Chapter 4 Number Theory

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4 Number Theory Chapter 4 Number theory Number theory is one of the oldest branches of mathematics, and this chapter is intended to be just an introduction to a vast subject. I start by proving that essentially every integer can be written as a product of powers of primes, a result known as the fundamental theorem of arithmetic. This shows that the primes are the building blocks, or atoms, from which all integers are constructed. The primes are still the subject of intensive research and the source of many unanswered questions. It is ironic that the numbers we learn about first as children are the source of some of mathematics most difficult and interesting questions. 4.1 Greatest common divisors The ideas in this section are simple but their ramifications substantial. We begin by stating a basic result that you may assume as an axiom but which I shall also set as a proof in one of the exercises. Lemma 4.1.1 (Remainder Theorem). Let a and b be integers where b > 0. Then there are unique integers q and r such that a = bq + r where 0 r < b. ≤ The number q is called the quotient and the number r is called the re- mainder. For example, if we consider the pair of natural numbers 14 and 3 then 14 = 3 4 + 2 · 81 82 CHAPTER 4. NUMBER THEORY where 4 is the quotient and 2 is the remainder. Your first reaction to this result should probably be that it looks obvious. You might conclude from this that it is therefore uninteresting. But this would be wrong. It is certainly not hard to understand but despite that it is important. The reason is that whenever we have a question that involves divisibility, it is very likely going to require the use of this result. Example 4.1.2. From the remainder theorem, we know that every natural number n can be written as n = 10q + r where 0 r 9. The integer r is nothing other than the units digit in the usual base≤ 10≤ representation of n. Thus, for example, 42 = 10 4 + 2. Similarly, it is the remainder theorem that tells us that odd numbers× are precisely those that leave remainder 1 when divided by 2. Let a and b be integers. We say that a divides b or that b is divisible by a if there is a q such that b = aq. In other words, there is no remainder. We also say that a is a divisor or factor of b. We write a b to mean the same thing as ‘a divides b’. It is very important to remember| that a b does not a | mean the same thing as b . The latter is a number, the former is a statement about two numbers. Let a, b N. A number d which divides both a and b is called a common divisor of a∈and b. The largest number which divides both a and b is called the greatest common divisor of a and b and is denoted by gcd(a, b). A pair of natural numbers a and b is said to be coprime if gcd(a, b) = 1. For us gcd(0, 0) is undefined but if a = 0 then gcd(a, 0) = a. 6 Example 4.1.3. Consider the numbers 12 and 16. The set of divisors of 12 is 1, 2, 3, 4, 6, 12 . The set of divisors of 16 is 1, 2, 4, 8, 16 . The set of common{ divisors is the} set of numbers that belong{ to both of these} two sets: namely, 1, 2, 4 . The greatest common divisor of 12 and 16 is therefore 4. Thus gcd(12{ , 16)} = 4. One application of greatest common divisors is in simplifying fractions. 12 3 For example, the fraction 16 is equal to the fraction 4 because we can divide out by the common divisor of numerator and denominator. The fraction which results cannot be simplified further and is in its lowest terms. a b Lemma 4.1.4. Let d = gcd(a, b). Then gcd( d , d ) = 1. 4.1. GREATEST COMMON DIVISORS 83 Proof. Because d divides both a and b we may write a = a0d and b = b0d for some natural numbers a0 and b0. We therefore need to prove that gcd(a0, b0) = 1. Suppose that e a0 and e b0. Then a0 = ex and b0 = ey for some natural numbers x and y. Thus| a = exd| and b = eyd. Observe that ed a and ed b and so ed is a common divisor of both a and b. But d is the greatest| common| divisor and so e = 1, as required. Let me paraphrase what the result above says since it is not surprising. If I divide two numbers by their greatest common divisor then the numbers that remain are coprime. This seems intuitively plausible and the proof ensures that our intuition is correct. Example 4.1.5. Greatest common divisors arise naturally in solving lin- ear equations where we require the solutions to be integers. Consider, for example, the linear equation 12x + 16y = 5. If we want our solutions (x, y) to have real number co-ordinates, then it is of course easy to solve this equation and find infinitely many solutions since the solutions form a line in the plane. But suppose now that we require (x, y) Z2; that is, we want the solutions to be integers. In other words, we want to∈ know whether the line contains any points with integer co-ordinates. We can see immediately that this is impossible. We have calculated that gcd(12, 16) = 4. Thus if x and y are integers, the number 4 divides the lefthand side of our equation. But clearly, 4 does not divide the righthand side of our equation. Thus the set (x, y):(x, y) Z2and 12x + 16y = 5 { ∈ } is empty. If the numbers a and b are large, then calculating their gcd in the way I did above would be time-consuming and error-prone. We want to find an efficient method of calculating the greatest common divisor. The following lemma is the basis of just such a method. Lemma 4.1.6. Let a, b N, where b = 0, and let a = bq+r where 0 r < b. Then ∈ 6 ≤ gcd(a, b) = gcd(b, r). 84 CHAPTER 4. NUMBER THEORY Proof. Let d be a common divisor of a and b. Since a = bq + r we have that a bq = r so that d is also a divisor of r. It follows that any divisor of a and b −is also a divisor of b and r. Now let d be a common divisor of b and r. Since a = bq + r we have that d divides a. Thus any divisor of b and r is a divisor of a and b. It follows that the set of common divisors of a and b is the same as the set of common divisors of b and r. Thus gcd(a, b) = gcd(b, r). The point of the above result is that b < a and r < b. So calculat- ing gcd(b, r) will be easier than calculating gcd(a, b) because the numbers involved are smaller. Compare a = b q + r with z }| { a = bq + r . The above result is the basis of an efficient algorithm for computing greatest common divisors. It was described in| {z Propositions} 1 and 2 of Book VII of Euclid. Algorithm 4.1.7 (Euclid’s algorithm). Input: a, b N such that a b and b = 0. Output: gcd(∈ a, b). ≥ 6 Procedure: write a = bq + r where 0 r < b. Then gcd(a, b) = gcd(b, r). If r = 0 then repeat this procedure with≤b and r and so on. The last non-zero remainder6 is gcd(a, b) Example 4.1.8. Let’s calculate gcd(19, 7) using Euclid’s algorithm. I have highlighted the numbers that are involved at each stage. 19 = 7 2 + 5 · 7 = 5 1 + 2 · 5 = 2 2 + 1 · ∗ 2 = 1 2 + 0 · By Lemma 1.3.3 we have that gcd(19, 7) = gcd(7, 5) = gcd(5, 2) = gcd(2, 1) = gcd(1, 0). The last non-zero remainder is 1 and so gcd(19, 7) = 1 and, in this case, the numbers are coprime. 4.1. GREATEST COMMON DIVISORS 85 There are occasions when we need to extract more information from Eu- clid’s algorithm as we shall discover later when we come to deal with prime numbers. The following provides what we need. Theorem 4.1.9 (B´ezout’stheorem). Let a and b be natural numbers. Then there are integers x and y such that gcd(a, b) = xa + yb. I shall prove this theorem by describing an algorithm that will compute the integers x and y above. This is achieved by running Euclid’s algorithm in reverse and is called the extended Euclidean algorithm. The procedure for doing so is outlined below but the details are explained in the example that follows it. Algorithm 4.1.10 (Extended Euclidean algorithm). Input: a, b N where a b and b = 0. ∈ ≥ 6 Output: numbers x, y Z such that gcd(a, b) = xa + yb. Procedure: apply Euclid’s∈ algorithm to a and b; working from bottom to top rewrite each remainder in turn. Example 4.1.11. This is a little involved so I have split the process up into steps. I shall apply the extended Euclidean algorithm to the example I calculated above.
Recommended publications
  • Phase Transition on the Toeplitz Algebra of the Affine Semigroup Over the Natural Numbers
    University of Wollongong Research Online Faculty of Engineering and Information Faculty of Informatics - Papers (Archive) Sciences 1-1-2010 Phase transition on the Toeplitz algebra of the affine semigroup over the natural numbers Marcelo Laca University of Newcastle, Australia Iain F. Raeburn University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/infopapers Part of the Physical Sciences and Mathematics Commons Recommended Citation Laca, Marcelo and Raeburn, Iain F.: Phase transition on the Toeplitz algebra of the affine semigroup over the natural numbers 2010, 643-688. https://ro.uow.edu.au/infopapers/1749 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Phase transition on the Toeplitz algebra of the affine semigroup over the natural numbers Abstract We show that the group of orientation-preserving affine ansformationstr of the rational numbers is quasi- lattice ordered by its subsemigroup N⋊N×. The associated Toeplitz C∗-algebra T(N⋊N×) is universal for isometric representations which are covariant in the sense of Nica. We give a presentation of T(N⋊N×) in terms of generators and relations, and use this to show that the C∗-algebra QN recently introduced by Cuntz is the boundary quotient of in the sense of Crisp and Laca. The Toeplitz algebra T(N⋊N×) carries a natural dynamics σ, which induces the one considered by Cuntz on the quotient QN, and our main result is the computation of the KMSβ (equilibrium) states of the dynamical system (T(N⋊N×),R,σ) for all values of the inverse temperature β.
    [Show full text]
  • Monoid Kernels and Profinite Topologies on the Free Abelian Group
    BULL. AUSTRAL. MATH. SOC. 20M35, 20E18, 20M07, 20K45 VOL. 60 (1999) [391-402] MONOID KERNELS AND PROFINITE TOPOLOGIES ON THE FREE ABELIAN GROUP BENJAMIN STEINBERG To each pseudovariety of Abelian groups residually containing the integers, there is naturally associated a profinite topology on any finite rank free Abelian group. We show in this paper that if the pseudovariety in question has a decidable membership problem, then one can effectively compute membership in the closure of a subgroup and, more generally, in the closure of a rational subset of such a free Abelian group. Several applications to monoid kernels and finite monoid theory are discussed. 1. INTRODUCTION In the early 1990's, the Rhodes' type II conjecture was positively answered by Ash [2] and independently by Ribes and Zalesskii [10]. The type II submonoid, or G-kernel, of a finite monoid is the set of all elements which relate to 1 under any relational morphism with a finite group. Equivalently, an element is of type II if 1 is in the closure of a certain rational language associated to that element in the profinite topology on a free group. The approach of Ribes and Zalesskii was based on calculating the profinite closure of a rational subset of a free group. They were also able to use this approach to calculate the Gp-kernel of a finite monoid. In both cases, it turns out the the closure of a rational subset of the free group in the appropriate profinite topology is again rational. See [7] for a survey of the type II theorem and its motivation.
    [Show full text]
  • (I) Eu ¿ 0 ; Received by the Editors November 23, 1992 And, in Revised Form, April 19, 1993
    proceedings of the american mathematical society Volume 123, Number 1, January 1995 TRIANGULAR UHF ALGEBRAS OVER ARBITRARYFIELDS R. L. BAKER (Communicated by Palle E. T. Jorgensen) Abstract. Let K be an arbitrary field. Let (qn) be a sequence of posi- tive integers, and let there be given a family \f¥nm\n > m} of unital K- monomorphisms *F„m. Tqm(K) —►Tq„(K) such that *¥np*¥pm= %im when- ever m < n , where Tq„(K) is the if-algebra of all q„ x q„ upper trian- gular matrices over K. A triangular UHF (TUHF) K-algebra is any K- algebra that is A'-isomorphic to an algebraic inductive limit of the form &~ = lim( Tq„(K) ; W„m). The first result of the paper is that if the embeddings ^Vnm satisfy certain natural dimensionality conditions and if £? = lim (TPn(K) ; Onm) is an arbitrary TUHF if-algebra, then 5? is A-isomorphic to ^ , only if the supernatural number, N[{pn)], of (q„) is less than or equal to the super- natural number, N[(p„)], of (pn). Thus, if the embeddings i>„m also satisfy the above dimensionality conditions, then S? is À"-isomorphic to F , only if NliPn)] = N[(qn)] ■ The second result of the paper is a nontrivial "triangular" version of the fact that if p, q are positive integers, then there exists a unital A"-monomorphism <P: Mq{K) —>MP(K), only if q\p . The first result of the paper depends directly on the second result. 1. Introduction Let K be a fixed but arbitrary field. In this paper we investigate a certain class of A.-algebras (i.e., algebras over K) called triangular UHF (TUHF) K- algebras.
    [Show full text]
  • Profinite Surface Groups and the Congruence Kernel Of
    Pro¯nite surface groups and the congruence kernel of arithmetic lattices in SL2(R) P. A. Zalesskii* Abstract Let X be a proper, nonsingular, connected algebraic curve of genus g over the ¯eld C of complex numbers. The algebraic fundamental group ¡ = ¼1(X) in the sense of SGA-1 [1971] is the pro¯nite completion of top the fundamental group ¼1 (X) of a compact oriented 2-manifold. We prove that every projective normal (respectively, caracteristic, accessible) subgroup of ¡ is isomorphic to a normal (respectively, caracteristic, accessible) subgroup of a free pro¯nite group. We use this description to give a complete solution of the congruence subgroup problem for aritmetic lattices in SL2(R). Introduction Let X be a proper, nonsingular, connected algebraic curve of genus g over the ¯eld C of complex numbers. As a topological space X is a compact oriented 2-manifold and is simply a sphere with g handles top added. The group ¦ = ¼1 (X) is called a surface group and has 2g generators ai; bi (i = 1; : : : ; g) subject to one relation [a1; b1][a2; b2] ¢ ¢ ¢ [ag; bg] = 1. The subgroup structure of ¦ is well known. Namely, if H is a subgroup of ¦ of ¯nite index n, then H is again a surface group of genus n(g ¡ 1) + 1. If n is in¯nite, then H is free. The algebraic fundamental group ¡ = ¼1(X) in the sense of SGA-1 [1971] is the pro¯nite completion top of the fundamental group ¼1 (X) in the topological sense (see Exp. 10, p. 272 in [SGA-1]).
    [Show full text]
  • One Dimensional Groups Definable in the P-Adic Numbers
    One dimensional groups definable in the p-adic numbers Juan Pablo Acosta L´opez November 27, 2018 Abstract A complete list of one dimensional groups definable in the p-adic num- bers is given, up to a finite index subgroup and a quotient by a finite subgroup. 1 Introduction The main result of the following is Proposition 8.1. There we give a complete list of all one dimensional groups definable in the p-adics, up to finite index and quotient by finite kernel. This is similar to the list of all groups definable in a real closed field which are connected and one dimensional obtained in [7]. The starting point is the following result. Proposition 1.1. Suppose T is a complete first order theory in a language extending the language of rings, such that T extends the theory of fields. Suppose T is algebraically bounded and dependent. Let G be a definable group. If G arXiv:1811.09854v1 [math.LO] 24 Nov 2018 is definably amenable then there is an algebraic group H and a type-definable subgroup T G of bounded index and a type-definable group morphism T H with finite kernel.⊂ → This is found in Theorem 2.19 of [8]. We just note that algebraic boundedness is seen in greater generality than needed in [5], and it can also be extracted from the proofs in cell decomposition [4]. That one dimensional groups are definably amenable comes from the following result. 1 Proposition 1.2. Suppose G is a definable group in Qp which is one dimen- sional.
    [Show full text]
  • Number Theory Learning Module 3 — the Greatest Common Divisor 1
    Number Theory Learning Module 3 — The Greatest Common Divisor 1 1 Objectives. • Understand the definition of greatest common divisor (gcd). • Learn the basic the properties of the gcd. • Understand Euclid’s algorithm. • Learn basic proofing techniques for greatest common divisors. 2 The Greatest Common Divisor Classical Greek mathematics concerned itself mostly with geometry. The notion of measurement is fundamental to ge- ometry, and the Greeks were the first to provide a formal foundation for this concept. Surprisingly, however, they never used fractions to express measurements (and never developed an arithmetic of fractions). They expressed geometrical measurements as relations between ratios. In numerical terms, these are statements like: 168 is to 120 as 7 is to 4, (2.1) which we would write today as 168{120 7{5. Statements such as (2.1) were natural to greek mathematicians because they viewed measuring as the process of finding a “common integral measure”. For example, we have: 168 24 ¤ 7 120 24 ¤ 5; so that we can use the integer 24 as a “common unit” to measure the numbers 168 and 120. Going back to our example, notice that 24 is not the only common integral measure for the integers 168 and 120, since we also have, for example, 168 6 ¤ 28 and 120 6 ¤ 20. The number 24, however, is the largest integer that can be used to “measure” both 168 and 120, and gives the representation in lowest terms for their ratio. This motivates the following definition: Definition 2.1. Let a and b be integers that are not both zero.
    [Show full text]
  • Primality Testing for Beginners
    STUDENT MATHEMATICAL LIBRARY Volume 70 Primality Testing for Beginners Lasse Rempe-Gillen Rebecca Waldecker http://dx.doi.org/10.1090/stml/070 Primality Testing for Beginners STUDENT MATHEMATICAL LIBRARY Volume 70 Primality Testing for Beginners Lasse Rempe-Gillen Rebecca Waldecker American Mathematical Society Providence, Rhode Island Editorial Board Satyan L. Devadoss John Stillwell Gerald B. Folland (Chair) Serge Tabachnikov The cover illustration is a variant of the Sieve of Eratosthenes (Sec- tion 1.5), showing the integers from 1 to 2704 colored by the number of their prime factors, including repeats. The illustration was created us- ing MATLAB. The back cover shows a phase plot of the Riemann zeta function (see Appendix A), which appears courtesy of Elias Wegert (www.visual.wegert.com). 2010 Mathematics Subject Classification. Primary 11-01, 11-02, 11Axx, 11Y11, 11Y16. For additional information and updates on this book, visit www.ams.org/bookpages/stml-70 Library of Congress Cataloging-in-Publication Data Rempe-Gillen, Lasse, 1978– author. [Primzahltests f¨ur Einsteiger. English] Primality testing for beginners / Lasse Rempe-Gillen, Rebecca Waldecker. pages cm. — (Student mathematical library ; volume 70) Translation of: Primzahltests f¨ur Einsteiger : Zahlentheorie - Algorithmik - Kryptographie. Includes bibliographical references and index. ISBN 978-0-8218-9883-3 (alk. paper) 1. Number theory. I. Waldecker, Rebecca, 1979– author. II. Title. QA241.R45813 2014 512.72—dc23 2013032423 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.
    [Show full text]
  • 1. the Euclidean Algorithm the Common Divisors of Two Numbers Are the Numbers That Are Divisors of Both of Them
    1. The Euclidean Algorithm The common divisors of two numbers are the numbers that are divisors of both of them. For example, the divisors of 12 are 1, 2, 3, 4, 6, 12. The divisors of 18 are 1, 2, 3, 6, 9, 18. Thus, the common divisors of 12 and 18 are 1, 2, 3, 6. The greatest among these is, perhaps unsurprisingly, called the of 12 and 18. The usual mathematical notation for the greatest common divisor of two integers a and b are denoted by (a, b). Hence, (12, 18) = 6. The greatest common divisor is important for many reasons. For example, it can be used to calculate the of two numbers, i.e., the smallest positive integer that is a multiple of these numbers. The least common multiple of the numbers a and b can be calculated as ab . (a, b) For example, the least common multiple of 12 and 18 is 12 · 18 12 · 18 = . (12, 18) 6 Note that, in order to calculate the right-hand side here it would be counter- productive to multiply 12 and 18 together. It is much easier to do the calculation as follows: 12 · 18 12 = = 2 · 18 = 36. 6 6 · 18 That is, the least common multiple of 12 and 18 is 36. It is important to know the least common multiple when adding two fractions. For example, noting that 12 · 3 = 36 and 18 · 2 = 36, we have 5 7 5 · 3 7 · 2 15 14 15 + 14 29 + = + = + = = . 12 18 12 · 3 18 · 2 36 36 36 36 Note that this way of calculating the least common multiple works only for two numbers.
    [Show full text]
  • The Pollard's Rho Method for Factoring Numbers
    Foote 1 Corey Foote Dr. Thomas Kent Honors Number Theory Date: 11-30-11 The Pollard’s Rho Method for Factoring Numbers We are all familiar with the concepts of prime and composite numbers. We also know that a number is either prime or a product of primes. The Fundamental Theorem of Arithmetic states that every integer n ≥ 2 is either a prime or a product of primes, and the product is unique apart from the order in which the factors appear (Long, 55). The number 7, for example, is a prime number. It has only two factors, itself and 1. On the other hand 24 has a prime factorization of 2 3 × 3. Because its factors are not just 24 and 1, 24 is considered a composite number. The numbers 7 and 24 are easier to factor than larger numbers. We will look at the Sieve of Eratosthenes, an efficient factoring method for dealing with smaller numbers, followed by Pollard’s rho, a method that allows us how to factor large numbers into their primes. The Sieve of Eratosthenes allows us to find the prime numbers up to and including a particular number, n. First, we find the prime numbers that are less than or equal to √͢. Then we use these primes to see which of the numbers √͢ ≤ n - k, ..., n - 2, n - 1 ≤ n these primes properly divide. The remaining numbers are the prime numbers that are greater than √͢ and less than or equal to n. This method works because these prime numbers clearly cannot have any prime factor less than or equal to √͢, as the number would then be composite.
    [Show full text]
  • RSA and Primality Testing
    RSA and Primality Testing Joan Boyar, IMADA, University of Southern Denmark Studieretningsprojekter 2010 1 / 81 Outline Outline Symmetric key ■ Symmetric key cryptography Public key Number theory ■ RSA Public key cryptography RSA Modular ■ exponentiation Introduction to number theory RSA RSA ■ RSA Greatest common divisor Primality testing ■ Modular exponentiation Correctness of RSA Digital signatures ■ Greatest common divisor ■ Primality testing ■ Correctness of RSA ■ Digital signatures with RSA 2 / 81 Caesar cipher Outline Symmetric key Public key Number theory A B C D E F G H I J K L M N O RSA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 RSA Modular D E F G H I J K L M N O P Q R exponentiation RSA 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 RSA Greatest common divisor Primality testing P Q R S T U V W X Y Z Æ Ø Å Correctness of RSA Digital signatures 15 16 17 18 19 20 21 22 23 24 25 26 27 28 S T U V W X Y Z Æ Ø Å A B C 18 19 20 21 22 23 24 25 26 27 28 0 1 2 E(m)= m + 3(mod 29) 3 / 81 Symmetric key systems Outline Suppose the following was encrypted using a Caesar cipher and the Symmetric key Public key Danish alphabet. The key is unknown. What does it say? Number theory RSA RSA Modular exponentiation RSA ZQOØQOØ, RI. RSA Greatest common divisor Primality testing Correctness of RSA Digital signatures 4 / 81 Symmetric key systems Outline Suppose the following was encrypted using a Caesar cipher and the Symmetric key Public key Danish alphabet.
    [Show full text]
  • MATHEMATICS Algebra, Geometry, Combinatorics
    MATHEMATICS Algebra, geometry, combinatorics Dr Mark V Lawson November 17, 2014 ii Contents Preface v Introduction vii 1 The nature of mathematics 1 1.1 The scope of mathematics . .1 1.2 Pure versus applied mathematics . .3 1.3 The antiquity of mathematics . .4 1.4 The modernity of mathematics . .6 1.5 The legacy of the Greeks . .8 1.6 The legacy of the Romans . .8 1.7 What they didn't tell you in school . .9 1.8 Further reading and links . 10 2 Proofs 13 2.1 How do we know what we think is true is true? . 14 2.2 Three fundamental assumptions of logic . 16 2.3 Examples of proofs . 17 2.3.1 Proof 1 . 17 2.3.2 Proof 2 . 20 2.3.3 Proof 3 . 22 2.3.4 Proof 4 . 23 2.3.5 Proof 5 . 25 2.4 Axioms . 31 2.5 Mathematics and the real world . 35 2.6 Proving something false . 35 2.7 Key points . 36 2.8 Mathematical creativity . 37 i ii CONTENTS 2.9 Set theory: the language of mathematics . 37 2.10 Proof by induction . 46 3 High-school algebra revisited 51 3.1 The rules of the game . 51 3.1.1 The axioms . 51 3.1.2 Indices . 57 3.1.3 Sigma notation . 60 3.1.4 Infinite sums . 62 3.2 Solving quadratic equations . 64 3.3 *Order . 70 3.4 *The real numbers . 71 4 Number theory 75 4.1 The remainder theorem . 75 4.2 Greatest common divisors .
    [Show full text]
  • Valuations, Orderings, and Milnor K-Theory Mathematical Surveys and Monographs
    http://dx.doi.org/10.1090/surv/124 Valuations, Orderings, and Milnor K-Theory Mathematical Surveys and Monographs Volume 124 Valuations, Orderings, and Milnor K-Theory Ido Efrat American Mathematical Society EDITORIAL COMMITTEE Jerry L. Bona Peter S. Landweber Michael G. Eastwood Michael P. Loss J. T. Stafford, Chair 2000 Mathematics Subject Classification. Primary 12J10, 12J15; Secondary 12E30, 12J20, 19F99. For additional information and updates on this book, visit www.ams.org/bookpages/surv-124 Library of Congress Cataloging-in-Publication Data Efrat, Ido, 1963- Valuations, orderings, and Milnor if-theory / Ido Efrat. p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 124) Includes bibliographical references and index. ISBN 0-8218-4041-X (alk. paper) 1. Valuation theory. 2. Ordered fields. 3. X-theory I. Title. II. Mathematical surveys and monographs ; no. 124. QA247.E3835 2006 515/.78-dc22 2005057091 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. © 2006 by the American Mathematical Society.
    [Show full text]