Numerical Methods for General and Structured Eigenvalue Problems

Total Page:16

File Type:pdf, Size:1020Kb

Numerical Methods for General and Structured Eigenvalue Problems Daniel Kressner Numerical Methods for General and Structured Eigenvalue Problems SPIN Springer's internal project number, if known { Monograph { April 4, 2005 Springer Berlin Heidelberg NewYork Hong Kong London Milan Paris Tokyo Immer wenn es regnet: : : Preface The purpose of this book is to describe recent developments in solving eigen- value problems, in particular with respect to the QR and QZ algorithms as well as structured matrices. Outline Mathematically speaking, the eigenvalues of a square matrix A are the roots of its characteristic polynomial det(A λI). An invariant subspace is a linear subspace that stays invariant under the− action of A. In realistic applications, it usually takes a long process of simplifications, linearizations and discretiza- tions before one comes up with the problem of computing the eigenvalues of a matrix. In some cases, the eigenvalues have an intrinsic meaning, e.g., for the expected long-time behavior of a dynamical system; in others they are just meaningless intermediate values of a computational method. The same applies to invariant subspaces, which for example can describe sets of initial states for which a dynamical system produces exponentially decaying states. Computing eigenvalues has a long history, dating back to at least 1846 when Jacobi [172] wrote his famous paper on solving symmetric eigenvalue problems. Detailed historical accounts of this subject can be found in two papers by Golub and van der Vorst [140, 327]. Chapter 1 of this book is concerned with the QR algorithm, which was introduced by Francis [128] and Kublanovskaya [206] in 1961{1962, partly based on earlier work by Rutishauser [278]. The QR algorithm is a general- purpose, numerically backward stable method for computing all eigenvalues of a non-symmetric matrix. It has undergone only a few modification during the following 40 years, see [348] for a complete overview of the practical QR algo- rithm as it is currently implemented in LAPACK [10, 17]. An award-winning improvement was made in 2002 when Braman, Byers, and Mathias [62] pre- sented their aggressive early deflation strategy. The combination of this de- flation strategy with a tiny-bulge multishift QR algorithm [61, 208] leads to VIII Preface a variant of the QR algorithm, which can, for sufficiently large matrices, re- quire less than 10% of the computing time needed by the current LAPACK implementation. Similar techniques can also be used to significantly improve the performance of the post-processing step necessary to compute invariant subspaces from the output of the QR algorithm. Besides these algorithmic im- provements, Chapter 1 summarizes well-known and also some recent material related to the perturbation analysis of eigenvalues and invariant subspaces; local and global convergence properties of the QR algorithm; and the failure of the large-bulge multishift QR algorithm in finite-precision arithmetic. The subject of Chapter 2 is the QZ algorithm, a popular method for com- puting the generalized eigenvalues of a matrix pair (A; B), i.e., the roots of the bivariate polynomial det(βA αB). The QZ algorithm was developed by Moler and Stewart [248] in 1973.−Its probably most notable modification has been the high-performance pipelined QZ algorithm developed by Dackland and K˚agstr¨om [96]. One topic of Chapter 2 is the use of Householder matrices within the QZ algorithm. The wooly role of infinite eigenvalues is investigated and a tiny-bulge multishift QZ algorithm with aggressive early deflation in the spirit of [61, 208] is described. Numerical experiments illustrate the per- formance improvements to be gained from these recent developments. This book is not so much about solving large-scale eigenvalue problems. The practically important aspect of parallelization is completely omitted; we refer to the ScaLAPACK users' guide [49]. Also, methods for computing a few eigenvalues of a large matrix, such as Arnoldi, Lanczos or Jacobi-Davidson methods, are only partially covered. In Chapter 3, we focus on a descendant of the Arnoldi method, the recently introduced Krylov-Schur algorithm by Stewart [307]. Later on, in Chapter 4, it is explained how this algorithm can be adapted to some structured eigenvalue problems in a considerably simple manner. Another subject of Chapter 3 is the balancing of sparse matrices for eigenvalue computations [91]. In many cases, the eigenvalue problem under consideration is known to be structured. Preserving this structure can help preserve induced eigenvalue symmetries in finite-precision arithmetic and may improve the accuracy and efficiency of an eigenvalue computation. Chapter 4 provides an overview of some of the recent developments in the area of structured eigenvalue prob- lems. Particular attention is paid to the concept of structured condition num- bers for eigenvalues and invariant subspaces. A detailed treatment of the- ory, algorithms and applications is given for product, Hamiltonian and skew- Hamiltonian eigenvalue problems, while other structures (skew-symmetric, persymmetric, orthogonal, palindromic) are only briefly discussed. Appendix B contains an incomplete list of publicly available software for solving general and structured eigenvalue problems. A more complete and regularly updated list can be found at http://www.math.tu-berlin.de/ ∼kressner/book/, the web page of this book. Preface IX Prerequisites Readers of this text need to be familiar with the basic concepts from nu- merical analysis and linear algebra. Those are covered by any of the text books [103, 141, 304, 305, 354]. Concepts from systems and control theory are occasionally used; either because an algorithm for computing eigenvalues is better understood in a control theoretic setting or such an algorithm can be used for the analysis and design of linear control systems. Knowledge of systems and control theory is not assumed, everything that is needed can be picked up from Appendix A, which contains a brief introduction to this area. Nevertheless, for getting a more complete picture, it might be wise to com- plement the reading with a state space oriented book on control theory. The monographs [148, 265, 285, 329, 368] are particularly suited for this purpose with respect to content and style of presentation. Acknowledgments This book is largely based on my PhD thesis and, once again, I thank all who supported the writing of the thesis, in particular my supervisor Volker Mehrmann and my parents. Turning the thesis into a book would not have been possible without the encouragement and patience of Thanh-Ha Le Thi from Springer-Verlag. I have benefited a lot from ongoing joint work and discussions with Ulrike Baur, Peter Benner, Ralph Byers, Heike Faßben- der, Michiel Hochstenbach, Bo K˚agstr¨om, Michael Karow, Emre Mengi, and Fran¸coise Tisseur. Furthermore, I am indebted to Gene Golub, Robert Granat, Nick Higham, Damien Lemonnier, J¨org Liesen, Christian Mehl, Bor Plesten- jak, Christian Schr¨oder, Vasile Sima, Valeria Simoncini, Tanja Stykel, Ji-guang Sun, Paul Van Dooren, Kreˇsimir Veseli´c, David Watkins, and many others for helpful and illuminating discussions. The work on this book was supported by the DFG Research Center Matheon \Mathematics for key technologies" in Berlin. Berlin, Daniel Kressner April 2005 Contents 1 The QR Algorithm . 1 1.1 The Standard Eigenvalue Problem . 2 1.2 Perturbation Analysis . 3 1.2.1 Spectral Projectors and Separation . 4 1.2.2 Eigenvalues and Eigenvectors . 6 1.2.3 Eigenvalue Clusters and Invariant Subspaces . 10 1.2.4 Global Perturbation Bounds . 15 1.3 The Basic QR Algorithm . 18 1.3.1 Local Convergence. 19 1.3.2 Hessenberg Form . 24 1.3.3 Implicit Shifted QR Iteration . 27 1.3.4 Deflation . 30 1.3.5 The Overall Algorithm . 31 1.3.6 Failure of Global Converge . 34 1.4 Balancing . 35 1.4.1 Isolating Eigenvalues . 35 1.4.2 Scaling . 36 1.4.3 Merits of Balancing . 39 1.5 Block Algorithms . 39 1.5.1 Compact WY Representation . 40 1.5.2 Block Hessenberg Reduction . 41 1.5.3 Multishifts and Bulge Pairs . 44 1.5.4 Connection to Pole Placement . 45 1.5.5 Tightly Coupled Tiny Bulges . 48 1.6 Advanced Deflation Techniques. 53 1.7 Computation of Invariant Subspaces . 57 1.7.1 Swapping Two Diagonal Blocks . 58 1.7.2 Reordering . 60 1.7.3 Block Algorithm . 60 1.8 Case Study: Solution of an Optimal Control Problem . 63 XII Contents 2 The QZ Algorithm . 67 2.1 The Generalized Eigenvalue Problem . 68 2.2 Perturbation Analysis . 70 2.2.1 Spectral Projectors and Dif . 70 2.2.2 Local Perturbation Bounds . 72 2.2.3 Global Perturbation Bounds . 75 2.3 The Basic QZ Algorithm . 76 2.3.1 Hessenberg-Triangular Form . 76 2.3.2 Implicit Shifted QZ Iteration. 79 2.3.3 On the Use of Householder Matrices . 82 2.3.4 Deflation . 86 2.3.5 The Overall Algorithm . 89 2.4 Balancing . 91 2.4.1 Isolating Eigenvalues . 91 2.4.2 Scaling . 91 2.5 Block Algorithms . 93 2.5.1 Reduction to Hessenberg-Triangular Form . 94 2.5.2 Multishifts and Bulge Pairs . 99 2.5.3 Deflation of Infinite Eigenvalues Revisited . 101 2.5.4 Tightly Coupled Tiny Bulge Pairs . 102 2.6 Aggressive Early Deflation . 105 2.7 Computation of Deflating Subspaces . 108 3 The Krylov-Schur Algorithm . 113 3.1 Basic Tools . 114 3.1.1 Krylov Subspaces . 114 3.1.2 The Arnoldi Method . 116 3.2 Restarting and the Krylov-Schur Algorithm . 119 3.2.1 Restarting an Arnoldi Decomposition . 120 3.2.2 The Krylov Decomposition . 121 3.2.3 Restarting a Krylov Decomposition . 122 3.2.4 Deflating a Krylov Decomposition . 124 3.3 Balancing Sparse Matrices . 126 3.3.1 Irreducible Forms . 127 3.3.2 Krylov-Based Balancing . 128 4 Structured Eigenvalue Problems .
Recommended publications
  • Improving the Accuracy of Computed Eigenvalues and Eigenvectors*
    SIAM J. NUMER. ANAL. 1983 Society for Industrial and Applied Mathematics Vol. 20, No. 1, February 1983 0036-1429/83/2001-0002 $01.25/0 IMPROVING THE ACCURACY OF COMPUTED EIGENVALUES AND EIGENVECTORS* J. J. DONGARRA,t C. B. MOLER AND J. H. WILKINSON Abstract. This paper describes and analyzes several variants of a computational method for improving the numerical accuracy of, and for obtaining numerical bounds on, matrix eigenvalues and eigenvectors. The method, which is essentially a numerically stable implementation of Newton's method, may be used to "fine tune" the results obtained from standard subroutines such as those in EISPACK [Lecture Notes in Computer Science 6, 51, Springer-Verlag, Berlin, 1976, 1977]. Extended precision arithmetic is required in the computation of certain residuals. Introduction. The calculation of an eigenvalue , and the corresponding eigenvec- tor x (here after referred to as an eigenpair) of a matrix A involves the solution of the nonlinear system of equations (A AI)x O. Starting from an approximation h and , a sequence of iterates may be determined using Newton's method or variants of it. The conditions on and guaranteeing convergence have been treated extensively in the literature. For a particularly lucid account the reader is referred to the book by Rail [3]. In a recent paper Wilkinson [7] describes an algorithm for determining error bounds for a computed eigenpair based on these mathematical concepts. Considerations of numerical stability were an essential feature of that paper and indeed were its main raison d'etre. In general this algorithm provides an improved eigenpair and error bounds for it; unless the eigenpair is very ill conditioned the improved eigenpair is usually correct to the precision of the computation used in the main body of the algorithm.
    [Show full text]
  • Numerical Analysis Notes for Math 575A
    Numerical Analysis Notes for Math 575A William G. Faris Program in Applied Mathematics University of Arizona Fall 1992 Contents 1 Nonlinear equations 5 1.1 Introduction . 5 1.2 Bisection . 5 1.3 Iteration . 9 1.3.1 First order convergence . 9 1.3.2 Second order convergence . 11 1.4 Some C notations . 12 1.4.1 Introduction . 12 1.4.2 Types . 13 1.4.3 Declarations . 14 1.4.4 Expressions . 14 1.4.5 Statements . 16 1.4.6 Function definitions . 17 2 Linear Systems 19 2.1 Shears . 19 2.2 Reflections . 24 2.3 Vectors and matrices in C . 27 2.3.1 Pointers in C . 27 2.3.2 Pointer Expressions . 28 3 Eigenvalues 31 3.1 Introduction . 31 3.2 Similarity . 31 3.3 Orthogonal similarity . 34 3.3.1 Symmetric matrices . 34 3.3.2 Singular values . 34 3.3.3 The Schur decomposition . 35 3.4 Vector and matrix norms . 37 3.4.1 Vector norms . 37 1 2 CONTENTS 3.4.2 Associated matrix norms . 37 3.4.3 Singular value norms . 38 3.4.4 Eigenvalues and norms . 39 3.4.5 Condition number . 39 3.5 Stability . 40 3.5.1 Inverses . 40 3.5.2 Iteration . 40 3.5.3 Eigenvalue location . 41 3.6 Power method . 43 3.7 Inverse power method . 44 3.8 Power method for subspaces . 44 3.9 QR method . 46 3.10 Finding eigenvalues . 47 4 Nonlinear systems 49 4.1 Introduction . 49 4.2 Degree . 51 4.2.1 Brouwer fixed point theorem .
    [Show full text]
  • Numerically Stable Generation of Correlation Matrices and Their Factors ∗
    BIT 0006-3835/00/4004-0640 $15.00 2000, Vol. 40, No. 4, pp. 640–651 c Swets & Zeitlinger NUMERICALLY STABLE GENERATION OF CORRELATION MATRICES AND THEIR FACTORS ∗ ‡ PHILIP I. DAVIES† and NICHOLAS J. HIGHAM Department of Mathematics, University of Manchester, Manchester, M13 9PL, England email: [email protected], [email protected] Abstract. Correlation matrices—symmetric positive semidefinite matrices with unit diagonal— are important in statistics and in numerical linear algebra. For simulation and testing it is desirable to be able to generate random correlation matrices with specified eigen- values (which must be nonnegative and sum to the dimension of the matrix). A popular algorithm of Bendel and Mickey takes a matrix having the specified eigenvalues and uses a finite sequence of Givens rotations to introduce 1s on the diagonal. We give im- proved formulae for computing the rotations and prove that the resulting algorithm is numerically stable. We show by example that the formulae originally proposed, which are used in certain existing Fortran implementations, can lead to serious instability. We also show how to modify the algorithm to generate a rectangular matrix with columns of unit 2-norm. Such a matrix represents a correlation matrix in factored form, which can be preferable to representing the matrix itself, for example when the correlation matrix is nearly singular to working precision. Key words: Random correlation matrix, Bendel–Mickey algorithm, eigenvalues, sin- gular value decomposition, test matrices, forward error bounds, relative error bounds, IMSL, NAG Library, Jacobi method. AMS subject classification: 65F15. 1 Introduction. An important class of symmetric positive semidefinite matrices is those with unit diagonal.
    [Show full text]
  • A Matrix Handbook for Statisticians
    A MATRIX HANDBOOK FOR STATISTICIANS George A. F. Seber Department of Statistics University of Auckland Auckland, New Zealand BICENTENNIAL BICENTENNIAL WILEY-INTERSCIENCE A John Wiley & Sons, Inc., Publication This Page Intentionally Left Blank A MATRIX HANDBOOK FOR STATISTICIANS THE WlLEY BICENTENNIAL-KNOWLEDGE FOR GENERATIONS Gachgeneration has its unique needs and aspirations. When Charles Wiley first opened his small printing shop in lower Manhattan in 1807, it was a generation of boundless potential searching for an identity. And we were there, helping to define a new American literary tradition. Over half a century later, in the midst of the Second Industrial Revolution, it was a generation focused on building the future. Once again, we were there, supplying the critical scientific, technical, and engineering knowledge that helped frame the world. Throughout the 20th Century, and into the new millennium, nations began to reach out beyond their own borders and a new international community was born. Wiley was there, expanding its operations around the world to enable a global exchange of ideas, opinions, and know-how. For 200 years, Wiley has been an integral part of each generation's journey, enabling the flow of information and understanding necessary to meet their needs and fulfill their aspirations. Today, bold new technologies are changing the way we live and learn. Wiley will be there, providing you the must-have knowledge you need to imagine new worlds, new possibilities, and new opportunities. Generations come and go, but you can always count on Wiley to provide you the knowledge you need, when and where you need it! n WILLIAM J.
    [Show full text]
  • Model Problems in Numerical Stability Theory for Initial Value Problems*
    SIAM REVIEW () 1994 Society for Industrial and Applied Mathematics Vol. 36, No. 2, pp. 226-257, June 1994 004 MODEL PROBLEMS IN NUMERICAL STABILITY THEORY FOR INITIAL VALUE PROBLEMS* A.M. STUART AND A.R. HUMPHRIES Abstract. In the past numerical stability theory for initial value problems in ordinary differential equations has been dominated by the study of problems with simple dynamics; this has been motivated by the need to study error propagation mechanisms in stiff problems, a question modeled effectively by contractive linear or nonlinear problems. While this has resulted in a coherent and self-contained body of knowledge, it has never been entirely clear to what extent this theory is relevant for problems exhibiting more complicated dynamics. Recently there have been a number of studies of numerical stability for wider classes of problems admitting more complicated dynamics. This on-going work is unified and, in particular, striking similarities between this new developing stability theory and the classical linear and nonlinear stability theories are emphasized. The classical theories of A, B and algebraic stability for Runge-Kutta methods are briefly reviewed; the dynamics of solutions within the classes of equations to which these theories apply--linear decay and contractive problemsw are studied. Four other categories of equationsmgradient, dissipative, conservative and Hamiltonian systemsmare considered. Relationships and differences between the possible dynamics in each category, which range from multiple competing equilibria to chaotic solutions, are highlighted. Runge-Kutta schemes that preserve the dynamical structure of the underlying problem are sought, and indications of a strong relationship between the developing stability theory for these new categories and the classical existing stability theory for the older problems are given.
    [Show full text]
  • Geometric Algebra and Covariant Methods in Physics and Cosmology
    GEOMETRIC ALGEBRA AND COVARIANT METHODS IN PHYSICS AND COSMOLOGY Antony M Lewis Queens' College and Astrophysics Group, Cavendish Laboratory A dissertation submitted for the degree of Doctor of Philosophy in the University of Cambridge. September 2000 Updated 2005 with typo corrections Preface This dissertation is the result of work carried out in the Astrophysics Group of the Cavendish Laboratory, Cambridge, between October 1997 and September 2000. Except where explicit reference is made to the work of others, the work contained in this dissertation is my own, and is not the outcome of work done in collaboration. No part of this dissertation has been submitted for a degree, diploma or other quali¯cation at this or any other university. The total length of this dissertation does not exceed sixty thousand words. Antony Lewis September, 2000 iii Acknowledgements It is a pleasure to thank all those people who have helped me out during the last three years. I owe a great debt to Anthony Challinor and Chris Doran who provided a great deal of help and advice on both general and technical aspects of my work. I thank my supervisor Anthony Lasenby who provided much inspiration, guidance and encouragement without which most of this work would never have happened. I thank Sarah Bridle for organizing the useful lunchtime CMB discussion group from which I learnt a great deal, and the other members of the Cavendish Astrophysics Group for interesting discussions, in particular Pia Mukherjee, Carl Dolby, Will Grainger and Mike Hobson. I gratefully acknowledge ¯nancial support from PPARC. v Contents Preface iii Acknowledgements v 1 Introduction 1 2 Geometric Algebra 5 2.1 De¯nitions and basic properties .
    [Show full text]
  • Deflation by Restriction for the Inverse-Free Preconditioned Krylov Subspace Method
    NUMERICAL ALGEBRA, doi:10.3934/naco.2016.6.55 CONTROL AND OPTIMIZATION Volume 6, Number 1, March 2016 pp. 55{71 DEFLATION BY RESTRICTION FOR THE INVERSE-FREE PRECONDITIONED KRYLOV SUBSPACE METHOD Qiao Liang Department of Mathematics University of Kentucky Lexington, KY 40506-0027, USA Qiang Ye∗ Department of Mathematics University of Kentucky Lexington, KY 40506-0027, USA (Communicated by Xiaoqing Jin) Abstract. A deflation by restriction scheme is developed for the inverse-free preconditioned Krylov subspace method for computing a few extreme eigen- values of the definite symmetric generalized eigenvalue problem Ax = λBx. The convergence theory for the inverse-free preconditioned Krylov subspace method is generalized to include this deflation scheme and numerical examples are presented to demonstrate the convergence properties of the algorithm with the deflation scheme. 1. Introduction. The definite symmetric generalized eigenvalue problem for (A; B) is to find λ 2 R and x 2 Rn with x 6= 0 such that Ax = λBx (1) where A; B are n × n symmetric matrices and B is positive definite. The eigen- value problem (1), also referred to as a pencil eigenvalue problem (A; B), arises in many scientific and engineering applications, such as structural dynamics, quantum mechanics, and machine learning. The matrices involved in these applications are usually large and sparse and only a few of the eigenvalues are desired. Iterative methods such as the Lanczos algorithm and the Arnoldi algorithm are some of the most efficient numerical methods developed in the past few decades for computing a few eigenvalues of a large scale eigenvalue problem, see [1, 11, 19].
    [Show full text]
  • Stability Analysis for Systems of Differential Equations
    Stability Analysis for Systems of Differential Equations David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Created: February 8, 2003 Last Modified: March 2, 2008 Contents 1 Introduction 2 2 Physical Stability 2 3 Numerical Stability 4 3.1 Stability for Single-Step Methods..................................4 3.2 Stability for Multistep Methods...................................5 3.3 Choosing a Stable Step Size.....................................7 4 The Simple Pendulum 7 4.1 Numerical Solution of the ODE...................................8 4.2 Physical Stability for the Pendulum................................ 13 4.3 Numerical Stability of the ODE Solvers.............................. 13 1 1 Introduction In setting up a physical simulation involving objects, a primary step is to establish the equations of motion for the objects. These equations are formulated as a system of second-order ordinary differential equations that may be converted to a system of first-order equations whose dependent variables are the positions and velocities of the objects. Such a system is of the generic form x_ = f(t; x); t ≥ 0; x(0) = x0 (1) where x0 is a specified initial condition for the system. The components of x are the positions and velocities of the objects. The function f(t; x) includes the external forces and torques of the system. A computer implementation of the physical simulation amounts to selecting a numerical method to approximate the solution to the system of differential equations.
    [Show full text]
  • Algorithmic Structure for Geometric Algebra Operators and Application to Quadric Surfaces Stephane Breuils
    Algorithmic structure for geometric algebra operators and application to quadric surfaces Stephane Breuils To cite this version: Stephane Breuils. Algorithmic structure for geometric algebra operators and application to quadric surfaces. Operator Algebras [math.OA]. Université Paris-Est, 2018. English. NNT : 2018PESC1142. tel-02085820 HAL Id: tel-02085820 https://pastel.archives-ouvertes.fr/tel-02085820 Submitted on 31 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ÉCOLE DOCTORALE MSTIC THÈSE DE DOCTORAT EN INFORMATIQUE Structure algorithmique pour les opérateurs d’Algèbres Géométriques et application aux surfaces quadriques Auteur: Encadrants: Stéphane Breuils Dr. Vincent NOZICK Dr. Laurent FUCHS Rapporteurs: Prof. Dominique MICHELUCCI Prof. Pascal SCHRECK Examinateurs: Dr. Leo DORST Prof. Joan LASENBY Prof. Raphaëlle CHAINE Soutenue le 17 Décembre 2018 iii Thèse effectuée au Laboratoire d’Informatique Gaspard-Monge, équipe A3SI, dans les locaux d’ESIEE Paris LIGM, UMR 8049 École doctorale Paris-Est Cité Descartes, Cité Descartes, Bâtiment Copernic-5, bd Descartes 6-8 av. Blaise Pascal Champs-sur-Marne Champs-sur-Marne, 77 454 Marne-la-Vallée Cedex 2 77 455 Marne-la-Vallée Cedex 2 v Abstract Geometric Algebra is considered as a very intuitive tool to deal with geometric problems and it appears to be increasingly efficient and useful to deal with computer graphics problems.
    [Show full text]
  • Group Matrix Ring Codes and Constructions of Self-Dual Codes
    Group Matrix Ring Codes and Constructions of Self-Dual Codes S. T. Dougherty University of Scranton Scranton, PA, 18518, USA Adrian Korban Department of Mathematical and Physical Sciences University of Chester Thornton Science Park, Pool Ln, Chester CH2 4NU, England Serap S¸ahinkaya Tarsus University, Faculty of Engineering Department of Natural and Mathematical Sciences Mersin, Turkey Deniz Ustun Tarsus University, Faculty of Engineering Department of Computer Engineering Mersin, Turkey February 2, 2021 arXiv:2102.00475v1 [cs.IT] 31 Jan 2021 Abstract In this work, we study codes generated by elements that come from group matrix rings. We present a matrix construction which we use to generate codes in two different ambient spaces: the matrix ring Mk(R) and the ring R, where R is the commutative Frobenius ring. We show that codes over the ring Mk(R) are one sided ideals in the group matrix k ring Mk(R)G and the corresponding codes over the ring R are G - codes of length kn. Additionally, we give a generator matrix for self- dual codes, which consist of the mentioned above matrix construction. 1 We employ this generator matrix to search for binary self-dual codes with parameters [72, 36, 12] and find new singly-even and doubly-even codes of this type. In particular, we construct 16 new Type I and 4 new Type II binary [72, 36, 12] self-dual codes. 1 Introduction Self-dual codes are one of the most widely studied and interesting class of codes. They have been shown to have strong connections to unimodular lattices, invariant theory, and designs.
    [Show full text]
  • A Generalized Eigenvalue Algorithm for Tridiagonal Matrix Pencils Based on a Nonautonomous Discrete Integrable System
    A generalized eigenvalue algorithm for tridiagonal matrix pencils based on a nonautonomous discrete integrable system Kazuki Maedaa, , Satoshi Tsujimotoa ∗ aDepartment of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan Abstract A generalized eigenvalue algorithm for tridiagonal matrix pencils is presented. The algorithm appears as the time evolution equation of a nonautonomous discrete integrable system associated with a polynomial sequence which has some orthogonality on the support set of the zeros of the characteristic polynomial for a tridiagonal matrix pencil. The convergence of the algorithm is discussed by using the solution to the initial value problem for the corresponding discrete integrable system. Keywords: generalized eigenvalue problem, nonautonomous discrete integrable system, RII chain, dqds algorithm, orthogonal polynomials 2010 MSC: 37K10, 37K40, 42C05, 65F15 1. Introduction Applications of discrete integrable systems to numerical algorithms are important and fascinating top- ics. Since the end of the twentieth century, a number of relationships between classical numerical algorithms and integrable systems have been studied (see the review papers [1–3]). On this basis, new algorithms based on discrete integrable systems have been developed: (i) singular value algorithms for bidiagonal matrices based on the discrete Lotka–Volterra equation [4, 5], (ii) Pade´ approximation algorithms based on the dis- crete relativistic Toda lattice [6] and the discrete Schur flow [7], (iii) eigenvalue algorithms for band matrices based on the discrete hungry Lotka–Volterra equation [8] and the nonautonomous discrete hungry Toda lattice [9], and (iv) algorithms for computing D-optimal designs based on the nonautonomous discrete Toda (nd-Toda) lattice [10] and the discrete modified KdV equation [11].
    [Show full text]
  • Analysis of a Fast Hankel Eigenvalue Algorithm
    Analysis of a Fast Hankel Eigenvalue Algorithm a b Franklin T Luk and Sanzheng Qiao a Department of Computer Science Rensselaer Polytechnic Institute Troy New York USA b Department of Computing and Software McMaster University Hamilton Ontario LS L Canada ABSTRACT This pap er analyzes the imp ortant steps of an O n log n algorithm for nding the eigenvalues of a complex Hankel matrix The three key steps are a Lanczostype tridiagonalization algorithm a fast FFTbased Hankel matrixvector pro duct pro cedure and a QR eigenvalue metho d based on complexorthogonal transformations In this pap er we present an error analysis of the three steps as well as results from numerical exp eriments Keywords Hankel matrix eigenvalue decomp osition Lanczos tridiagonalization Hankel matrixvector multipli cation complexorthogonal transformations error analysis INTRODUCTION The eigenvalue decomp osition of a structured matrix has imp ortant applications in signal pro cessing In this pap er nn we consider a complex Hankel matrix H C h h h h n n h h h h B C n n B C B C H B C A h h h h n n n n h h h h n n n n The authors prop osed a fast algorithm for nding the eigenvalues of H The key step is a fast Lanczos tridiago nalization algorithm which employs a fast Hankel matrixvector multiplication based on the Fast Fourier transform FFT Then the algorithm p erforms a QRlike pro cedure using the complexorthogonal transformations in the di agonalization to nd the eigenvalues In this pap er we present an error analysis and discuss
    [Show full text]