHeesjq9xhj3sxyaG/ZABweM5rYL9hGNl1I5TcsvuFHiZeDkpoRy1jvPtd2OaRkwCFUTrtucmEGREAaeCjW0/1SwhdEj6rG2oJBHTQTa9aoxPjNLFvViZJwFP1b8TGYm0HkWhSUYEBnrRm4j/ee0UeldBxmWSApN0tqiXCgwxnlSEu1wxCmJkCKGKm79iOiCKUDBF2rZpwVu8eZk0K2XvvFy5vyhVb/I+iugIHaNT5KFLVEV3qIYaiKIn9ILe0Lv1bL1aH9bnLFqw8plDNAfr6xdCBZt4 2⇡r Hartle Hawking

Observer who only has access to the right wedge à sees a mixed state, due to entanglement in the vacuum. So far we discussed the near horizon geometry.

Now let’s go back to the full black hole geometry Euclidean black hole

r dr2 ds2 = (1 s )dt2 + + r2d⌦2 r (1 rs ) 2 AAACYnicbZFLS8NAFIUn8R1frS51cbEIiliSKuhGEN24U8Gq0NQwmdy2QycPZiZiCfmVrty48oc4fSxq64WBw7nnm8edMBNcadf9suyFxaXlldU1Z31jc2u7Ut15VmkuGTZZKlL5GlKFgifY1FwLfM0k0jgU+BL2b4f9l3eUiqfJkx5k2I5pN+Edzqg2VlD5iNRbA66g8Ed7FRKj8rSEIw9OoZCBAj81OEgo4Rii6RTo0pAnUEAE0qhxcAzCFGnA0sSGkci/j7FLg4bRQaXm1t1RwbzwJqJGJvUQVD79KGV5jIlmgirV8txMtwsqNWcCS8fPFWaU9WkXW0YmNEbVLkb3LeHQOBF0UmlWomHkThMFjZUaxKFJxlT31GxvaP7Xa+W6c9kueJLlGhM2PqiTC9ApDMcNEZfItBgYQZnk5q7AelRSps2nOI6Zgjf75nnx3Kh7Z/XG43nt+mYyj1WyRw7IEfHIBbkmd+SBNAkj39aitWltWT+2Y1ft3XHUtibMLvlT9v4vN0Sw3Q== r 2 2 rs 2 dr 2 2 ds =(1 )dtE + + r d⌦ r (1 rs ) 2 AAACVnicbZFLSwMxFIUz46NaX6Mu3VwsgiKWmSroRhBFcKeCbYVOHTKZ2zY08yDJCGWYP6kb/SeuxPSx8HUh8HHuOdzkJswEV9p13y17bn5hsbK0XF1ZXVvfcDa3WirNJcMmS0UqH0OqUPAEm5prgY+ZRBqHAtvh8Grcbz+jVDxNHvQow25M+wnvcUa1kQJHROqpAecA+x4cQSEDBX5qAiChhAOICn8yo5AYlaCD69K4D6GACKShqXUahW9ZEy2NbWyJ/NsY+zRoGA6cmlt3JwV/wZtBjczqLnBe/ShleYyJZoIq1fHcTHcLKjVnAsuqnyvMKBvSPnYMJjRG1S0mNy5hzygR9FJpTqJhon5PFDRWahSHxhlTPVC/e2Pxv14n172zbsGTLNeYsOmgXi5ApzBeMURcItNiZIAyyc1dgQ2opEybj6hWzRa832/+C61G3TuuN+5PaheXs30skR2yS/aJR07JBbkhd6RJGHkhH5Zl2dab9Wkv2JWp1bZmmW3yo2znC6PgrTQ= r Hawking

= inverse temperature far away tAAACG3icbVDLSgNBEJyN7/ha9eilMQiCIezGgF6EoAgeFcwDkrDMTibJkNkHM71CCOY3PPkpngQF8SYe/BsnyR40saCboqqbmS4/lkKj43xbmYXFpeWV1bXs+sbm1ra9s1vVUaIYr7BIRqruU82lCHkFBUpejxWngS95ze9fjv3aPVdaROEdDmLeCmg3FB3BKBrJs130ruAcxv0Ymj5HCqP8aApIhXMoQTMWoDwNefDsnFNwJoB54qYkR1LcePZnsx2xJOAhMkm1brhOjK0hVSiY5A/ZZqJ5TFmfdnnD0JAGXLeGk9Me4NAobehEylSIMFF/bwxpoPUg8M1kQLGnZ72x+J/XSLBz1hqKME6Qh2z6UCeRgBGMc4K2UJyhHBhCmRLmr8B6VFGGJs1s1qTgzt48T6rFgntSKN6WcuWLNI9Vsk8OyBFxySkpk2tyQyqEkUfyTF7Jm/VkvVjv1sd0NGOlO3vkD6yvH/AengM= E = tE + , =4⇡rs,

``cigar’’ Gibbons

tAAAB7HicbVBNS8NAEJ3Urxq/qh69LBbBU0mqoMeiCB4r2A9oQ9lsN+3SzSbsToRS+hc8CQri1T/kyX9jkuagrQ8GHu/NMDPPj6Uw6DjfVmltfWNzq7xt7+zu7R9UDo/aJko04y0WyUh3fWq4FIq3UKDk3VhzGvqSd/zJbeZ3nrg2IlKPOI25F9KREoFgFHNpcGcPKlWn5uQgq8QtSBUKNAeVr/4wYknIFTJJjem5TozejGoUTPK53U8Mjymb0BHvpVTRkBtvlt86J2epMiRBpNNSSHL198SMhsZMQz/tDCmOzbKXif95vQSDa28mVJwgV2yxKEgkwYhkj5Oh0JyhnKaEMi3SWwkbU00ZpvHYWQru8s+rpF2vuRe1+sNltXFT5FGGEziFc3DhChpwD01oAYMxPMMrvFnKerHerY9Fa8kqZo7hD6zPH93tjdg= E Hawking r r =rs Quiz

• How big is a ``white” black hole?

1 ~c T = kT =

AAACBHicbVDLSgMxFM34rONr1J1ugkVwVWZqQTdC0Y3LCn1BZxgyadqGZpIhyQhlKLjyU1wJCuLWn3Dl35hpZ6GtBwKHc87l5p4oYVRp1/22VlbX1jc2S1v29s7u3r5zcNhWIpWYtLBgQnYjpAijnLQ01Yx0E0lQHDHSica3ud95IFJRwZt6kpAgRkNOBxQjbaTQOW7Ca5hBD/rCxGAN+gmFMlRwaodO2a24M8Bl4hWkDAo0QufL7wucxoRrzJBSPc9NdJAhqSlmZGr7qSIJwmM0JD1DOYqJCrLZDVN4ZpQ+HAhpHtdwpv6eyFCs1CSOTDJGeqQWvVz8z+ulenAVZJQnqSYczxcNUga1gHkhsE8lwZpNDEFYUvNXiEdIIqxNbXbegrd48zJpVyveRaV6XyvXb4o+SuAEnIJz4IFLUAd3oAFaAINH8AxewZv1ZL1Y79bHPLpiFTNH4A+szx+YXpVM 4⇡rs AAACDXicbVDLSsNAFJ3UV42vqks3F4vgqiS1oBuh6MZlhb6gCWUynbZDJ5MwMxFK6Ae48lNcCQri1g9w5d84abPQ1gMDh3PO5c49QcyZ0o7zbRXW1jc2t4rb9s7u3v5B6fCoraJEEtoiEY9kN8CKciZoSzPNaTeWFIcBp51gcpv5nQcqFYtEU09j6od4JNiQEayN1C+VJ9CEa0jBGwdYAgHwIpOHGngxA9lXMLNNyqk4c8AqcXNSRjka/dKXN4hIElKhCcdK9Vwn1n6KpWaE05ntJYrGmEzwiPYMFTikyk/nx8zgzCgDGEbSPKFhrv6eSHGo1DQMTDLEeqyWvUz8z+slenjlp0zEiaaCLBYNEw46gqwZGDBJieZTQzCRzPwVyBhLTLTpz85acJdvXiXtasW9qFTva+X6Td5HEZ2gU3SOXHSJ6ugONVALEfSIntErerOerBfr3fpYRAtWPnOM/sD6/AG8Spic 4⇡rs Entropy

• Use first law:

dE dM 2 dS = = ,rs = GN M/c

AAACK3icbVDLSgMxFM34dnxVXbq5WAQXUmeqoBvBB6KbSkWrQluHTCZtQzMPkoxQhvZ3XPkprgqK4tb/MNPOoloPBA7nnMvNPW7EmVSW9WFMTE5Nz8zOzZsLi0vLK7nVtTsZxoLQCgl5KB5cLClnAa0opjh9iATFvsvpvds+S/37JyokC4Nb1Ylo3cfNgDUYwUpLTu7Eu4EjSMCDc6iFOgm30M2U0ojS2+kNAcKR2r9wrqC0Sx6LppPLWwVrABgndkbyKEPZyfVrXkhinwaKcCxl1bYiVU+wUIxw2jVrsaQRJm3cpFVNA+xTWU8Gp3ZhSyseNEKhX6BgoI5OJNiXsuO7Oulj1ZJ/vVT8z6vGqnFYT1gQxYoGZLioEXNQIaS9gccEJYp3NMFEMP1XIC0sMFG6XTNtwf578zi5KxbsvULxej9/fJr1MYc20CbaRjY6QMfoEpVRBRH0jF7RG3o3Xoy+8Wl8DaMTRjazjn7B+P4B65yjBg== T T

2 Area Area 4⇡rs S = = 2 = 2 4GN 4l 4l

AAACS3icdVBJSwMxGM1Uq7Vuox69fFgET2WmFvQiVD3oSSraBTrtkEnTNjSzkGSEMszv8+TJkz/Ck6AgHkyXg7b6IPB4C0meF3EmlWW9GJml5ezKam4tv76xubVt7uzWZRgLQmsk5KFoelhSzgJaU0xx2owExb7HacMbXo79xgMVkoXBvRpFtO3jfsB6jGClJdfEd3AGCSSO8OFcF1MAJ9QFKMOVe5P+a/JOyU2idBoogxMxEK7slBYTrlmwitYEsEjsGSmgGaqu+ex0QxL7NFCEYylbthWpdoKFYoTTNO/EkkaYDHGftjQNsE9lO5lMkcKhVrrQC4U+gYKJ+rORYF/Kke/ppI/VQM57Y/EvrxWr3mk7YUEUKxqQ6UW9mIMKYbwrdJmgRPGRJpgIpt8KZIAFJkqvn8/rFez5Py+SeqloHxdLt+VC5WK2Rw7towN0hGx0giroGlVRDRH0iF7RO/ownow349P4mkYzxqyzh34hk/0GCguujw== p p A black hole is a thermodynamic object! Let us discuss in more detail the geometry of a black hole Geometry of a Black Hole made from collapse

Singularity Oppenheimer Snyder 1939

interior horizon

star Portion of the Schwarzschild geometry

rAAAB63icbVBNSwMxEJ2tX3X9qnr0EiyCp7JbC3oRil48VrQf0C4lm2bb0CS7JFmhLP0JngQF8eov8uS/MW33oK0PBh7vzTAzL0w408bzvp3C2vrG5lZx293Z3ds/KB0etXScKkKbJOax6oRYU84kbRpmOO0kimIRctoOx7czv/1ElWaxfDSThAYCDyWLGMHGSg/q2uuXyl7FmwOtEj8nZcjR6Je+eoOYpIJKQzjWuut7iQkyrAwjnE7dXqppgskYD2nXUokF1UE2P3WKzqwyQFGsbEmD5urviQwLrScitJ0Cm5Fe9mbif143NdFVkDGZpIZKslgUpRyZGM3+RgOmKDF8YgkmitlbERlhhYmx6biuTcFf/nmVtKoV/6JSva+V6zd5HkU4gVM4Bx8uoQ530IAmEBjCM7zCmyOcF+fd+Vi0Fpx85hj+wPn8AVH3jYs= =0 Horizon Area law

Area law: The area of a black hole horizon always increases. Hawking

Singularity

interior horizon

Starts with small area and it grows to larger area star The area law puts an upper bound on the that can be emitted in gravitational waves when two black holes collide

Area law ensures the 2nd Law of thermodynamics

Area S = H

AAACC3icbVDLSgMxFM34rPVVdenmahFclZla0I1QdWFXUtE+oB2GTJppQ5OZIckIZejalZ/iSlAQt36BK//G9LHQ1gOBwzn3cHOPH3OmtG1/WwuLS8srq5m17PrG5tZ2bme3rqJEElojEY9k08eKchbSmmaa02YsKRY+pw2/fzXyGw9UKhaF93oQU1fgbsgCRrA2kpc7uINzSCFtSwEXJjj0KgDtyESgBNfezRC8XN4u2GPAPHGmJI+mqHq5r3YnIomgoSYcK9Vy7Fi7KZaaEU6H2XaiaIxJH3dpy9AQC6rcdHzKEI6M0oEgkuaFGsbq70SKhVID4ZtJgXVPzXoj8T+vlejgzE1ZGCeahmSyKEg46AhGvUCHSUo0HxiCiWTmr0B6WGKiTXvZrGnBmb15ntSLBeekULwt5cuX0z4yaB8domPkoFNURhVURTVE0CN6Rq/ozXqyXqx362MyumBNM3voD6zPH/8/mEQ= 4GN Generalized entropy

AreaH S = + Smatter Bekenstein 70’s

AAACG3icbVDLSgMxFM3UV62vqks3F4sgCGWmFnQjVF3YlVRqH9CWIZOmbWjmQZIRyjDf4cpPcSUoiDtx4d+YTmehrQcCh3PuIfceJ+BMKtP8NjJLyyura9n13Mbm1vZOfnevKf1QENogPvdF28GScubRhmKK03YgKHYdTlvO+Hrqtx6okMz37tUkoD0XDz02YAQrLdl5qw4XEEHUFS5c6mBsVwG6vo5AGW7s2xhOoG4ntouVoiK28wWzaCaARWKlpIBS1Oz8Z7fvk9ClniIcS9mxzED1IiwUI5zGuW4oaYDJGA9pR1MPu1T2ouS0GI600oeBL/TzFCTq70SEXSknrqMn9X4jOe9Nxf+8TqgG572IeUGoqEdmHw1CDsqHaU/QZ4ISxSeaYCKY3hXICAtMdAcyl9MtWPM3L5JmqWidFkt35ULlKu0jiw7QITpGFjpDFVRFNdRABD2iZ/SK3own48V4Nz5moxkjzeyjPzC+fgAIqZ7B 4GN Question

• When a black hole emits Hawking radiation, it loses energy, so its area becomes smaller. • What happens to the entropy ? Question

• When a black hole emits Hawking radiation, it loses energy, so its area becomes smaller. • What happens to the entropy ?

AreaH AreaH S = + Smatter = + SQFT

AAACSHicjVDLSgMxFM3UV62vqks3F4sgCGWmFnQjVAXtSlr6hLYOmTRtQzMPkoxQhvk7V25d+QuuBAVxZ/pYaOvCA4HDOfdwc48TcCaVab4YiaXlldW15HpqY3Nreye9u1eXfigIrRGf+6LpYEk582hNMcVpMxAUuw6nDWd4PfYbD1RI5ntVNQpox8V9j/UYwUpLdvq+AhcQQdQWLlzqYGwXAdq+jkAebu27GE6gYk9sFytFRfzv+fJNNbbTGTNrTgCLxJqRDJqhZKef212fhC71FOFYypZlBqoTYaEY4TROtUNJA0yGuE9bmnrYpbITTXqI4UgrXej5Qj9PwUT9mYiwK+XIdfSkPmYg572x+JfXClXvvBMxLwgV9ch0US/koHwYlwpdJihRfKQJJoLpvwIZYIGJLkymUroFa/7mRVLPZa3TbK6czxSuZn0k0QE6RMfIQmeogIqohGqIoEf0it7Rh/FkvBmfxtd0NGHMMvvoFxKJbyTprac= 4GN 4GN

Includes the entropy of quantum fields Bombelli, Koul, Lee,Sorkin 1986

Obeys the 2nd Law Wall 2010 These results have inspired a Central hypothesis Black holes as quantum systems Central hypothesis

• A black hole seen from the outside can be described as a quantum system with S degrees of freedom (qubits). S = Area/4 (lp =1) • It evolves according to unitary evolution, seen from outside.

= …in other words

• If one includes A/4GN “mysterious” qubits, then the black hole can be described as an ordinary quantum system. Thermodynamics

``cigar’’ Gibbons

tAAAB7HicbVBNS8NAEJ3Urxq/qh69LBbBU0mqoMeiCB4r2A9oQ9lsN+3SzSbsToRS+hc8CQri1T/kyX9jkuagrQ8GHu/NMDPPj6Uw6DjfVmltfWNzq7xt7+zu7R9UDo/aJko04y0WyUh3fWq4FIq3UKDk3VhzGvqSd/zJbeZ3nrg2IlKPOI25F9KREoFgFHNpcGcPKlWn5uQgq8QtSBUKNAeVr/4wYknIFTJJjem5TozejGoUTPK53U8Mjymb0BHvpVTRkBtvlt86J2epMiRBpNNSSHL198SMhsZMQz/tDCmOzbKXif95vQSDa28mVJwgV2yxKEgkwYhkj5Oh0JyhnKaEMi3SWwkbU00ZpvHYWQru8s+rpF2vuRe1+sNltXFT5FGGEziFc3DhChpwD01oAYMxPMMrvFnKerHerY9Fa8kqZo7hD6zPH93tjdg= E Hawking r horizon

1 H Igrav Igrav pgR +

Z = Tr[e ] e AAACJXicbVDLSgMxFM34tr6qLt1cFEEQy4wiCi4qulA3omJV6JQhk6ZtMDMZkzuFMvYj/ARXfoorQVEEV36B/2DauvB1IHA45x5y7wkTKQy67pvT1z8wODQ8MpobG5+YnMpPz5wZlWrGS0xJpS9CargUMS+hQMkvEs1pFEp+Hl7udvzzJtdGqPgUWwmvRLQei5pgFK0U5LcOgqyuabMNfqJVggpWIAMPfGVTsBccWkPECL650pjV23ACy+CzqkIDQX7BLbhdwF/ifZGF7WJhvXj9cXMU5J/9qmJpxGNkkhpT9twEKxnVKJjk7ZyfGp5QdknrvGxpTCNuKln3yDYsWqUKNaXtswt11e+JjEbGtKLQTkYUG+a31xH/88op1jYrmYiTFHnMeh/VUgm2i05jUBWaM5QtSyjTwu4KrEE1ZWh7zeVsC97vm/+Ss9WCt1ZYPbZ17JAeRsgcmSdLxCMbZJvskyNSIozcknvySJ6cO+fBeXFee6N9zldmlvyA8/4JBi+meA== /GN ··· AAACGXicbVDJSgNBEO2JW4xb1KOXwiB4Mc6ooBch6CXeIpgFkzH0dCpJk56F7h4hDPMZnvwUT4KCePXk39hJ5uD2oODxXhVV9bxIcKVt+9PKzc0vLC7llwsrq2vrG8XNrYYKY8mwzkIRypZHFQoeYF1zLbAVSaS+J7DpjS4nfvMepeJhcKPHEbo+HQS8zxnVRuoWD2/hHG5kG/AugQPoeKgpVFMXOor7kKlX3WQg6X0KKXSLJbtsTwF/iZOREslQ6xY/Or2QxT4GmgmqVNuxI+0mVGrOBKaFTqwwomxEB9g2NKA+KjeZPpbCnlF60A+lqUDDVP0+kVBfqbHvmU6f6qH67U3E/7x2rPtnbsKDKNYYsNmifixAhzBJCXpcItNibAhlkptbgQ2ppEybLAsFk4Lz++e/pHFUdo7LR9cnpcpFlkee7JBdsk8cckoqpEpqpE4YeSBP5IW8Wo/Ws/Vmvc9ac1Y2s01+wPr4AoEqnU8= ⇠ Z

Tells us the answer but does not tell us what microstates we are counting Evidence 1) Entropy counting

Special black holes, in special theories (supersymmetric) can be counted precisely using strings/D-branes à reproduce the Area formula. (+ also corrections to this formula)

Strominger Vafa

using results by

J. Polchinski

Sen … 2) AdS/CFT…

Black hole in a box. Evolving unitarity.

Hot fluid made out of very strongly BlackGravity, hole interacting particles. Strings but Hawking 1976 :

This can’t possibly be true! Geometry of an evaporating black hole made from collapse

Singularity The radiation is entangled with Partners of radiation radiation partners of radiation.

Since we do not measure the interior we get a large entropy for the radiation.

A pure state seems to go a mixed state. The Hawking curve

Compute the fine grained entropy of the radiation as it comes out of the black hole (formed by a pure state)

Entropy of Thermodynamic entropy outgoing of the black hole radiation Hawking’s calculation

old black hole Time The Hawking curve vs. the Page curve

Compute the fine grained entropy of the radiation as it comes out of the black hole (formed by a pure state)

Entropy of Thermodynamic entropy outgoing of the black hole radiation Hawking’s calculation

Expected from unitarity What computation reproduces this ?

old black hole Time There were other apparent paradoxes with the black hole entropy formula. Full Schwarzschild solution

singularity Eddington, Lemaitre, Einstein, Interior = Rosen, Finkelstein, crunching Kruskal region ER

Left Right exterior exterior interior

Vacuum solution. No . Two exteriors, sharing the interior. Figure 2: Maximally extended Schwarzschild . There are two asymptotic regions. The blue spatial slice contains the Einstein-Rosen bridge connecting the two regions. not in causal contact and information cannot be transmitted across the bridge. This can easily seen from the Penrose diagram, and is consistent with the fact that entanglement does not imply non-local signal propagation.

(a) (b)

Figure 3: (a) Another representation of the blue spatial slice of figure 2. It contains a neck connecting two asymptotically flat regions. (b) Here we have two distant entangled black holes in the same space. The horizons are identified as indicated. This is not an exact solution of the equations but an approximate solution where we can ignore the small force between the black holes.

All of this is well known, but what may be less familiar is a third interpretation of the eternal Schwarzschild black hole. Instead of black holes on two disconnected sheets, we can consider two very distant black holes in the same space. If the black holes were not entangled we would not connect them by a Einstein-Rosen bridge. But if they are somehow created at t =0intheentangledstate(2.1),thenthebridgebetweenthemrepresentsthe entanglement. See figure 3(b). Of course, in this case, the dynamical decoupling is not

7 ``Bags of Gold” Wheeler

Initial slice:

Evolves to a black hole as seen from the outside and a black hole in a closed universe.

Can have arbitrarily large amount of entropy ``inside’’

Counterexample to the statement that Area entropy counts the entropy “inside”

Wikipedia article: The resolves the black hole information paradox within the framework of .[4] However, there exist classical solutions... "Wheeler's bags of gold". …. are not yet fully understood.[5] We will see how to resolve these confusions • These confusions involve the black hole interior. • They involve computations of ``fine grained entropy’’, not thermodynamic entropy. • They confusions involve entanglement. Back to basics Black holes as quantum systems Central hypothesis

• A black hole seen from the outside can be described as a quantum system with S degrees of freedom (qubits). S = Area/4 (lp =1) • It evolves according to unitary evolution, seen from outside.

= It is only a statement about the black hole as seen from the outside !

No statement has been made about the inside (yet). Full Schwarzschild solution as a

singularity

interior

ER

Left Right exterior exterior interior

Figure 2: Maximally extended Schwarzschild spacetime. There are two asymptotic regions. The blue spatial slice contains the Einstein-Rosen bridge connecting the two regions. not in causal contact and information cannot be transmitted across the bridge. This can easily seen from the Penrose diagram, and is consistent with the fact that entanglement does not imply non-local signal propagation.

(a) (b)

Figure 3: (a) Another representation of the blue spatial slice of figure 2. It contains a neck connecting two asymptotically flat regions. (b) Here we have two distant entangled black holes in the same space. The horizons are identified as indicated. This is not an exact solution of the equations but an approximate solution where we can ignore the small force between the black holes.

All of this is well known, but what may be less familiar is a third interpretation of the eternal Schwarzschild black hole. Instead of black holes on two disconnected sheets, we can consider two very distant black holes in the same space. If the black holes were not entangled we would not connect them by a Einstein-Rosen bridge. But if they are somehow created at t =0intheentangledstate(2.1),thenthebridgebetweenthemrepresentsthe entanglement. See figure 3(b). Of course, in this case, the dynamical decoupling is not

7 Figure 2: Maximally extended Schwarzschild spacetime. There are two asymptotic regions. The blue spatial slice contains the Einstein-Rosen bridge connecting the two regions. not in causal contact and information cannot be transmitted across the bridge. This can easily seen from the Penrose diagram, and is consistent with the fact that entanglement does not imply non-local signal propagation. and entangled states

Connected through the interior

(b) (a) = W. Israel J.M. Figure 3: (a) Another representation of the blue spatial slice of figure 2. It contains a neck ER = EPR JM Suskind connecting two asymptotically flat regions. (b) Here we have two distantEntangled entangled black holes in the same space. The horizons are identified as indicated. This is not an exact solution of the equations but an approximate solution where we can ignore the small forceFull wormhole is in a pure state, between the black holes. entropy of each black hole arises from entanglement

E /2 In a particular entangled state TFD = e n E¯ E | i | niL| niR All of this is well known, but what may be less familiar is a third interpretation of the n eternal Schwarzschild black hole. Instead of black holes on two disconnected sheets, weX can consider two very distant black holes in the same space. If the black holes were not entangled we would not connect them by a Einstein-Rosen bridge. But if they are somehow created at t =0intheentangledstate(2.1),thenthebridgebetweenthemrepresentsthe entanglement. See figure 3(b). Of course, in this case, the dynamical decoupling is not

7 Euclidean black hole

Hartle

tAAAB7HicbVBNS8NAEJ3Urxq/qh69LBbBU0mqoMeiCB4r2A9oQ9lsN+3SzSbsToRS+hc8CQri1T/kyX9jkuagrQ8GHu/NMDPPj6Uw6DjfVmltfWNzq7xt7+zu7R9UDo/aJko04y0WyUh3fWq4FIq3UKDk3VhzGvqSd/zJbeZ3nrg2IlKPOI25F9KREoFgFHNpcGcPKlWn5uQgq8QtSBUKNAeVr/4wYknIFTJJjem5TozejGoUTPK53U8Mjymb0BHvpVTRkBtvlt86J2epMiRBpNNSSHL198SMhsZMQz/tDCmOzbKXif95vQSDa28mVJwgV2yxKEgkwYhkj5Oh0JyhnKaEMi3SWwkbU00ZpvHYWQru8s+rpF2vuRe1+sNltXFT5FGGEziFc3DhChpwD01oAYMxPMMrvFnKerHerY9Fa8kqZo7hD6zPH93tjdg= E Hawking β/2

interior

ER

Left Right exterior exterior interior

Figure 2: Maximally extended Schwarzschild spacetime. There are two asymptotic regions. The blue spatial slice contains the Einstein-Rosen bridge connecting the two regions. not in causal contact and information cannot be transmitted across the bridge. This can easily seen from the Penrose diagram, and is consistent with the fact that entanglement does not imply non-local signal propagation.

(a) (b)

Figure 3: (a) Another representation of the blue spatial slice of figure 2. It contains a neck connecting two asymptotically flat regions. (b) Here we have two distant entangled black holes in the same space. The horizons are identified as indicated. This is not an exact solution of the equations but an approximate solution where we can ignore the small force between the black holes.

All of this is well known, but what may be less familiar is a third interpretation of the eternal Schwarzschild black hole. Instead of black holes on two disconnected sheets, we can consider two very distant black holes in the same space. If the black holes were not entangled we would not connect them by a Einstein-Rosen bridge. But if they are somehow created at t =0intheentangledstate(2.1),thenthebridgebetweenthemrepresentsthe entanglement. See figure 3(b). Of course, in this case, the dynamical decoupling is not

7 The rest of the paradoxes involve understanding fine grained entropy Two notions of entropy

• Coarse grained entropy = thermodynamic entropy. Obeys 2nd law. Arises from ``sloppiness”

S = max ( Tr[˜⇢ log⇢ ˜]) ,Tr[A⇢˜]=Tr[A⇢] AAACaHicbVHLbtQwFHVSHiXlEVokhNhctSAVCUZJWcAGqYUNyyI6baVJNHI8NzNW7TiybypG0cxn8QN8Aiv2XXUPazwPpGnLkSwfn3Ovrn1c1Eo6SpJfQbh26/adu+v3oo37Dx4+ih9vHjvTWIFdYZSxpwV3qGSFXZKk8LS2yHWh8KQ4+zTzT87ROmmqIxrXmGs+rGQpBScv9ePpV/gAbWY1aP5t0m8zkmqAkNmRmQBkCkvaBXgDR7YHK553zPCKkPtNDkf0Cqavp/8wbztYrcv9OC8eLA/9eCfpJHPATZIuyc7+i9/ff5xv/Dnsxz+zgRGNxoqE4s710qSmvOWWpFA4ibLGYc3FGR9iz9OKa3R5O89pAi+9MoDSWL8qgrm62tFy7dxYF75Scxq5695M/J/Xa6h8n7eyqhvCSiwGlY0CMjALHQbSoiA19oQLK/1dQYy45YL810SRTyG9/uab5Hivk77t7H3xcXxkC6yz52yb7bKUvWP77DM7ZF0m2EUQBVvBk+AyjMOn4bNFaRgse7bYFYTbfwHeGLpW ⇢˜

Subset of observables, ``simple observables”

• Fine grained entropy. Remains constant under unitary time evolution. (sometimes called ``entanglement’’ entropy) S = Tr[⇢ log ⇢] AAACBXicbZDLSsNAFIYnXmu8RV12M7QIgliSutCNUHTjsmJv0IQymU7aoZNMmJkIIXThyhfwHVwJCuLWh3DVt3HadKGtPwx8/OcczpzfjxmVyrYnxsrq2vrGZmHL3N7Z3du3Dg5bkicCkybmjIuOjyRhNCJNRRUjnVgQFPqMtP3RzbTefiBCUh41VBoTL0SDiAYUI6WtnlW8h1fwDDZEF7piyKHL+CAnD/assl2xZ4LL4MyhXCu5p8+TWlrvWd9un+MkJJHCDEnZdexYeRkSimJGxqabSBIjPEID0tUYoZBIL5sdMYbH2unDgAv9IgVn7u+JDIVSpqGvO0OkhnKxNjX/q3UTFVx6GY3iRJEI54uChEHF4TQR2KeCYMVSDQgLqv8K8RAJhJXOzTR1Cs7izcvQqlac80r1TsdxDXIVQBGUwAlwwAWogVtQB02AwSN4AW/g3XgyXo0P4zNvXTHmM0fgj4yvH86TmPs= For the moment we will be talking about the entropy of the black hole as seen from the outside.

This is the entropy of the quantum system that appeared in our “central hypothesis” The horizon area computes thermodynamic entropy

How can we compute the fine grained one ? Fine grained gravitational entropy

Ryu-Takayanagi 2006 Hubeny, Rangamani, Takayanagi 2007 Area Engelhardt, Wall 2014 S =min ext + Smatter Follows from AdS/CFT rules: 4l2 Lewkowycz, JM , Faulkner,Dong,… AAACUnicbZLPbhMxEMadUKCEAgGOvYxaIYGQot2ABBek/jm0x6I2aaXssvI6s4lVr3dlzyKiVdRn4YW40AvvwQmpFZNsDqVlJMuffzMe25+clkZ7CoJfrfa9tfsPHq4/6jzeePL0Wff5i6EvKqdwoApTuLNUejTa4oA0GTwrHco8NXianu8v8qdf0Xld2BOalRjncmJ1ppUkRkl3CsfwCerI5ZBrO4fIYEZRDQ3Cb7RCI6gbtMvdgWHBXeE9mKT80uf1WzhOmi6SCB0XOD2ZUryao3nS3Q56wTLgrghXYntnf3jw/WL3zVHS/RmNC1XlaEkZ6f0oDEqKa+lIK4PzTlR5LKU6lxMcsbQyRx/XS0fm8IrJGLLC8bAES3pzRy1z72d5ypV84am/nVvA/+VGFWUf41rbsiK0qjkoqwxQAQt7YawdKjIzFlI5zXcFNZVOKjbFdzrsQnj7zXfFsN8L3/X6n9mOPdHEutgUW+K1CMUHsSMOxZEYCCV+iN/iSly3Llt/2vxLmtJ2a7Xnpfgn2ht/AWk2tIU= ⇢  p

We need to find an extremal area. The ``smallest’’ extremal area. More precise: minimal area along a spatial slice (Cauchy slice) and maximal among all possible Cauchy slices Start with a surface going around the horizon and shrink it as much as possible.

We are allowed to take the surface to the inside.

It is the fine grained entropy of the quantum system that describes the black hole as seen from the outside. Examples Extremal surface for a black hole formed from collapse

Singularity

interior horizon

star

Zero area. Entropy = entropy of matter that makes up the star Extremal surface for the Schwarzschild wormhole

interior

Left Right exterior exterior interior

The fine grained entropy for one side of the Schwarzschild wormhole is equal to the Area. Figure 2: Maximally extended Schwarzschild spacetime. There are two asymptotic regions. The blue spatial slice containsThere the are Einstein-Rosenintermediate cases… bridge connecting the two regions. not in causal contact and information cannot be transmitted across the bridge. This can easily seen from the Penrose diagram, and is consistent with the fact that entanglement does not imply non-local signal propagation.

(a) (b)

Figure 3: (a) Another representation of the blue spatial slice of figure 2. It contains a neck connecting two asymptotically flat regions. (b) Here we have two distant entangled black holes in the same space. The horizons are identified as indicated. This is not an exact solution of the equations but an approximate solution where we can ignore the small force between the black holes.

All of this is well known, but what may be less familiar is a third interpretation of the eternal Schwarzschild black hole. Instead of black holes on two disconnected sheets, we can consider two very distant black holes in the same space. If the black holes were not entangled we would not connect them by a Einstein-Rosen bridge. But if they are somehow created at t =0intheentangledstate(2.1),thenthebridgebetweenthemrepresentsthe entanglement. See figure 3(b). Of course, in this case, the dynamical decoupling is not

7 You should be surprised by the claim that there is a formula for the fine grained entropy Entanglement wedge

• We keep track of the region swept by the surface as it tries to extremize the entropy.

• That region outside the quantum extremal surface is called the ``entanglement wedge’’.

Czech, Karczmarek, Nogueira, Van Raamsdonk, Wall, Headrick, Hubeny, Lawrence, Rangamani A

As we move the surface inwards, we keep track of the entropy in the fields outside Here the extremal surface Is the bifurcation surface

Figure 2: Maximally extended Schwarzschild spacetime. There are two asymptotic regions. The blue spatial slice contains the Einstein-Rosen bridge connecting the two regions. not in causal contact and information cannot be transmitted across the bridge. This can easily seen from the Penrose diagram, and is consistent with the fact that entanglement does not imply non-local signal propagation.

(a) (b)

Figure 3: (a) Another representation of the blue spatial slice of figure 2. It contains a neck connecting two asymptotically flat regions. (b) Here we have two distant entangled black holes in the same space. The horizons are identified as indicated. This is not an exact solution of the equations but an approximate solution where we can ignore the small force between the black holes.

All of this is well known, but what may be less familiar is a third interpretation of the eternal Schwarzschild black hole. Instead of black holes on two disconnected sheets, we can consider two very distant black holes in the same space. If the black holes were not entangled we would not connect them by a Einstein-Rosen bridge. But if they are somehow created at t =0intheentangledstate(2.1),thenthebridgebetweenthemrepresentsthe entanglement. See figure 3(b). Of course, in this case, the dynamical decoupling is not

7 interior

star

Entanglement wedge covers the interior. We saw that there was a quantum system that describes the black hole from the outside.

How much of the spacetime does this quantum system describe ?

- Only the outside ? - A portion of the inside ? - Which portion ? We will introduce a new hypothesis Entanglement wedge reconstruction hypothesis • The quantum system describes everything that is included in the entanglement wedge.

• We can recover the state of a (probe) qubit inside the entanglement wedge.

• Recovery is state dependent and similar to quantum error correction.

• Many consistency checks Almheiri, Dong, Harlow, Jafferis, Lewkowycz, J.M., Suh, Wall, Faulkner…. • Usual: If you do simple observations à see everything outside the horizon.

• New: If you do arbitrarily complex observations à see everything outside the “minimal surface”. We will now argue that this removes some apparent paradoxes ``Bags of Gold” Marolf, Wall Two possibilities: A) Bag has little entropy due to matter (compared with the area of the black hole horizon) B) Bag has lots of entropy due to matter

Lots of matter entropy inside Little matter entropy inside

Minimal surface at the Entanglement wedge covers all. neck. Could still be very big, but since the number of states is small, and the map can be state dependent, this is not a problem

The size of entanglement wedge depends on the (fine grained) entropy, not on the energy, of the matter inside. Old evaporating black hole Geometry of an evaporating black hole made from collapse

Entropy on the orange slice (nice slice), Singularity inside the black hole, radiation could be much bigger than the area at t, t for a black hole that has evaporated for a long time.

The geometry and entropy on the orange slice is somewhat similar to the bag of gold. Old evaporating black hole

Singularity Naïve minimal surface t radiation Old evaporating black hole

Singularity There is a second extremal surface. t radiation

The entanglement wedge Includes only a small part of the interior, just behind the horizon.

It is crucial to include the quantum contribution. Penington , Almheiri, Engelhardt, Marolf, Maxfield ; 2019

Two implications for old black holes : 1) Fine grained entropy is close to the old black hole entropy. 2) The quantum system describing the black hole describes only a portion of the interior Fine grained entropy of the black hole (of the quantum system describing the black hole )

Almheiri, Engelhardt, Marolf, Maxfield ; Penington 2019

Black hole From the trivial fine grained extremal surface entropy

From new extremal surface

Time What about the entropy of the radiation ? Entropy of radiation?

• The radiation appears to be in a mixed state. • Why? • Because it was entangled with the fields that were inside the black hole.

• How do we know this? • Through the evolution of . • We should use the gravity rules to compute the fine grained entropy. Naïve entropy of the Singularity radiation radiation t

Correct entropy of the radiation New rule Area(Islands) S(Rad)=min S(Rad Islands) + 4G

AAACanicbVFda9RAFJ3Er7pWXSsK0peLG6GlsCRrob4UWn1QX6R+bFvYhGUymewOnZmEmZvCEgL+xz75B3zyRzjJRtDWCwNnzjl35s6ZtJTCYhj+8Pxbt+/cvbdxf/Bg8+Gjx8MnW6e2qAzjU1bIwpyn1HIpNJ+iQMnPS8OpSiU/Sy/etfrZJTdWFPobrkqeKLrQIheMoqPmw+9BAF936tgoiNMcvtCsgV04hI5RQjcQS57j7I+pM8SsKqGGdv/RSqozC23XnuM607GboFn7e73Zhbhwc8A+vJ9/cicYsVhiAkEwH47CcdgV3ARRD0akr5P58CrOClYprpFJau0sCktMampQMMmbQVxZXlJ2QRd85qCmituk7pJq4JVjMsgL45ZG6Ni/O2qqrF2p1DkVxaW9rrXk/7RZhfmbpBa6rJBrtr4oryRgAW3skAnDGcqVA5QZ4WYFtqSGMnSfMxi4FKLrb74JTifj6PV48nkyOnrb57FBtslLskMickCOyAdyQqaEkZ/epvfMe+798rf8F/722up7fc9T8k/5wW+Rg7SH [  N

Entropy in the effective Exact entropy field theory description Penington Almheiri, Mahajan, JM, Zhao

Island Singularity t radiation • Is this just an ``accounting trick’’?

• It is the accounting rule that gravity instructs us to use!.

• This ``accounting rule’’ was derived before it was applied to this problem. Derivation of the gravitational fine grained entropy formula

It can be derived using a reasoning similar to the Gibbons Hawking euclidean black hole argument.

Use a ``replica trick’’ where we introduce n copies of the system and continue near n =1.

n Zn = Tr[⇢ ] S =(1 n@n) log Zn AAACQHicbVBNT9tAFFxTKGmgbdoee3kiQoJDI5tWKpdIqFw4BpUE1NhY683aWWW9a+0+F0Um/6wn/gKnXnuqBBLqlRPrkAMfHWml0cz72DdJIYVF3//tLb1YXnm52njVXFt//eZt6937gdWlYbzPtNTmJKGWS6F4HwVKflIYTvNE8uNksl/7xz+5sUKrI5wWPMpppkQqGEUnxa3Bj1hBF47MMDRjfaoiAAilVpkR2RipMfoM4HvXaTzFDmwFn0BBWFCDgspYbdfFGdRDwnnHeVypbjCLW22/488Bz0mwIG2yQC9uXYYjzcqcK2SSWjsM/AKjqt7DJJ81w9LygrIJzfjQUUVzbqNqfv8MNp0yglQb9xTCXH3YUdHc2mmeuMqc4tg+9Wrxf96wxHQ3qoQqSuSK3S9KSwmooQ4TRsJwhnLqCGVGuL8CG1NDGbrIm02XQvD05udksNMJPnd2Dr+0974t8miQj2SDbJGAfCV75ID0SJ8w8ov8IVfk2rvw/no33r/70iVv0fOBPIJ3ewflA61p ! |n=1

This introduces a small conical defect angle, a kind of cosmic string. Minimizing the action we minimize over the area.

Lewkowycz, JM; Faulkner Lewkowycz JM; Dong, Lewkowycz. In the case of ``islands’’ the geometry contains wormholes connecting the n copies. ``Replica wormholes’’.

Two classical contributions to the gravitational path integral.

One gives the Hawking answer and the other the Page answer.

The Page one dominates at late times.

It is a Hawking/Page transition.

Penington, Shenker, Stanford, Yang ; Almheiri, Hartman, J.M., Shaghoulian, Taj, 2019 Two topologies for black holes

sphere Euclidean Black hole Euclidean time circle

sphere Flat space

Euclidean time circle

Hawking Hawking-Page transition Page Replica wormholes: n=2

Solution that gives Replica wormhole, giving the Hawking’s result Page answer when it dominates at late times. Conclusions

• We reviewed thermodynamic black hole entropy • We described the fine grained gravitational entropy formula. • We applied it to the computation of the entropy of radiation. • A lot of what we discussed was derived by thinking about aspects of AdS/CFT, which itself was derived using string theory. • But you only need gravity as an effective theory to apply these formulas.

I am in awe of how clever gravity is ! Future

• More explicit picture for the microstates. • What further lessons is this teaching us about the interior? The singularity ? • A hundred years ago a black holes were a mathematical curiosity and today they are an observational reality. • Hopefully, the same will happen with the aspects of black holes we have been discussing!

Thank you !

Longer wormhole

Lorentzian AHf

ART AHi

Euclidean β/2

ART < AHi < AHf

Minimal (extremal) area