Statistical Mechanics Derived from Quantum Mechanics

Total Page:16

File Type:pdf, Size:1020Kb

Statistical Mechanics Derived from Quantum Mechanics Statistical Mechanics Derived From Quantum Mechanics Yu-Lei Feng1 and Yi-Xin Chen1 1Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, China [email protected] [email protected] Abstract A pedagogical derivation of statistical mechanics from quantum mechanics is pro- vided, by means of open quantum systems. Besides, a new definition of Boltzmann entropy for a quantum closed system is also given to count microstates in a way con- sistent with the superposition principle. In particular, this new Boltzmann entropy is a constant that depends only on the dimension of the system's relevant Hilbert subspace. Finally, thermodynamics for quantum systems is investigated formally. arXiv:1501.05402v2 [hep-th] 7 Apr 2015 Contents 1 Introduction 1 2 A Brief Introduction to Entanglement Entropy 3 3 From Quantum Mechanics to Statistical Mechanics 5 3.1 Statistical mechanics derived from quantum mechanics . .5 3.2 Boltzmann entropy for a quantum closed system . 12 3.3 Count microstates for a single quantum free particle . 18 3.4 Thermodynamics and statistical mechanics for quantum systems . 20 4 Conclusions 27 A Statistical mechanics for an ideal quantum gas 27 1 Introduction According to the number of degrees of freedom, a system is usually classified into three cases: microscopic, macroscopic and cosmoscopic. It's believed that the corresponding descriptions for those three cases are also different. For example, for a simple microscopic system quantum mechanics is enough; while for the latter two, such as a complex macro- scopic system, (quantum) statistical mechanics is more useful. In (quantum) statistical mechanics [1], Boltzmann entropy SBolt is an important quantity that provides a measure of the number of microstates in a macrostate denoted by macro-quantities. Besides, ther- modynamics can be obtained by means of ensemble theory, microcanonical ensemble for isolated or closed systems, (grand) canonical ensemble for open systems. A macrostate for a macroscopic system is usually denoted as (E; SBolt; N; V ), given by its (internal) energy E, Boltzmann entropy SBolt, particle number N, space volume V etc. These macro-quantities can be treated as observables of the studied system, and are usually obtained through measurements. In particular in quantum statistical mechanics, quantum observables H^ , N^ can be assigned so that their corresponding macro-quantities ^ can be obtained by taking averages in terms of T r(^ρstO), withρ ^st the density matrix for 1 one of those familiar ensembles . Moreover, the Boltzmann entropy SBolt can be expressed formally (not determined) by the von Neumann entropy S[^ρst]. 1The space volume V is an exception, indicating that it may be a classical quantity, just like its corresponding \force", pressure p. 1 More specifically, the density matrixρ ^st in quantum statistical mechanics can be given by a general form [1] N 1 X ρ^ (t) = j k(t)ih k(t)j; (1) st N k=1 where the sum is over the N member systems of a presumed ensemble. The state j k(t)i is some normalized quantum state for the member system k at time t. For different ensem- bles,ρ ^st will be reduced to some corresponding forms. For example, for microcanonical ensemble, according to the postulate of equal a priori probabilities, we will have the matrix elements (^ρst)mn = cδmn [1] in some representation. Easily to see, the \presumed ensem- ble", composed of huge number of \mental copies" of the studied system, is an independent ^ concept. This can be seen by noting that, in the expression T r(^ρstO) there are two kinds of averages, an ensemble average and a quantum average. As a result, when calculating PN k the von Neumann entropy S[^ρst], the presupposed probability distribution k=1 P = 1 for the presumed ensemble will lead to some extra fictitious information, in addition to the quantum information encoded in the system's quantum states. The fictitious information is actually resulted from our uncertainty about the studied system. But this uncertainty is only artificial, not intrinsical for the system, especially for quantum systems. For example, a quantum closed system can be well described by a unitary evolution from some given initial state. However in statistical mechanics, microcanonical ensemble will be applied to describe a closed system. Then some fictitious information (about the uncertainty of the initial states) may be added, destroying the quantum coherence of the closed system. In a word, the Boltzmann entropy given by quantum statistical mechanics seems not to be exact, due to the implicit fictitious information of the presumed ensemble. Certainly, the above fictitious information is not serious for ordinary thermodynamics, in which the Boltzmann entropy is only a coarse grained quantity with additivity. This is not the case for a quantum mechanics description, in which von Neumann entropy is a fine grained quantity with only subadditivity [2, 3]. In fact, thermodynamics can be treated as an effective description of the underlying quantum details. Besides, theρ ^st used in those familiar ensembles are actually determined according to some (extreme) conditions of the presumed ensemble. While the density matrix in von Neumann entropy must be operated always according to the quantum rules. Therefore, to obtain some more correct description, we should restrict ourselves always in the framework of quantum mechanics. In this paper, we try to provide a derivation of statistical mechanics from quantum me- chanics, so that the fictitious information from the concept of ensemble can be removed. We show that the (grand) canonical ensemble theory of statistical mechanics can be de- 2 rived effectively by means of open quantum systems. In particular, the most probable distribution for statistical mechanics will correspond to some stable one for the studied open quantum system. In this way, the Boltzmann entropy for the (grand) canonical en- semble can be treated as an approximation of some entanglement entropy in the stable limit. Furthermore, a new definition of Boltzmann entropy for a quantum closed system is also given, which counts microstates in a way consistent with the superposition principle of quantum mechanics. In particular, that new Boltzmann entropy is a constant that doesn't depend on the system's energy and space volume. In fact, it is identical to the maximum von Neumann's entropy related to the density matrixes for some measurements, thus it depends only on the dimension of the system's relevant Hilbert subspace. This paper is organized as follows. In Sec. 2, some basic properties of entanglement entropy or von Neumann entropy are briefly mentioned for comparing to the Boltzmann entropy. In Sec. 3.1, some general investigations are given to show that the (grand) canon- ical ensemble theory of statistical mechanics can be derived effectively by means of open quantum systems. While in Sec. 3.2, a new Boltzmann entropy is defined for a quantum closed system, which is a constant independent of the system's energy and space volume. Some more details for thermodynamics of quantum systems, especially the thermal equi- librium between two macroscopic subsystems are given in Sec. 3.4. In addition, two simple examples are also analyzed in Sec. 3.3 and the Appendix A. 2 A Brief Introduction to Entanglement Entropy In this intermediate section, a brief introduction to entanglement entropy is provided to compare with the Boltzmann entropy. An entanglement entropy is defined as Sen = −T r(^ρext lnρ ^ext); (2) which is constructed from some reduced density matrix. A reduced density matrix could occur only if the relevant system contained two or more than two independent degrees of freedom2. According to the standard results of quantum mechanics, a complete collection of observables can be expressed generally as ^ ^ ^ ^ fO1; O2; · · · g; [O1; O2] = ··· = 0; (3) 2Specially, when making a measurement on a single quantum degree of freedom, the apparatus should also be included to form a larger closed system. 3 with \··· " denoted as the observables relevant for the rest degrees of freedom. Then the full quantum state can be expressed by X j i = C1;2;···jO1;O2; · · · i; (4) 1;2;··· from which some reduced density matrix can be derived, for exampleρ ^1 = T r2;···j ih j. There is not a necessary second law for entanglement entropy in the microscopic sense. For example, consider two qubits undergoing the following two unitary processes (αj0ia + βj1ia)j0ib ! αj0iaj0ib + βj1iaj1ib ! (αj0ia + βj1ia)j0ib; (5) i.e. undergoing two C-NOT gates [2, 3]. We can calculate the reduced density matrix ρ^a and its corresponding entanglement entropy Sa. Easily to see, for the initial and final cases, Sa = 0, while for the intermediate case, Sa 6= 0. It is believed that the first process in Eq. (5) gives a second law for entanglement entropy, since the correlation is generated through the interaction [2, 3]. However, for simple quantum systems the interactions which can decouple (effectively) the already correlated systems, such as the one for the second process in Eq. (5), also occur frequently in the microscopic sense. Therefore, no second law is necessary for entanglement entropy that can always be calculated for simple quan- tum systems undergoing various basic or microscopic evolutions. However, for complex macroscopic systems, the involved interactions are so complicated that the decoupling or decorrelation is usually hard in the macroscopic sense. In this case, a Boltzmann entropy seems to be more useful, since entanglement entropy is difficult to be calculated due to the complexity. This will be discussed in the next section. Since entanglement entropy or von Neumann entropy is wildly used in quantum in- formation theory, its meaning is similar to the (classical) Shannon entropy. Generally speaking, it's a measure of the uncertainty before we learn a system, or a measure of how much information we have gained after we learn that system [2, 3].
Recommended publications
  • A Mini-Introduction to Information Theory
    A Mini-Introduction To Information Theory Edward Witten School of Natural Sciences, Institute for Advanced Study Einstein Drive, Princeton, NJ 08540 USA Abstract This article consists of a very short introduction to classical and quantum information theory. Basic properties of the classical Shannon entropy and the quantum von Neumann entropy are described, along with related concepts such as classical and quantum relative entropy, conditional entropy, and mutual information. A few more detailed topics are considered in the quantum case. arXiv:1805.11965v5 [hep-th] 4 Oct 2019 Contents 1 Introduction 2 2 Classical Information Theory 2 2.1 ShannonEntropy ................................... .... 2 2.2 ConditionalEntropy ................................. .... 4 2.3 RelativeEntropy .................................... ... 6 2.4 Monotonicity of Relative Entropy . ...... 7 3 Quantum Information Theory: Basic Ingredients 10 3.1 DensityMatrices .................................... ... 10 3.2 QuantumEntropy................................... .... 14 3.3 Concavity ......................................... .. 16 3.4 Conditional and Relative Quantum Entropy . ....... 17 3.5 Monotonicity of Relative Entropy . ...... 20 3.6 GeneralizedMeasurements . ...... 22 3.7 QuantumChannels ................................... ... 24 3.8 Thermodynamics And Quantum Channels . ...... 26 4 More On Quantum Information Theory 27 4.1 Quantum Teleportation and Conditional Entropy . ......... 28 4.2 Quantum Relative Entropy And Hypothesis Testing . ......... 32 4.3 Encoding
    [Show full text]
  • Chapter 6 Quantum Entropy
    Chapter 6 Quantum entropy There is a notion of entropy which quantifies the amount of uncertainty contained in an ensemble of Qbits. This is the von Neumann entropy that we introduce in this chapter. In some respects it behaves just like Shannon's entropy but in some others it is very different and strange. As an illustration let us immediately say that as in the classical theory, conditioning reduces entropy; but in sharp contrast with classical theory the entropy of a quantum system can be lower than the entropy of its parts. The von Neumann entropy was first introduced in the realm of quantum statistical mechanics, but we will see in later chapters that it enters naturally in various theorems of quantum information theory. 6.1 Main properties of Shannon entropy Let X be a random variable taking values x in some alphabet with probabil- ities px = Prob(X = x). The Shannon entropy of X is X 1 H(X) = p ln x p x x and quantifies the average uncertainty about X. The joint entropy of two random variables X, Y is similarly defined as X 1 H(X; Y ) = p ln x;y p x;y x;y and the conditional entropy X X 1 H(XjY ) = py pxjy ln p j y x;y x y 1 2 CHAPTER 6. QUANTUM ENTROPY where px;y pxjy = py The conditional entropy is the average uncertainty of X given that we observe Y = y. It is easily seen that H(XjY ) = H(X; Y ) − H(Y ) The formula is consistent with the interpretation of H(XjY ): when we ob- serve Y the uncertainty H(X; Y ) is reduced by the amount H(Y ).
    [Show full text]
  • Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations
    Article Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations Jen-Tsung Hsiang 1,*,† and Bei-Lok Hu 2,† ID 1 Center for Field Theory and Particle Physics, Department of Physics, Fudan University, Shanghai 200433, China 2 Maryland Center for Fundamental Physics and Joint Quantum Institute, University of Maryland, College Park, MD 20742-4111, USA; [email protected] * Correspondence: [email protected]; Tel.: +86-21-3124-3754 † These authors contributed equally to this work. Received: 26 April 2018; Accepted: 30 May 2018; Published: 31 May 2018 Abstract: Identifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics. We will show why even with this minimal demand, there are many new issues which need be addressed and new rules formulated. The thermodynamics of small quantum many-body systems strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements, such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical reservoir.
    [Show full text]
  • The Dynamics of a Central Spin in Quantum Heisenberg XY Model
    Eur. Phys. J. D 46, 375–380 (2008) DOI: 10.1140/epjd/e2007-00300-9 THE EUROPEAN PHYSICAL JOURNAL D The dynamics of a central spin in quantum Heisenberg XY model X.-Z. Yuan1,a,K.-D.Zhu1,andH.-S.Goan2 1 Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, P.R. China 2 Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei 10617, Taiwan Received 19 March 2007 / Received in final form 30 August 2007 Published online 24 October 2007 – c EDP Sciences, Societ`a Italiana di Fisica, Springer-Verlag 2007 Abstract. In the thermodynamic limit, we present an exact calculation of the time dynamics of a central spin coupling with its environment at finite temperatures. The interactions belong to the Heisenberg XY type. The case of an environment with finite number of spins is also discussed. To get the reduced density matrix, we use a novel operator technique which is mathematically simple and physically clear, and allows us to treat systems and environments that could all be strongly coupled mutually and internally. The expectation value of the central spin and the von Neumann entropy are obtained. PACS. 75.10.Jm Quantized spin models – 03.65.Yz Decoherence; open systems; quantum statistical meth- ods – 03.67.-a Quantum information z 1 Introduction like S0 and extend the operator technique to deal with the case of finite number environmental spins. Recently, using One of the promising candidates for quantum computa- numerical tools, the authors of references [5–8] studied the tion is spin systems [1–4] due to their long decoherence dynamic behavior of a central spin system decoherenced and relaxation time.
    [Show full text]
  • Entanglement Entropy and Decoupling in the Universe
    Entanglement Entropy and Decoupling in the Universe Yuichiro Nakai (Rutgers) with N. Shiba (Harvard) and M. Yamada (Tufts) arXiv:1709.02390 Brookhaven Forum 2017 Density matrix and Entropy In quantum mechanics, a physical state is described by a vector which belongs to the Hilbert space of the total system. However, in many situations, it is more convenient to consider quantum mechanics of a subsystem. In a finite temperature system which contacts with heat bath, Ignore the part of heat bath and consider a physical state given by a statistical average (Mixed state). Density matrix A physical observable Density matrix and Entropy Density matrix of a pure state Density matrix of canonical ensemble Thermodynamic entropy Free energy von Neumann entropy Entanglement entropy Decompose a quantum many-body system into its subsystems A and B. Trace out the density matrix over the Hilbert space of B. The reduced density matrix Entanglement entropy Nishioka, Ryu, Takayanagi (2009) Entanglement entropy Consider a system of two electron spins Pure state The reduced density matrix : Mixed state Entanglement entropy : Maximum: EPR pair Quantum entanglement Entanglement entropy ✓ When the total system is a pure state, The entanglement entropy represents the strength of quantum entanglement. ✓ When the total system is a mixed state, The entanglement entropy includes thermodynamic entropy. Any application to particle phenomenology or cosmology ?? Decoupling in the Universe Particles A are no longer in thermal contact with particles B when the interaction rate is smaller than the Hubble expansion rate. e.g. neutrino decoupling Decoupled subsystems are treated separately. Neutrino temperature drops independently from photon temperature.
    [Show full text]
  • Lecture 6: Entropy
    Matthew Schwartz Statistical Mechanics, Spring 2019 Lecture 6: Entropy 1 Introduction In this lecture, we discuss many ways to think about entropy. The most important and most famous property of entropy is that it never decreases Stot > 0 (1) Here, Stot means the change in entropy of a system plus the change in entropy of the surroundings. This is the second law of thermodynamics that we met in the previous lecture. There's a great quote from Sir Arthur Eddington from 1927 summarizing the importance of the second law: If someone points out to you that your pet theory of the universe is in disagreement with Maxwell's equationsthen so much the worse for Maxwell's equations. If it is found to be contradicted by observationwell these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of ther- modynamics I can give you no hope; there is nothing for it but to collapse in deepest humiliation. Another possibly relevant quote, from the introduction to the statistical mechanics book by David Goodstein: Ludwig Boltzmann who spent much of his life studying statistical mechanics, died in 1906, by his own hand. Paul Ehrenfest, carrying on the work, died similarly in 1933. Now it is our turn to study statistical mechanics. There are many ways to dene entropy. All of them are equivalent, although it can be hard to see. In this lecture we will compare and contrast dierent denitions, building up intuition for how to think about entropy in dierent contexts. The original denition of entropy, due to Clausius, was thermodynamic.
    [Show full text]
  • Lectures on Entanglement Entropy in Field Theory and Holography
    Prepared for submission to JHEP Lectures on entanglement entropy in field theory and holography Matthew Headrick Martin Fisher School of Physics, Brandeis University, Waltham MA, USA Abstract: These lecture notes aim to provide an introduction to entanglement entropies in quantum field theories, including holographic ones. We explore basic properties and simple examples of entanglement entropies, mostly in two dimensions, with an emphasis on physical rather than formal aspects of the subject. In the holographic case, the focus is on how that physics is realized geometrically by the Ryu-Takayanagi formula. In order to make the notes somewhat self-contained for readers whose background is in high-energy theory, a brief introduction to the relevant aspects of quantum information theory is included. Contents 1 Introduction1 2 Entropy 1 2.1 Shannon entropy1 2.2 Joint distributions3 2.3 Von Neumann entropy5 2.4 Rényi entropies7 3 Entropy and entanglement 10 3.1 Entanglement 10 3.2 Purification 11 3.3 Entangled vs. separable states 13 3.4 Entanglement, decoherence, and monogamy 15 3.5 Subsystems, factorization, and time 17 4 Entropy, entanglement, and fields 18 4.1 What is a subsystem? 18 4.2 Subsystems in relativistic field theories 20 4.3 General theory: half-line 21 4.3.1 Reduced density matrix 22 4.3.2 Entropy 25 4.4 CFT: interval 27 4.4.1 Replica trick 28 4.4.2 Thermal state & circle 30 4.5 General theory: interval 32 4.6 CFT: two intervals 34 5 Entropy, entanglement, fields, and gravity 36 5.1 Holographic dualities 36 5.2 Ryu-Takayanagi formula 37 5.2.1 Motivation: Bekenstein-Hawking as entanglement entropy 37 5.2.2 Statement 39 5.2.3 Checks 40 5.2.4 Generalizations 41 5.3 Examples 42 5.3.1 CFT vacuum: interval 43 5.3.2 CFT thermal state: interval 44 5.3.3 CFT on a circle: interval 45 – i – 5.3.4 Gapped theory: half-line 46 5.3.5 Gapped theory: interval 48 5.3.6 CFT: Two intervals 49 1 Introduction The phenomenon of entanglement is fundamental to quantum mechanics, and one of the features that distinguishes it sharply from classical mechanics.
    [Show full text]
  • Quantum Information Chapter 10. Quantum Shannon Theory
    Quantum Information Chapter 10. Quantum Shannon Theory John Preskill Institute for Quantum Information and Matter California Institute of Technology Updated June 2016 For further updates and additional chapters, see: http://www.theory.caltech.edu/people/preskill/ph219/ Please send corrections to [email protected] Contents 10 Quantum Shannon Theory 1 10.1 Shannon for Dummies 2 10.1.1 Shannon entropy and data compression 2 10.1.2 Joint typicality, conditional entropy, and mutual infor- mation 6 10.1.3 Distributed source coding 8 10.1.4 The noisy channel coding theorem 9 10.2 Von Neumann Entropy 16 10.2.1 Mathematical properties of H(ρ) 18 10.2.2 Mixing, measurement, and entropy 20 10.2.3 Strong subadditivity 21 10.2.4 Monotonicity of mutual information 23 10.2.5 Entropy and thermodynamics 24 10.2.6 Bekenstein’s entropy bound. 26 10.2.7 Entropic uncertainty relations 27 10.3 Quantum Source Coding 30 10.3.1 Quantum compression: an example 31 10.3.2 Schumacher compression in general 34 10.4 Entanglement Concentration and Dilution 38 10.5 Quantifying Mixed-State Entanglement 45 10.5.1 Asymptotic irreversibility under LOCC 45 10.5.2 Squashed entanglement 47 10.5.3 Entanglement monogamy 48 10.6 Accessible Information 50 10.6.1 How much can we learn from a measurement? 50 10.6.2 Holevo bound 51 10.6.3 Monotonicity of Holevo χ 53 10.6.4 Improved distinguishability through coding: an example 54 10.6.5 Classical capacity of a quantum channel 58 ii Contents iii 10.6.6 Entanglement-breaking channels 62 10.7 Quantum Channel Capacities and Decoupling
    [Show full text]
  • Entropy in Classical and Quantum Information Theory
    Entropy in Classical and Quantum Information Theory William Fedus Physics Department, University of California, San Diego. Entropy is a central concept in both classical and quantum information theory, measuring the uncertainty and the information content in the state of a physical system. This paper reviews classical information theory and then proceeds to generalizations into quantum information theory. Both Shannon and Von Neumann entropy are discussed, making the connection to compressibility of a message stream and the generalization of compressibility in a quantum system. Finally, the paper considers the application of Von Neumann entropy in entanglement of formation for both pure and mixed bipartite quantum states. CLASSICAL INFORMATION THEORY information. For instance, if we use a block code which assigns integers to typical sequences, the information in In statistical mechanics, entropy is the logarithm of a string of n letters can be compressed to H(A) bits. the number of arrangements a system can be configured With this framework and definition, we may now con- and still remain consistent with the thermodyanmic ob- sider the maximum compression of a length n message servables. From this original formulation, entropy has without loss of information. The number of bits neces- grown to become an important element in many diverse sary to transmit the message is given by fields of study. One of the first examples was in 1948 when Claude Shannon adopted entropy as a measure of the uncertainty in a random variable, or equivalently, the H(An) = nH(A): (2) expected value of information content within a message. Classical information theory, as established by Claude Shannon, sought to resolve two central issues in signal which simply states that one needs (n times the entropy processing of the ensemeble A)-bits.
    [Show full text]
  • Replacing Energy by Von Neumann Entropy in Quantum Phase Transitions
    Annals of Physics 322 (2007) 1466–1476 www.elsevier.com/locate/aop Replacing energy by von Neumann entropy in quantum phase transitions Angela Kopp, Xun Jia, Sudip Chakravarty * Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095-1547, USA Received 15 July 2006; accepted 15 August 2006 Available online 28 September 2006 Abstract We propose that quantum phase transitions are generally accompanied by non-analyticities of the von Neumann (entanglement) entropy. In particular, the entropy is non-analytic at the Anderson transition, where it exhibits unusual fractal scaling. We also examine two dissipative quantum sys- tems of considerable interest to the study of decoherence and find that non-analyticities occur if and only if the system undergoes a quantum phase transition. Ó 2006 Elsevier Inc. All rights reserved. Keywords: Quantum phase transition and criticality; Entanglement; Dissipative quantum system; Von Neumann entropy; Anderson localization; Nonanalyticity of free energy In the thermodynamic limit two distinct states of matter cannot be analytic continua- tions of each other. Classical phase transitions are characterized by non-analyticities of the free energy [1]. For quantum phase transitions [2] (QPTs) the ground state energy often assumes the role of the free energy. But in a number of important cases this criterion fails to predict a QPT, such as the three-dimensional metal-insulator transition of non-interact- ing electrons in a random potential (Anderson localization [3,4]). It is therefore essential that we find alternative criteria that can track fundamental changes in the internal corre- lations of the ground state wave function.
    [Show full text]
  • Quantum Ergodicity
    Quantum Ergodicity Anatoli Polkovnikov Boston University Thermalizaon: From Glasses To Black Holes., ICTS, Bangalore, June 2013 Simons Foundation Outline. Part I. Quantum ergodicity and the eigenstate theramizaon hypothesis (ETH). Part II. Applicaons oF ETH to equilibrium and non- equilibrium thermodynamics. Three different approaches describing isolated systems oF par5cles (systems with staonary Hamiltonian). I. Microscopic based on studying long 5me limit oF Hamiltonian dynamics Works For small Few-par5cle systems. Can be prohibi5vely (exponen5ally) expensive in chao5c systems. Chao5c Regular II. Stas5cal. Start From equilibrium stas5cal descrip5on (system is in the most random state sasFying constraints). Use Hamiltonian (Lindblad) dynamics perturbavely: linear response (Kubo) III. Mixed: kine5c equaons, Master equaon, Fokker Planck equaon,…: use stas5cal inFormaon and Hamiltonian dynamics to construct rate equaons For the probability distribu5on: What is the Fundamental problem with the first microscopic approach? Imagine Universe consis5ng oF three par5cles (classical or quantum) Can this universe describe itselF? – No. There is no place to store inFormaon. Increase number oF par5cles: can simulate three par5cle dynamics. Complexity oF the total system grows exponen5ally, much Faster than its ability to simulate itselF. It is Fundamentally impossible to get a complete microsopic descrip5on oF large interac5ng systems. 10 as an effective thermal bath? And if this is not possible, noting by (E) the set of eigenstates of H having en- H are there some observable effects on the system dynam- ergies between E and E + δE,wedefineˆρmc(E)= ics? While these questions are definitely connected to 1/ Ψ Ψ ,where is the total num- α (E) N| α α | N quantum ergodicity (Goldstein et al., 2010), a topic with ber∈ ofH states in the micro-canonical shell.
    [Show full text]
  • Information in Statistical Physics R
    Information in statistical physics R. Balian To cite this version: R. Balian. Information in statistical physics. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, Elsevier, 2005, 36, pp.323-353. 10.1016/j.shpsb.2005.02.001. hal-00012785 HAL Id: hal-00012785 https://hal.archives-ouvertes.fr/hal-00012785 Submitted on 8 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Information in statistical physics ∗ Roger Balian Service de Physique Th´eorique CEA/Saclay - DSM/SPhT F-91191 Gif sur Yvette Cedex, France [email protected] Abstract We review with a tutorial scope the information theory foundations of quantum statistical physics. Only a small proportion of the variables that characterize a system at the microscopic scale can be controlled, for both practical and theoretical reasons, and a probabilistic description involv- ing the observers is required. The criterion of maximum von Neumann entropy is then used for making reasonable inferences. It means that no spurious information is introduced besides the known data. Its outcomes can be given a direct justification based on the principle of indifference of Laplace.
    [Show full text]