Multi-View Vector-Valued Manifold Regularization for Multi-Label

Total Page:16

File Type:pdf, Size:1020Kb

Multi-View Vector-Valued Manifold Regularization for Multi-Label > TNNLS-2012-P-0852 REVISION 2 < 1 Multi-view Vector-valued Manifold Regularization for Multi-label Image Classification Yong Luo, Dacheng Tao, Senior Member, IEEE, Chang Xu, Chao Xu, Hong Liu, Yonggang Wen, Member, IEEE Abstract—In computer vision, image datasets used for clas- SIFT [3]) and global structure (e.g. GIST [4]) can effectively sification are naturally associated with multiple labels and represent natural substances (e.g. sky, cloud and plant life), comprised of multiple views, because each image may contain man-made objects (e.g. aeroplane, motorbike and TV-monitor) several objects (e.g. pedestrian, bicycle and tree) and is properly characterized by multiple visual features (e.g. color, texture and and scenes (e.g. seaside and indoor), respectively, but cannot shape). Currently available tools ignore either the label relation- simultaneously illustrate all these concepts in an effective way. ship or the view complementary. Motivated by the success of the Each visual feature encodes a particular property of images vector-valued function that constructs matrix-valued kernels to and characterizes a particular concept (label), so we treat each explore the multi-label structure in the output space, we introduce feature representation as a particular view for characterizing multi-view vector-valued manifold regularization (MV3MR) to integrate multiple features. MV3MR exploits the complementary images. Fig. 1 (a)-(c) indicate that SIFT representation is property of different features and discovers the intrinsic local effective in describing a motorbike and GIST can capture the geometry of the compact support shared by different features global structure of a person on the motorbike. Fig. 1 (d)-(f) under the theme of manifold regularization. We conducted shows that GIST performs well in recognizing seaside scenes, extensive experiments on two challenging, but popular datasets, while the color information can be used as a complementary PASCAL VOC’ 07 (VOC) and MIR Flickr (MIR), and validated the effectiveness of the proposed MV3MR for image classification. aid for recognizing the blue sea water. From Fig. 1 (g)-(i) we can see that RGB usually represents cloud well and GIST is helpful when RGB fails. For example, the RGB represen- Index Terms—Image classification, semi-supervised, multi- label, multi-view, manifold tations of C1 and C3 are not very similar and their GIST distance (0.22) is very small due to the sky scene structure. This multi-view nature distinguishes image classification from I. INTRODUCTION single-view tasks, such as texture segmentation [5] and face Natural image can be summarized by several keywords recognition [6]. A (or labels). To conduct image classification by directly The vector-valued function [7] has recently been introduced using binary classification methods [1], [2], it is necessary to resolve multi-label classification [8] and has been demon- to assume that labels are independent, although most labels strated to be effective in semantic scene annotation. This appearing in one image are related to one another. Examples method naturally incorporates the label-dependencies into the are given in Fig. 1, where A1-A3 shows a “person” rides a classification model by first computing the graph Laplacian “motorbike”, B1-B3 indicates “sea” usually co-occurs with [9] of the output similarity graph, and then using this graph “sky” and C1-C3 shows some “clouds” in the “sky”. This to construct a vector-valued kernel. This model is superior to multi-label nature makes image classification intrinsically dif- most of the existing multi-label learning methods [10], [11], ferent from simple binary classification. [12] because it naturally considers the label correlations and Moreover, different labels cannot be properly characterized efficiently outputs all the predicted labels at one time. arXiv:1904.03921v1 [stat.ML] 8 Apr 2019 by a single feature representation. For example, the color Although the vector-valued function is effective for general information (e.g. color histogram), shape cue (encoded in multi-label classification tasks, it cannot directly handle image classification problems that include images represented by Y. Luo, C. Xu, and C. Xu are with the Key Laboratory of Machine multi-view features. A popular solution is to concatenate all Perception (Ministry of Education), School of Electronics Engineering and the features into a long vector. This concatenation strategy not Computer Science, Peking University, Beijing, 100871, China. D. Tao is with the Centre for Quantum Computation and Intelligent only ignores the physical interpretations of different features, Systems, University of Technology, Sydney, Jones Street, Ultimo, NSW 2007, however, but also encounters the over-fitting problem given Sydney, Australia. limited training samples. H. Liu is with the Engineering Lab on Intelligent Perception for Internet of Things, Shenzhen Graduate School, Peking University, China. (Email: We thus introduce multi-kernel learning (MKL) to the [email protected]) vector-valued function and present a multi-view vector-valued Y. Wen is with the Division of Networks and Distributed Systems, School of manifold regularization (MV3MR) framework for handling Computer Engineering, Nanyang Technological University, Singapore. (Email: [email protected]) the multi-view features in multi-label image classification. c 2013 IEEE. Personal use of this material is permitted. Permission from MV3MR associates each view with a particular kernel, assigns IEEE must be obtained for all other uses, in any current or future media, a higher weight to the view/kernel carrying more discrimina- including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers tive information, and explores the complementary nature of or lists, or reuse of any copyrighted component of this work in other works. different views. > TNNLS-2012-P-0852 REVISION 2 < 2 SIFT GIST RGB SIFT GIST RGB SIFT GIST RGB A1 0 500 1000 0 256 512 0 2048 4096 B1 0 500 1000 0 256 512 0 2048 4096 C1 0 500 1000 0 256 512 0 2048 4096 A2 0 500 1000 0 256 512 0 2048 4096 B2 0 500 1000 0 256 512 0 2048 4096 C2 0 500 1000 0 256 512 0 2048 4096 A3 0 500 1000 0 256 512 0 2048 4096 B3 0 500 1000 0 256 512 0 2048 4096 C3 0 500 1000 0 256 512 0 2048 4096 A1 A2 A3 A1 A2 A3 A1 A2 A3 B1 B2 B3 B1 B2 B3 B1 B2 B3 C1 C2 C3 C1 C2 C3 C1 C2 C3 A1 0 0.22 0.21 A1 0 0.28 0.26 A1 0 0.41 0.35 B1 0 0.32 0.29 B1 0 0.17 0.20 B1 0 0.43 0.46 C1 0 0.34 0.37 C1 0 0.33 0.22 C1 0 0.24 0.32 A2 0.22 0 0.25 A2 0.26 0 0.25 A2 0.41 0 0.38 B2 0.32 0 0.19 B2 0.17 0 0.15 B2 0.43 0 0.30 C2 0.34 0 0.45 C2 0.33 0 0.32 C2 0.24 0 0.29 A3 0.21 0.25 0 A3 0.24 0.22 0 A3 0.35 0.38 0 B3 0.29 0.19 0 B3 0.20 0.15 0 B3 0.46 0.30 0 C3 0.37 0.45 0 C3 0.22 0.32 0 C3 0.32 0.29 0 (a) (b) (c) (d) (e) (f) (g) (h) (i) Fig. 1. A1-A3, B1-B3 and C1-C3 are images of person riding a motorbike, seaside and clouds in the sky respectively. Each (a)-(i) contains feature representations and a distance matrix of the samples in a particular view. All the distances have been normalized here. In particular, MV3MR assembles the multi-view informa- [19] adds the label value to the feature vector and then tion through a large number of unlabeled images to discover applies AdaBoost on weak classifiers. A ranking algorithm the intrinsic geometry embedded in the high dimensional am- is presented in [20] by adopting the ranking loss as the bient space of the compact support of the marginal distribution. cost function in SVM. ML-KNN [21] is an extension of The local geometry, approximated by the adjacency graphs the k-nearest neighbor (KNN) algorithm to deal with multi- induced from multiple kernels of all the corresponding views, label data and canonical correlation analysis (CCA) has also is more reliable than that approximated by the adjacency graph recently been extended to the multi-label case by formulating induced from a particular kernel of any corresponding view. it as a least-squares problem [12]. In this way, MV3MR essentially improves the vector-valued Other works concentrate on preprocessing the data so that function for multi-label image classification. standard binary or multi-class techniques can be utilized. For Because the hinge loss is more suitable for classification example, multiple labels of a sample belong to a subset of than the least squares loss [13], we derive an SVM (support the whole label set and we can view this subset as a new vector machine) formulation of MV3MR which results in a class [22]. This may lead to a large number of classes and a multi-view vector-valued Laplacian SVM (MV3LSVM). We more common strategy is to learn a binary classifier for each carefully design the MV3LSVM algorithm so that it deter- label [1], [2]. Considering that the labels are often sparse, mines the set of kernel weights in the learning process of the a compressed sensing method is proposed for multi-label vector-valued function. prediction [18]. We thoroughly evaluate the proposed MV3LSVM algorithm Various approaches have been proposed to improve predic- on two challenging datasets, PASCAL VOC’ 07 [14] and MIR tion accuracy by exploiting label correlations [23], [24], [11], Flickr [15], by comparing it with a popular MKL algorithm [8].
Recommended publications
  • ECS289: Scalable Machine Learning
    ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Nov 3, 2015 Outline PageRank Semi-supervised Learning Label Propagation Manifold regularization PageRank Ranking Websites Text based ranking systems (a dominated approach in the early 90s) Compute the similarity between query and websites (documents) Keywords are a very limited way to express a complex information Need to rank websites by \popularity", \authority", . PageRank: Developed by Brin and Page (1999) Determine the authority and popularity by hyperlinks PageRank Main idea: estimate the ranking of websites by the link structure. Topology of Websites Transform the hyperlinks to a directed graph: The adjacency matrix A such that Aij = 1 if page j points to page i Transition Matrix Normalize the adjacency matrix so that the matrix is a stochastic matrix (each column sum up to 1) Pij : probability that arriving at page i from page j P: a stochastic matrix or a transition matrix Random walk: step 1 Random walk through the transition matrix Start from [1; 0; 0; 0] (can use any initialization) Random walk: step 1 Random walk through the transition matrix xt+1 = Pxt Random walk: step 2 Random walk through the transition matrix Random walk: step 2 Random walk through the transition matrix xt+2 = Pxt+1 PageRank (convergence) P Start from an initial vector x with i xi = 1 (the initial distribution) For t = 1; 2;::: xt+1 = Pxt Each xt is a probability distribution (sums up to 1) Converges to a stationary distribution π such that π = Pπ if P satisfies the following two conditions: t 1 P is irreducible: for all i; j, there exists some t such that (P )i;j > 0 t 2 P is aperiodic: for all i; j, we have gcdft :(P )i;j > 0g = 1 π is the unique right eigenvector of P with eigenvalue 1.
    [Show full text]
  • Semi-Supervised Classification Using Local and Global Regularization
    Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008) Semi- supervised Classification Using Local and Global Regularization Fei Wang1, Tao Li2, Gang Wang3, Changshui Zhang1 1Department of Automation, Tsinghua University, Beijing, China 2School of Computing and Information Sciences, Florida International University, Miami, FL, USA 3Microsoft China Research, Beijing, China Abstract works concentrate on the derivation of different forms of In this paper, we propose a semi-supervised learning (SSL) smoothness regularizers, such as the ones using combinato- algorithm based on local and global regularization. In the lo- rial graph Laplacian (Zhu et al., 2003)(Belkin et al., 2006), cal regularization part, our algorithm constructs a regularized normalized graph Laplacian (Zhou et al., 2004), exponen- classifier for each data point using its neighborhood, while tial/iterative graph Laplacian (Belkin et al., 2004), local lin- the global regularization part adopts a Laplacian regularizer ear regularization (Wang & Zhang, 2006)and local learning to smooth the data labels predicted by those local classifiers. regularization (Wu & Sch¨olkopf, 2007), but rarely touch the We show that some existing SSL algorithms can be derived problem of how to derive a more efficient loss function. from our framework. Finally we present some experimental In this paper, we argue that rather than applying a global results to show the effectiveness of our method. loss function which is based on the construction of a global predictor using the whole data set, it would be more desir- Introduction able to measure such loss locally by building some local pre- Semi-supervised learning (SSL), which aims at learning dictors for different regions of the input data space.
    [Show full text]
  • Linear Manifold Regularization for Large Scale Semi-Supervised Learning
    Linear Manifold Regularization for Large Scale Semi-supervised Learning Vikas Sindhwani [email protected] Partha Niyogi [email protected] Mikhail Belkin [email protected] Department of Computer Science, University of Chicago, Hyde Park, Chicago, IL 60637 Sathiya Keerthi [email protected] Yahoo! Research Labs, 210 S Delacey Avenue, Pasadena, CA 91105 Abstract tion (Belkin, Niyogi & Sindhwani, 2004; Sindhwani, The enormous wealth of unlabeled data in Niyogi and Belkin, 2005). In this framework, unla- many applications of machine learning is be- beled data is incorporated within a geometrically mo- ginning to pose challenges to the designers tivated regularizer. We specialize this framework for of semi-supervised learning methods. We linear classification, and focus on the problem of deal- are interested in developing linear classifica- ing with large amounts of data. tion algorithms to efficiently learn from mas- This paper is organized as follows: In section 2, we sive partially labeled datasets. In this paper, setup the problem of linear semi-supervised learning we propose Linear Laplacian Support Vector and discuss some prior work. The general Manifold Machines and Linear Laplacian Regularized Regularization framework is reviewed in section 3. In Least Squares as promising solutions to this section 4, we discuss our methods. Section 5 outlines problem. some research in progress. 1. Introduction 2. Linear Semi-supervised Learning The problem of linear semi-supervised clasification is A single web-crawl by search engines like Yahoo and setup as follows: We are given l labeled examples Google indexes billions of webpages. Only a very l l+u fxi; yigi=1 and u unlabeled examples fxigi=l+1, where small fraction of these web-pages can be hand-labeled d and assembled into topic directories.
    [Show full text]
  • Semi-Supervised Deep Learning Using Improved Unsupervised Discriminant Projection?
    Semi-Supervised Deep Learning Using Improved Unsupervised Discriminant Projection? Xiao Han∗, Zihao Wang∗, Enmei Tu, Gunnam Suryanarayana, and Jie Yang School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, China [email protected], [email protected], [email protected] Abstract. Deep learning demands a huge amount of well-labeled data to train the network parameters. How to use the least amount of labeled data to obtain the desired classification accuracy is of great practical significance, because for many real-world applications (such as medical diagnosis), it is difficult to obtain so many labeled samples. In this paper, modify the unsupervised discriminant projection algorithm from dimen- sion reduction and apply it as a regularization term to propose a new semi-supervised deep learning algorithm, which is able to utilize both the local and nonlocal distribution of abundant unlabeled samples to improve classification performance. Experiments show that given dozens of labeled samples, the proposed algorithm can train a deep network to attain satisfactory classification results. Keywords: Manifold Regularization · Semi-supervised learning · Deep learning. 1 Introduction In reality, one of the main difficulties faced by many machine learning tasks is manually tagging large amounts of data. This is especially prominent for deep learning, which usually demands a huge number of well-labeled samples. There- fore, how to use the least amount of labeled data to train a deep network has become an important topic in the area. To overcome this problem, researchers proposed that the use of a large number of unlabeled data can extract the topol- ogy of the overall data's distribution.
    [Show full text]
  • Hyper-Parameter Optimization for Manifold Regularization Learning
    Cassiano Ot´avio Becker Hyper-parameter Optimization for Manifold Regularization Learning Otimiza¸cao~ de Hiperparametros^ para Aprendizado do Computador por Regulariza¸cao~ em Variedades Campinas 2013 i ii Universidade Estadual de Campinas Faculdade de Engenharia Eletrica´ e de Computa¸cao~ Cassiano Ot´avio Becker Hyper-parameter Optimization for Manifold Regularization Learning Otimiza¸cao~ de Hiperparametros^ para Aprendizado do Computador por Regulariza¸cao~ em Variedades Master dissertation presented to the School of Electrical and Computer Engineering in partial fulfillment of the requirements for the degree of Master in Electrical Engineering. Concentration area: Automation. Disserta¸c~ao de Mestrado apresentada ao Programa de P´os- Gradua¸c~ao em Engenharia El´etrica da Faculdade de Engenharia El´etrica e de Computa¸c~ao da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obten¸c~ao do t´ıtulo de Mestre em Engenharia El´etrica. Area´ de concentra¸c~ao: Automa¸c~ao. Orientador (Advisor): Prof. Dr. Paulo Augusto Valente Ferreira Este exemplar corresponde `a vers~ao final da disserta¸c~aodefendida pelo aluno Cassiano Ot´avio Becker, e orientada pelo Prof. Dr. Paulo Augusto Valente Ferreira. Campinas 2013 iii Ficha catalográfica Universidade Estadual de Campinas Biblioteca da Área de Engenharia e Arquitetura Rose Meire da Silva - CRB 8/5974 Becker, Cassiano Otávio, 1977- B388h BecHyper-parameter optimization for manifold regularization learning / Cassiano Otávio Becker. – Campinas, SP : [s.n.], 2013. BecOrientador: Paulo Augusto Valente Ferreira. BecDissertação (mestrado) – Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação. Bec1. Aprendizado do computador. 2. Aprendizado semi-supervisionado. 3. Otimização matemática. 4.
    [Show full text]
  • Zero Shot Learning Via Multi-Scale Manifold Regularization
    Zero Shot Learning via Multi-Scale Manifold Regularization Shay Deutsch 1,2 Soheil Kolouri 3 Kyungnam Kim 3 Yuri Owechko 3 Stefano Soatto 1 1 UCLA Vision Lab, University of California, Los Angeles, CA 90095 2 Department of Mathematics, University of California Los Angeles 3 HRL Laboratories, LLC, Malibu, CA {shaydeu@math., soatto@cs.}ucla.edu {skolouri, kkim, yowechko,}@hrl.com Abstract performed in a transductive setting, using all unlabeled data where the classification and learning process on the transfer We address zero-shot learning using a new manifold data is entirely unsupervised. alignment framework based on a localized multi-scale While our suggested approach is similar in scope to other transform on graphs. Our inference approach includes a ”visual-semantic alignment” methods (see [5, 10] and ref- smoothness criterion for a function mapping nodes on a erences therein) it is, to the best of our knowledge, the first graph (visual representation) onto a linear space (semantic to use multi-scale localized representations that respect the representation), which we optimize using multi-scale graph global (non-flat) geometry of the data space and the fine- wavelets. The robustness of the ensuing scheme allows us scale structure of the local semantic representation. More- to operate with automatically generated semantic annota- over, learning the relationship between visual features and tions, resulting in an algorithm that is entirely free of man- semantic attributes is unified into a single process, whereas ual supervision, and yet improves the state-of-the-art as in most ZSL approaches it is divided into a number of inde- measured on benchmark datasets.
    [Show full text]
  • Semi-Supervised Deep Metric Learning Networks for Classification of Polarimetric SAR Data
    remote sensing Letter Semi-Supervised Deep Metric Learning Networks for Classification of Polarimetric SAR Data Hongying Liu , Ruyi Luo, Fanhua Shang * , Xuechun Meng, Shuiping Gou and Biao Hou Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi’an 710071, China; [email protected] (H.L.); [email protected] (R.L.); [email protected] (X.M.); [email protected] (S.G.); [email protected] (B.H.) * Corresponding authors: [email protected] Received: 7 April 2020; Accepted: 14 May 2020; Published: 17 May 2020 Abstract: Recently, classification methods based on deep learning have attained sound results for the classification of Polarimetric synthetic aperture radar (PolSAR) data. However, they generally require a great deal of labeled data to train their models, which limits their potential real-world applications. This paper proposes a novel semi-supervised deep metric learning network (SSDMLN) for feature learning and classification of PolSAR data. Inspired by distance metric learning, we construct a network, which transforms the linear mapping of metric learning into the non-linear projection in the layer-by-layer learning. With the prior knowledge of the sample categories, the network also learns a distance metric under which all pairs of similarly labeled samples are closer and dissimilar samples have larger relative distances. Moreover, we introduce a new manifold regularization to reduce the distance between neighboring samples since they are more likely to be homogeneous. The categorizing is achieved by using a simple classifier. Several experiments on both synthetic and real-world PolSAR data from different sensors are conducted and they demonstrate the effectiveness of SSDMLN with limited labeled samples, and SSDMLN is superior to state-of-the-art methods.
    [Show full text]
  • Manifold Regularization and Semi-Supervised Learning: Some Theoretical Analyses
    Manifold Regularization and Semi-supervised Learning: Some Theoretical Analyses Partha Niyogi∗ January 22, 2008 Abstract Manifold regularization (Belkin, Niyogi, Sindhwani, 2004)isage- ometrically motivated framework for machine learning within which several semi-supervised algorithms have been constructed. Here we try to provide some theoretical understanding of this approach. Our main result is to expose the natural structure of a class of problems on which manifold regularization methods are helpful. We show that for such problems, no supervised learner can learn effectively. On the other hand, a manifold based learner (that knows the manifold or “learns” it from unlabeled examples) can learn with relatively few labeled examples. Our analysis follows a minimax style with an em- phasis on finite sample results (in terms of n: the number of labeled examples). These results allow us to properly interpret manifold reg- ularization and its potential use in semi-supervised learning. 1 Introduction A learning problem is specified by a probability distribution p on X × Y according to which labelled examples zi = (xi, yi) pairs are drawn and presented to a learning algorithm (estimation procedure). We are interested in an understanding of the case in which X = IRD, ∗Departments of Computer Science, Statistics, The University of Chicago 1 Y ⊂ IR but pX (the marginal distribution of p on X) is supported on some submanifold M ⊂ X. In particular, we are interested in understanding how knowledge of this submanifold may potentially help a learning algorithm1. To this end, we will consider two kinds of learning algorithms: 1. Algorithms that have no knowledge of the submanifold M but learn from (xi, yi) pairs in a purely supervised way.
    [Show full text]
  • A Graph Based Approach to Semi-Supervised Learning
    A graph based approach to semi-supervised learning Michael Lim 1 Feb 2011 Michael Lim A graph based approach to semi-supervised learning Two papers M. Belkin, P. Niyogi, and V Sindhwani. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research 1-48, 2006. M. Belkin, P. Niyogi. Towards a Theoretical Foundation for Laplacian Based Manifold Methods. Journal of Computer and System Sciences, 2007. Michael Lim A graph based approach to semi-supervised learning What is semi-supervised learning? Prediction, but with the help of unsupervised examples. Michael Lim A graph based approach to semi-supervised learning Practical reasons: unlabeled data cheap More natural model of human learning Why semi-supervised learning? Michael Lim A graph based approach to semi-supervised learning More natural model of human learning Why semi-supervised learning? Practical reasons: unlabeled data cheap Michael Lim A graph based approach to semi-supervised learning Why semi-supervised learning? Practical reasons: unlabeled data cheap More natural model of human learning Michael Lim A graph based approach to semi-supervised learning An example Michael Lim A graph based approach to semi-supervised learning An example Michael Lim A graph based approach to semi-supervised learning An example Michael Lim A graph based approach to semi-supervised learning An example Michael Lim A graph based approach to semi-supervised learning Semi-supervised learning framework 1 l labeled examples (x; y) generated
    [Show full text]
  • Cross-Modal and Multimodal Data Analysis Based on Functional Mapping of Spectral Descriptors and Manifold Regularization
    Journal of Machine Learning Research 1 (2021) 1-37 Submitted 4/21; Published 00/00 Cross-Modal and Multimodal Data Analysis Based on Functional Mapping of Spectral Descriptors and Manifold Regularization Maysam Behmanesh [email protected] Artificial Intelligence Department, Faculty of Computer Engineering, University of Isfahan, Iran Peyman Adibi [email protected] Artificial Intelligence Department, Faculty of Computer Engineering, University of Isfahan, Iran Jocelyn Chanussot [email protected] Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France Sayyed Mohammad Saeed Ehsani [email protected] Artificial Intelligence Department, Faculty of Computer Engineering, University of Isfahan, Iran Editor: Abstract Multimodal manifold modeling methods extend the spectral geometry-aware data analysis to learning from several related and complementary modalities. Most of these methods work based on two major assumptions: 1) there are the same number of homogeneous data sam- ples in each modality, and 2) at least partial correspondences between modalities are given in advance as prior knowledge. This work proposes two new multimodal modeling methods. The first method establishes a general analyzing framework to deal with the multimodal information problem for heterogeneous data without any specific prior knowledge. For this purpose, first, we identify the localities of each manifold by extracting local descriptors via spectral graph wavelet signatures (SGWS). Then, we propose a manifold regulariza- tion framework based on the functional mapping between SGWS descriptors (FMBSD) for finding the pointwise correspondences. The second method is a manifold regularized mul- timodal classification based on pointwise correspondences (M2CPC) used for the problem of multiclass classification of multimodal heterogeneous, which the correspondences be- tween modalities are determined based on the FMBSD method.
    [Show full text]
  • Classification by Discriminative Regularization
    Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008) Classification by Discriminative Regularization 1¤ 2 3 1 1 Bin Zhang , Fei Wang , Ta-Hsin Li , Wen jun Yin , Jin Dong 1IBM China Research Lab, Beijing, China 2Department of Automation, Tsinghua University, Beijing, China 3IBM Watson Research Center, Yorktown Heights, NY, USA ¤Corresponding author, email: [email protected] Abstract Generally achieving a good classifier needs a sufficiently ² ^ Classification is one of the most fundamental problems large amount of training data points (such that may have a better approximation of ), however, in realJ world in machine learning, which aims to separate the data J from different classes as far away as possible. A com- applications, it is usually expensive and time consuming mon way to get a good classification function is to min- to get enough labeled points. imize its empirical prediction loss or structural loss. In Even if we have enough training data points, and the con- this paper, we point out that we can also enhance the ² structed classifier may fit very well on the training set, it discriminality of those classifiers by further incorporat- may not have a good generalization ability on the testing ing the discriminative information contained in the data set as a prior into the classifier construction process. In set. This is the problem we called overfitting. such a way, we will show that the constructed classifiers Regularization is one of the most important techniques will be more powerful, and this will also be validated by to handle the above two problems. First, for the overfitting the final empirical study on several benchmark data sets.
    [Show full text]
  • Approximate Manifold Regularization: Scalable Algorithm and Generalization Analysis
    Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19) Approximate Manifold Regularization: Scalable Algorithm and Generalization Analysis Jian Li1;2 , Yong Liu1 , Rong Yin1;2 and Weiping Wang1∗ 1Institute of Information Engineering, Chinese Academy of Sciences 2School of Cyber Security, University of Chinese Academy of Sciences flijian9026, liuyong, yinrong, [email protected] Abstract vised to approximate Laplacian graph by a line or spanning tree [Cesa-Bianchi et al., 2013] and improved by minimiz- Graph-based semi-supervised learning is one of ing tree cut (MTC) in [Zhang et al., 2016]. (2) Acceler- the most popular and successful semi-supervised ate operations associated with kernel matrix. Several dis- learning approaches. Unfortunately, it suffers from tributed approaches have been applied to semi-supervised high time and space complexity, at least quadratic learning [Chang et al., 2017], decomposing a large scale with the number of training samples. In this pa- problem into smaller ones. Anchor Graph regularization per, we propose an efficient graph-based semi- (Anchor) constructs an anchor graph with the training sam- supervised algorithm with a sound theoretical guar- ples and a few anchor points to approximate Laplacian graph antee. The proposed method combines Nystrom [Liu et al., 2010]. The work of [McWilliams et al., 2013; subsampling and preconditioned conjugate gradi- Rastogi and Sampath, 2017] applied random projections in- ent descent, substantially improving computational cluding Nystrom¨ methods and random features into mani- efficiency and reducing memory requirements. Ex- fold regularization. Gradient methods are introduced to solve tensive empirical results reveal that our method manifold regularization on the primal problem, such as pre- achieves the state-of-the-art performance in a short conditioned conjugate gradient [Melacci and Belkin, 2011], time even with limited computing resources.
    [Show full text]