Kismet Hacking.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Contributing Authors Brad ‘RenderMan’ Haines is one of the more visible and vocal members of the wardriving community, appearing in various media outlets and speak- ing at conferences several times a year. Render is usually near by on any wardriving and wireless security news, often causing it himself. His skills have been learned in the trenches working for various IT companies as well as his involvement through the years with the hacking community, sometimes to the attention of carious Canadian and American intelligence agencies. A firm believer in the hacker ethos and promoting responsible hacking and sharing of ideas, he wrote the ‘Stumbler ethic’ for beginning wardrivers and greatly enjoys speaking at corporate conferences to dissuade the negative image of hackers and wardrivers. His work frequently borders on the absurd as his approach is usually one of ignoring conventional logic and just doing it. He can be found in Edmonton, Alberta, Canada, probably taking something apart. Michael J. Schearer is an active-duty Naval Flight Officer and Electronic Countermeasures Officer with the U.S. Navy. He flew combat missions during Operations Enduring Freedom, Southern Watch, and Iraqi Freedom. He later took his electronic warfare specialty to Iraq, where he embedded on the ground with Army units to lead the counter-IED fight. He currently serves as an instructor of Naval Science at the Pennsylvania State University Naval Reserve Officer Training Corps Unit, University Park, PA. Michael is an active member of the Church of WiFi and has spoken at Shmoocon, DEFCON, and Penn State’s Security Day, as well as other forums. His work has been cited in Forbes, InfoWorld and Wired. Michael is an alumnus of Bloomsburg University where he studied Political Science and Georgetown University where he obtained his degree in National Security Studies. While at Penn State, he is actively involved in IT issues. He is a licensed amateur radio operator, moderator of the Church of WiFi and Remote-Exploit Forums, and a regular on the DEFCON and NetStumbler forums. v Frank Thornton runs his own technology consulting firm, Blackthorn Systems, which specializes in wireless networks. His specialties include wireless network architecture, design, and implementation, as well as network troubleshooting and optimization. An interest in amateur radio helped him bridge the gap between computers and wireless networks. Having learned at a young age which end of the soldering iron was hot, he has even been known to repair hardware on occasion. In addition to his computer and wireless interests, Frank was a law enforcement officer for many years. As a detective and forensics expert he has investigated approximately one hundred homicides and thousands of other crime scenes. Combining both professional interests, he was a member of the workgroup that established ANSI Standard “ANSI/NIST-CSL 1-1993 Data Format for the Interchange of Fingerprint Information.” He co-au- thored RFID Security (Syngress Publishing, ISBN: 1597490474), WarDriv- ing: Drive, Detect, and Defend: A Guide to Wireless Security (Syngress, ISBN: 193183603), as well as contributed to IT Ethics Handbook: Right and Wrong for IT Professionals (Syngress, ISBN: 1931836140) and Game Console Hack- ing: Xbox, PlayStation, Nintendo, Atari, & Gamepark 32 (ISBN: 1931836310). He resides in Vermont with his wife. vi Chapter 1 Introduction to Wireless Networking, Wardriving, and Kismet Solutions in this chapter ■ Exploring Past Discoveries That Led to Wireless ■ Exploring Present Applications for Wireless ■ Introduction to Wardriving ■ Introduction to Wardriving with Linux ■ Wardriving with Linux and Kismet ˛ Summary Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet Exploring Past Discoveries That Led to Wireless Wireless technology is the method of delivering data from one point to another without using physical wires, and includes radio, cellular, infrared, and satellite. A historic perspective will provide you with a general understanding of the substantial evolution that has taken place in this area. The common wireless networks of today originated from many evolutionary stages of wireless communications and telegraph and radio applications. Although some discoveries occurred in the early 1800s, much of the evolution of wireless communication began with the emergence of the electrical age and was affected by modern economics as much as by discoveries in physics. Because the current demand of wireless technology is a direct outgrowth of traditional wired 10-Base-T Ethernet networks, we will also briefly cover the advent of the computer and the evolution of computer networks. Physical networks, and their limitations, significantly impacted wireless technology. This section presents some of the aspects of traditional computer networks and how they relate to wireless networks. Another significant impact to wireless is the invention of the cell phone. This section will briefly explain significant strides in the area of cellular communication. Discovering Electromagnetism Early writings show that people were aware of magnetism for several centuries before the middle 1600s; however, people did not become aware of the correlation between magnetism and electricity until the 1800s. In 1820, Hans Christian Oersted, a Danish physicist and philosopher working at that time as a professor at the University of Copenhagen, attached a wire to a battery during a lecture; coincidentally, he just happened to do this near a compass and he noticed that the compass needle swung around. This is how he discovered that there was a relationship between electricity and magnetism. Oersted continued to explore this relationship, influencing the works of contemporaries Michael Faraday and Joseph Henry. Michael Faraday, an English scientific lecturer and scholar, was engrossed in magnets and magnetic effects. In 1831, Michael Faraday theorized that a changing magnetic field is necessary to induce a current in a nearby circuit. This theory is actually the definition of induction. To test his theory, he made a coil by wrapping a paper cylinder with wire. He connected the coil to a device called a galvanometer, and then moved a magnet back and forth inside the cylinder. When the magnet was www.syngress.com Introduction to Wireless Networking, Wardriving, and Kismet • Chapter 1 moved, the galvanometer needle moved, indicating that a current was induced in the coil. This proved that you must have a moving magnetic field for electromagnetic induction to occur. During this experiment, Faraday had not only discovered induc- tion but also had created the world’s first electric generator. Faraday’s initial findings still serve as the basis of modern electromagnetic technology. Around the same time that Faraday worked with electromagnetism, an American professor named Joseph Henry became the first person to transmit a practical electri- cal signal. As a watchmaker, he constructed batteries and experimented with magnets. Henry was the first to wind insulated wires around an iron core to make electromag- nets. Henry worked on a theory known as self-inductance, the inertial characteristic of an electric current. If a current is flowing, it is kept flowing by the property of self- inductance. Henry found that the property of self-inductance is affected by how the circuit is configured, especially by the coiling of wire. Part of his experimentation involved simple signaling. It turns out that Henry had also derived many of the same conclusions that Faraday had. Though Faraday won the race to publish those findings, Henry still is remembered for actually finding a way to communicate with electromagnetic waves. Although Henry never developed his work on electrical signaling on his own, he did help a man by the name of Samuel Morse. In 1832, Morse read about Faraday’s findings regarding inductance, which inspired him to develop his ideas about an emerging technology called the telegraph. Henry actually helped Morse construct a repeater that allowed telegraphy to span long distances, eventually making his Morse Code a worldwide language in which to communicate. Morse introduced the repeater technology with his 1838 patent for a Morse Code telegraph. Like so many great inventions, the telegraph revolutionized the communications world by replacing nearly every other means of communication—including services such as the Pony Express. Exploring Conduction Samuel Morse spent a fair amount of time working on wireless technology, but he also chose to use mediums such as earth and water to pass signals. In 1842, he performed a spectacular demonstration for the public in which he attempted to pass electric current through a cable that was underwater. The ultimate result of the demonstration was wireless communication by conduction, although it was not what he first intended. Morse submerged a mile of insulated cable between Governor’s Island and Castle Garden in New York to prove that a current could pass through wire laid in water. He transmitted a few characters successfully, but, much to his dismay, the communication suddenly www.syngress.com Chapter 1 • Introduction to Wireless Networking, Wardriving, and Kismet halted—sailors on a ship between the islands, unseen to the spectators, raised their ship’s anchor and accidentally pulled up the cable, and not knowing what it was for, proceeded to cut it. Morse faced considerable heckling from the spectators and immediately began modification to the experiment. He successfully retested his