Sorting Networks

Total Page:16

File Type:pdf, Size:1020Kb

Sorting Networks Sorting Networks Indranil Banerjee Parallel Sorting: Hardware Level Sorting Networks Parallelism Indranil Banerjee George Mason University [email protected] March 3, 2016 Sorting Networks Indranil Banerjee GMU March 3, 2016 1 / 19 Sorting Networks Hardware Level Parallelism Indranil Banerjee Parallel Sorting: Hardware Level There are mainly two approaches to sorting in parallel: Parallelism 1 Non-oblivious: Comparisons are data dependent Example: Parallel Quicksort, Parallel Merge Sort etc. 2 Oblivious: Comparisons are precomputed and does not depend on the results of previous comparisons. Example: Sorting Networks Sorting Networks Indranil Banerjee GMU March 3, 2016 2 / 19 Sorting Networks Oblivious Sorting Indranil Banerjee Parallel Sorting: Hardware Level Parallelism 1 Since the comparisons are not data dependent, we can precoumpute the comparisons and directly implemented them inside a hardware 2 An oblivious sorting algorithm proceeds in stages 3 Each stage consists of a number of comparisons which occur concurrently 4 We will look at one such algorithm: Batcher's Odd-Even Merge Sort Sorting Networks Indranil Banerjee GMU March 3, 2016 3 / 19 Sorting Networks Odd-Even Merge Sort Indranil Banerjee Parallel Sorting: Hardware Level The Algorithm: X Parallelism OddEvenMergeSort( ) Input: Array X = fx0; x1; :::; xn−1g (Assume n is power of 2) Output: Sorted sequence X 1 XL = fx0; :::; xn=2−1g and XR = fxn=2; :::; xn−1g 2 If n > 1: OddEvenMergeSort(XL) OddEvenMergeSort(XR ) OddEvenMerge(XL; XR ) Recursive Sorting Networks Indranil Banerjee GMU March 3, 2016 4 / 19 Sorting Networks Odd-Even Merge Indranil Banerjee Parallel Sorting: The Algorithm: X Hardware OddEvenMerge( ) Level Parallelism Input: An arry X whose two halvs XL and XR are sorted (Assume n = jXLj = jXR j is power of 2) Output: Sorted sequence X 1 If n > 2 Then: Let XEven = fx0; x2; :::; xng and XOdd = fx1; x3; :::xn−1g i OddEvenMerge(XEven) ii OddEvenMerge(XOdd ) iii Pardo: Compare(x2i−1; x2i ) While (1 ≤ i ≤ (n − 2)=2) 2 Compare(x0; x1) Sorting Networks Indranil Banerjee GMU March 3, 2016 5 / 19 Sorting Networks Sorting Network Indranil Banerjee Parallel A Comparator: Sorting: Hardware Level Parallelism Source: http://parallelcomp.uw.hu/ch09lev1sec2.html Sorting Networks Indranil Banerjee GMU March 3, 2016 6 / 19 Sorting Networks Sorting Network Indranil Banerjee Series Parallel Comparisons: Parallel Sorting: Hardware Level Parallelism Figure: What is this sorting algorithm? Source: http://www.cs.cmu.edu/ tcortina/15110m14/ps9/ Sorting Networks Indranil~ Banerjee GMU March 3, 2016 7 / 19 Sorting Networks Sorting Network Indranil Banerjee Batcher's Odd-Even Merge Sort Network: Parallel Sorting: Hardware Level Parallelism M2 M4 M2 M8 M2 M4 M2 Figure: The comparator blocks are individual merging networks Sorting Networks Indranil Banerjee GMU March 3, 2016 8 / 19 Sorting Networks Sorting Network Indranil Banerjee Batcher's Odd-Even Merging Network: Parallel Sorting: Hardware Level M2 Parallelism M4 Figure: Merging networks for n = 2; 4 Sorting Networks Indranil Banerjee GMU March 3, 2016 9 / 19 Sorting Networks Sorting Network Indranil Banerjee Batcher's Odd-Even Merge Sort Network (Expanded): Parallel Sorting: 3 Hardware Level Parallelism 6 7 1 2 9 5 8 Sorting Networks Indranil Banerjee GMU March 3, 2016 10 / 19 Sorting Networks Sorting Network Indranil Banerjee Batcher's Odd-Even Merge Sort Network (Expanded): Parallel Sorting: 3 Hardware Level Parallelism 6 1 7 2 9 5 8 Sorting Networks Indranil Banerjee GMU March 3, 2016 11 / 19 Sorting Networks Sorting Network Indranil Banerjee Batcher's Odd-Even Merge Sort Network (Expanded): Parallel Sorting: 1 Hardware Level Parallelism 6 3 7 2 8 5 9 Sorting Networks Indranil Banerjee GMU March 3, 2016 12 / 19 Sorting Networks Sorting Network Indranil Banerjee Batcher's Odd-Even Merge Sort Network (Expanded): Parallel Sorting: 1 Hardware Level Parallelism 3 6 7 2 5 8 9 Sorting Networks Indranil Banerjee GMU March 3, 2016 13 / 19 Sorting Networks Sorting Network Indranil Banerjee Batcher's Odd-Even Merge Sort Network (Expanded): Parallel Sorting: 1 Hardware Level Parallelism 3 6 7 2 5 8 9 Sorting Networks Indranil Banerjee GMU March 3, 2016 14 / 19 Sorting Networks Sorting Network Indranil Banerjee Batcher's Odd-Even Merge Sort Network (Expanded): Parallel Sorting: 1 Hardware Level Parallelism 3 2 5 6 7 8 9 Sorting Networks Indranil Banerjee GMU March 3, 2016 15 / 19 Sorting Networks Sorting Network Indranil Banerjee Batcher's Odd-Even Merge Sort Network (Expanded): Parallel Sorting: 1 Hardware Level Parallelism 2 3 5 6 7 8 9 Sorting Networks Indranil Banerjee GMU March 3, 2016 16 / 19 Sorting Networks Proving Correctness: The 0-1 Principle Indranil Banerjee Parallel Sorting: Hardware Level Parallelism 1 The correctness of the any oblivious sorting algorithm can be proven using the 0-1-principle 2 0-1-principle: If a sorting network sorts every sequence of 0's and 1's, then it sorts every arbitrary sequence of values. Complexity? Sorting Networks Indranil Banerjee GMU March 3, 2016 17 / 19 Sorting Networks Proving Correctness: The 0-1 Principle Indranil Banerjee Parallel Sorting: Hardware Level 1 The correctness of the any oblivious sorting algorithm can Parallelism be proven using the 0-1-principle 2 0-1-principle: If a sorting network sorts every sequence of 0's and 1's, then it sorts every arbitrary sequence of values. Complexity? Can be answered directly by looking at the network. 2 1 Size: O(n log n) (This is the serial runtime) 2 2 Depth: O(log n) (This is the parallel runtime) Sorting Networks Indranil Banerjee GMU March 3, 2016 18 / 19 Sorting Networks Q&A Indranil Banerjee Parallel Sorting: Hardware Level Parallelism 1 Can we have sorting networks with O(log n) depth and O(n log n) size? 2 How do we implement such networks? Sorting Networks Indranil Banerjee GMU March 3, 2016 19 / 19.
Recommended publications
  • Overview of Sorting Algorithms
    Unit 7 Sorting Algorithms Simple Sorting algorithms Quicksort Improving Quicksort Overview of Sorting Algorithms Given a collection of items we want to arrange them in an increasing or decreasing order. You probably have seen a number of sorting algorithms including ¾ selection sort ¾ insertion sort ¾ bubble sort ¾ quicksort ¾ tree sort using BST's In terms of efficiency: ¾ average complexity of the first three is O(n2) ¾ average complexity of quicksort and tree sort is O(n lg n) ¾ but its worst case is still O(n2) which is not acceptable In this section, we ¾ review insertion, selection and bubble sort ¾ discuss quicksort and its average/worst case analysis ¾ show how to eliminate tail recursion ¾ present another sorting algorithm called heapsort Unit 7- Sorting Algorithms 2 Selection Sort Assume that data ¾ are integers ¾ are stored in an array, from 0 to size-1 ¾ sorting is in ascending order Algorithm for i=0 to size-1 do x = location with smallest value in locations i to size-1 swap data[i] and data[x] end Complexity If array has n items, i-th step will perform n-i operations First step performs n operations second step does n-1 operations ... last step performs 1 operatio. Total cost : n + (n-1) +(n-2) + ... + 2 + 1 = n*(n+1)/2 . Algorithm is O(n2). Unit 7- Sorting Algorithms 3 Insertion Sort Algorithm for i = 0 to size-1 do temp = data[i] x = first location from 0 to i with a value greater or equal to temp shift all values from x to i-1 one location forwards data[x] = temp end Complexity Interesting operations: comparison and shift i-th step performs i comparison and shift operations Total cost : 1 + 2 + ..
    [Show full text]
  • Batcher's Algorithm
    18.310 lecture notes Fall 2010 Batcher’s Algorithm Prof. Michel Goemans Perhaps the most restrictive version of the sorting problem requires not only no motion of the keys beyond compare-and-switches, but also that the plan of comparison-and-switches be fixed in advance. In each of the methods mentioned so far, the comparison to be made at any time often depends upon the result of previous comparisons. For example, in HeapSort, it appears at first glance that we are making only compare-and-switches between pairs of keys, but the comparisons we perform are not fixed in advance. Indeed when fixing a headless heap, we move either to the left child or to the right child depending on which child had the largest element; this is not fixed in advance. A sorting network is a fixed collection of comparison-switches, so that all comparisons and switches are between keys at locations that have been specified from the beginning. These comparisons are not dependent on what has happened before. The corresponding sorting algorithm is said to be non-adaptive. We will describe a simple recursive non-adaptive sorting procedure, named Batcher’s Algorithm after its discoverer. It is simple and elegant but has the disadvantage that it requires on the order of n(log n)2 comparisons. which is larger by a factor of the order of log n than the theoretical lower bound for comparison sorting. For a long time (ten years is a long time in this subject!) nobody knew if one could find a sorting network better than this one.
    [Show full text]
  • Mergesort and Quicksort ! Merge Two Halves to Make Sorted Whole
    Mergesort Basic plan: ! Divide array into two halves. ! Recursively sort each half. Mergesort and Quicksort ! Merge two halves to make sorted whole. • mergesort • mergesort analysis • quicksort • quicksort analysis • animations Reference: Algorithms in Java, Chapters 7 and 8 Copyright © 2007 by Robert Sedgewick and Kevin Wayne. 1 3 Mergesort and Quicksort Mergesort: Example Two great sorting algorithms. ! Full scientific understanding of their properties has enabled us to hammer them into practical system sorts. ! Occupy a prominent place in world's computational infrastructure. ! Quicksort honored as one of top 10 algorithms of 20th century in science and engineering. Mergesort. ! Java sort for objects. ! Perl, Python stable. Quicksort. ! Java sort for primitive types. ! C qsort, Unix, g++, Visual C++, Python. 2 4 Merging Merging. Combine two pre-sorted lists into a sorted whole. How to merge efficiently? Use an auxiliary array. l i m j r aux[] A G L O R H I M S T mergesort k mergesort analysis a[] A G H I L M quicksort quicksort analysis private static void merge(Comparable[] a, Comparable[] aux, int l, int m, int r) animations { copy for (int k = l; k < r; k++) aux[k] = a[k]; int i = l, j = m; for (int k = l; k < r; k++) if (i >= m) a[k] = aux[j++]; merge else if (j >= r) a[k] = aux[i++]; else if (less(aux[j], aux[i])) a[k] = aux[j++]; else a[k] = aux[i++]; } 5 7 Mergesort: Java implementation of recursive sort Mergesort analysis: Memory Q. How much memory does mergesort require? A. Too much! public class Merge { ! Original input array = N.
    [Show full text]
  • Hacking a Google Interview – Handout 2
    Hacking a Google Interview – Handout 2 Course Description Instructors: Bill Jacobs and Curtis Fonger Time: January 12 – 15, 5:00 – 6:30 PM in 32‐124 Website: http://courses.csail.mit.edu/iap/interview Classic Question #4: Reversing the words in a string Write a function to reverse the order of words in a string in place. Answer: Reverse the string by swapping the first character with the last character, the second character with the second‐to‐last character, and so on. Then, go through the string looking for spaces, so that you find where each of the words is. Reverse each of the words you encounter by again swapping the first character with the last character, the second character with the second‐to‐last character, and so on. Sorting Often, as part of a solution to a question, you will need to sort a collection of elements. The most important thing to remember about sorting is that it takes O(n log n) time. (That is, the fastest sorting algorithm for arbitrary data takes O(n log n) time.) Merge Sort: Merge sort is a recursive way to sort an array. First, you divide the array in half and recursively sort each half of the array. Then, you combine the two halves into a sorted array. So a merge sort function would look something like this: int[] mergeSort(int[] array) { if (array.length <= 1) return array; int middle = array.length / 2; int firstHalf = mergeSort(array[0..middle - 1]); int secondHalf = mergeSort( array[middle..array.length - 1]); return merge(firstHalf, secondHalf); } The algorithm relies on the fact that one can quickly combine two sorted arrays into a single sorted array.
    [Show full text]
  • Data Structures & Algorithms
    DATA STRUCTURES & ALGORITHMS Tutorial 6 Questions SORTING ALGORITHMS Required Questions Question 1. Many operations can be performed faster on sorted than on unsorted data. For which of the following operations is this the case? a. checking whether one word is an anagram of another word, e.g., plum and lump b. findin the minimum value. c. computing an average of values d. finding the middle value (the median) e. finding the value that appears most frequently in the data Question 2. In which case, the following sorting algorithm is fastest/slowest and what is the complexity in that case? Explain. a. insertion sort b. selection sort c. bubble sort d. quick sort Question 3. Consider the sequence of integers S = {5, 8, 2, 4, 3, 6, 1, 7} For each of the following sorting algorithms, indicate the sequence S after executing each step of the algorithm as it sorts this sequence: a. insertion sort b. selection sort c. heap sort d. bubble sort e. merge sort Question 4. Consider the sequence of integers 1 T = {1, 9, 2, 6, 4, 8, 0, 7} Indicate the sequence T after executing each step of the Cocktail sort algorithm (see Appendix) as it sorts this sequence. Advanced Questions Question 5. A variant of the bubble sorting algorithm is the so-called odd-even transposition sort . Like bubble sort, this algorithm a total of n-1 passes through the array. Each pass consists of two phases: The first phase compares array[i] with array[i+1] and swaps them if necessary for all the odd values of of i.
    [Show full text]
  • Sorting Networks on Restricted Topologies Arxiv:1612.06473V2 [Cs
    Sorting Networks On Restricted Topologies Indranil Banerjee Dana Richards Igor Shinkar [email protected] [email protected] [email protected] George Mason University George Mason University UC Berkeley October 9, 2018 Abstract The sorting number of a graph with n vertices is the minimum depth of a sorting network with n inputs and n outputs that uses only the edges of the graph to perform comparisons. Many known results on sorting networks can be stated in terms of sorting numbers of different classes of graphs. In this paper we show the following general results about the sorting number of graphs. 1. Any n-vertex graph that contains a simple path of length d has a sorting network of depth O(n log(n=d)). 2. Any n-vertex graph with maximal degree ∆ has a sorting network of depth O(∆n). We also provide several results relating the sorting number of a graph with its rout- ing number, size of its maximal matching, and other well known graph properties. Additionally, we give some new bounds on the sorting number for some typical graphs. 1 Introduction In this paper we study oblivious sorting algorithms. These are sorting algorithms whose sequence of comparisons is made in advance, before seeing the input, such that for any input of n numbers the value of the i'th output is smaller or equal to the value of the j'th arXiv:1612.06473v2 [cs.DS] 20 Jan 2017 output for all i < j. That is, for any permutation of the input out of the n! possible, the output of the algorithm must be sorted.
    [Show full text]
  • 13 Basic Sorting Algorithms
    Concise Notes on Data Structures and Algorithms Basic Sorting Algorithms 13 Basic Sorting Algorithms 13.1 Introduction Sorting is one of the most fundamental and important data processing tasks. Sorting algorithm: An algorithm that rearranges records in lists so that they follow some well-defined ordering relation on values of keys in each record. An internal sorting algorithm works on lists in main memory, while an external sorting algorithm works on lists stored in files. Some sorting algorithms work much better as internal sorts than external sorts, but some work well in both contexts. A sorting algorithm is stable if it preserves the original order of records with equal keys. Many sorting algorithms have been invented; in this chapter we will consider the simplest sorting algorithms. In our discussion in this chapter, all measures of input size are the length of the sorted lists (arrays in the sample code), and the basic operation counted is comparison of list elements (also called keys). 13.2 Bubble Sort One of the oldest sorting algorithms is bubble sort. The idea behind it is to make repeated passes through the list from beginning to end, comparing adjacent elements and swapping any that are out of order. After the first pass, the largest element will have been moved to the end of the list; after the second pass, the second largest will have been moved to the penultimate position; and so forth. The idea is that large values “bubble up” to the top of the list on each pass. A Ruby implementation of bubble sort appears in Figure 1.
    [Show full text]
  • Title the Complexity of Topological Sorting Algorithms Author(S)
    Title The Complexity of Topological Sorting Algorithms Author(s) Shoudai, Takayoshi Citation 数理解析研究所講究録 (1989), 695: 169-177 Issue Date 1989-06 URL http://hdl.handle.net/2433/101392 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University 数理解析研究所講究録 第 695 巻 1989 年 169-177 169 Topological Sorting の NLOG 完全性について -The Complexity of Topological Sorting Algorithms- 正代 隆義 Takayoshi Shoudai Department of Mathematics, Kyushu University We consider the following problem: Given a directed acyclic graph $G$ and vertices $s$ and $t$ , is $s$ ordered before $t$ in the topological order generated by a given topological sorting algorithm? For known algorithms, we show that these problems are log-space complete for NLOG. It also contains the lexicographically first topological sorting problem. The algorithms use the result that NLOG is closed under conplementation. 1. Introduction The topological sorting problem is, given a directed acyclic graph $G=(V, E)$ , to find a total ordering of its vertices such that if $(v, w)$ is an edge then $v$ is ordered before $w$ . It has important applications for analyzing programs and arranging the words in the glossary [6]. Moreover, it is used in designing many efficient sequential algorithms, for example, the maximum flow problem [11]. Some techniques for computing topological orders have been developed. The algorithm by Knuth [6] that computes the lexicographically first topological order runs in time $O(|E|)$ . Tarjan [11] also devised an $O(|E|)$ time algorithm by employ- ing the depth-first search method. Dekel, Nassimi and Sahni [4] showed a parallel algorithm using the parallel matrix multiplication technique. Ruzzo also devised a simple $NL^{*}$ -algorithm as is stated in [3].
    [Show full text]
  • Quick Sort Algorithm Song Qin Dept
    Quick Sort Algorithm Song Qin Dept. of Computer Sciences Florida Institute of Technology Melbourne, FL 32901 ABSTRACT each iteration. Repeat this on the rest of the unsorted region Given an array with n elements, we want to rearrange them in without the first element. ascending order. In this paper, we introduce Quick Sort, a Bubble sort works as follows: keep passing through the list, divide-and-conquer algorithm to sort an N element array. We exchanging adjacent element, if the list is out of order; when no evaluate the O(NlogN) time complexity in best case and O(N2) exchanges are required on some pass, the list is sorted. in worst case theoretically. We also introduce a way to approach the best case. Merge sort [4] has a O(NlogN) time complexity. It divides the 1. INTRODUCTION array into two subarrays each with N/2 items. Conquer each Search engine relies on sorting algorithm very much. When you subarray by sorting it. Unless the array is sufficiently small(one search some key word online, the feedback information is element left), use recursion to do this. Combine the solutions to brought to you sorted by the importance of the web page. the subarrays by merging them into single sorted array. 2 Bubble, Selection and Insertion Sort, they all have an O(N2) time In Bubble sort, Selection sort and Insertion sort, the O(N ) time complexity that limits its usefulness to small number of element complexity limits the performance when N gets very big. no more than a few thousand data points.
    [Show full text]
  • Heapsort Vs. Quicksort
    Heapsort vs. Quicksort Most groups had sound data and observed: – Random problem instances • Heapsort runs perhaps 2x slower on small instances • It’s even slower on larger instances – Nearly-sorted instances: • Quicksort is worse than Heapsort on large instances. Some groups counted comparisons: • Heapsort uses more comparisons on random data Most groups concluded: – Experiments show that MH2 predictions are correct • At least for random data 1 CSE 202 - Dynamic Programming Sorting Random Data N Time (us) Quicksort Heapsort 10 19 21 100 173 293 1,000 2,238 5,289 10,000 28,736 78,064 100,000 355,949 1,184,493 “HeapSort is definitely growing faster (in running time) than is QuickSort. ... This lends support to the MH2 model.” Does it? What other explanations are there? 2 CSE 202 - Dynamic Programming Sorting Random Data N Number of comparisons Quicksort Heapsort 10 54 56 100 987 1,206 1,000 13,116 18,708 10,000 166,926 249,856 100,000 2,050,479 3,136,104 But wait – the number of comparisons for Heapsort is also going up faster that for Quicksort. This has nothing to do with the MH2 analysis. How can we see if MH2 analysis is relevant? 3 CSE 202 - Dynamic Programming Sorting Random Data N Time (us) Compares Time / compare (ns) Quicksort Heapsort Quicksort Heapsort Quicksort Heapsort 10 19 21 54 56 352 375 100 173 293 987 1,206 175 243 1,000 2,238 5,289 13,116 18,708 171 283 10,000 28,736 78,064 166,926 249,856 172 312 100,000 355,949 1,184,493 2,050,479 3,136,104 174 378 Nice data! – Why does N = 10 take so much longer per comparison? – Why does Heapsort always take longer than Quicksort? – Is Heapsort growth as predicted by MH2 model? • Is N large enough to be interesting?? (Machine is a Sun Ultra 10) 4 CSE 202 - Dynamic Programming ..
    [Show full text]
  • Selected Sorting Algorithms
    Selected Sorting Algorithms CS 165: Project in Algorithms and Data Structures Michael T. Goodrich Some slides are from J. Miller, CSE 373, U. Washington Why Sorting? • Practical application – People by last name – Countries by population – Search engine results by relevance • Fundamental to other algorithms • Different algorithms have different asymptotic and constant-factor trade-offs – No single ‘best’ sort for all scenarios – Knowing one way to sort just isn’t enough • Many to approaches to sorting which can be used for other problems 2 Problem statement There are n comparable elements in an array and we want to rearrange them to be in increasing order Pre: – An array A of data records – A value in each data record – A comparison function • <, =, >, compareTo Post: – For each distinct position i and j of A, if i < j then A[i] ≤ A[j] – A has all the same data it started with 3 Insertion sort • insertion sort: orders a list of values by repetitively inserting a particular value into a sorted subset of the list • more specifically: – consider the first item to be a sorted sublist of length 1 – insert the second item into the sorted sublist, shifting the first item if needed – insert the third item into the sorted sublist, shifting the other items as needed – repeat until all values have been inserted into their proper positions 4 Insertion sort • Simple sorting algorithm. – n-1 passes over the array – At the end of pass i, the elements that occupied A[0]…A[i] originally are still in those spots and in sorted order.
    [Show full text]
  • Visualizing Sorting Algorithms Brian Faria Rhode Island College, [email protected]
    Rhode Island College Digital Commons @ RIC Honors Projects Overview Honors Projects 2017 Visualizing Sorting Algorithms Brian Faria Rhode Island College, [email protected] Follow this and additional works at: https://digitalcommons.ric.edu/honors_projects Part of the Education Commons, Mathematics Commons, and the Other Computer Sciences Commons Recommended Citation Faria, Brian, "Visualizing Sorting Algorithms" (2017). Honors Projects Overview. 127. https://digitalcommons.ric.edu/honors_projects/127 This Honors is brought to you for free and open access by the Honors Projects at Digital Commons @ RIC. It has been accepted for inclusion in Honors Projects Overview by an authorized administrator of Digital Commons @ RIC. For more information, please contact [email protected]. VISUALIZING SORTING ALGORITHMS By Brian J. Faria An Honors Project Submitted in Partial Fulfillment Of the Requirements for Honors in The Department of Mathematics and Computer Science Faculty of Arts and Sciences Rhode Island College 2017 Abstract This paper discusses a study performed on animating sorting al- gorithms as a learning aid for classroom instruction. A web-based animation tool was created to visualize four common sorting algo- rithms: Selection Sort, Bubble Sort, Insertion Sort, and Merge Sort. The animation tool would represent data as a bar-graph and after se- lecting a data-ordering and algorithm, the user can run an automated animation or step through it at their own pace. Afterwards, a study was conducted with a voluntary student population at Rhode Island College who were in the process of learning algorithms in their Com- puter Science curriculum. The study consisted of a demonstration and survey that asked the students questions that may show improve- ment when understanding algorithms.
    [Show full text]