Introduction to Analytic Number Theory Ian Petrow
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Analytic Number Theory
Lectures on Analytic Number Theory By H. Rademacher Tata Institute of Fundamental Research, Bombay 1954-55 Lectures on Analytic Number Theory By H. Rademacher Notes by K. Balagangadharan and V. Venugopal Rao Tata Institute of Fundamental Research, Bombay 1954-1955 Contents I Formal Power Series 1 1 Lecture 2 2 Lecture 11 3 Lecture 17 4 Lecture 23 5 Lecture 30 6 Lecture 39 7 Lecture 46 8 Lecture 55 II Analysis 59 9 Lecture 60 10 Lecture 67 11 Lecture 74 12 Lecture 82 13 Lecture 89 iii CONTENTS iv 14 Lecture 95 15 Lecture 100 III Analytic theory of partitions 108 16 Lecture 109 17 Lecture 118 18 Lecture 124 19 Lecture 129 20 Lecture 136 21 Lecture 143 22 Lecture 150 23 Lecture 155 24 Lecture 160 25 Lecture 165 26 Lecture 169 27 Lecture 174 28 Lecture 179 29 Lecture 183 30 Lecture 188 31 Lecture 194 32 Lecture 200 CONTENTS v IV Representation by squares 207 33 Lecture 208 34 Lecture 214 35 Lecture 219 36 Lecture 225 37 Lecture 232 38 Lecture 237 39 Lecture 242 40 Lecture 246 41 Lecture 251 42 Lecture 256 43 Lecture 261 44 Lecture 264 45 Lecture 266 46 Lecture 272 Part I Formal Power Series 1 Lecture 1 Introduction In additive number theory we make reference to facts about addition in 1 contradistinction to multiplicative number theory, the foundations of which were laid by Euclid at about 300 B.C. Whereas one of the principal concerns of the latter theory is the deconposition of numbers into prime factors, addi- tive number theory deals with the decomposition of numbers into summands. -
Analytic Number Theory
A course in Analytic Number Theory Taught by Barry Mazur Spring 2012 Last updated: January 19, 2014 1 Contents 1. January 244 2. January 268 3. January 31 11 4. February 2 15 5. February 7 18 6. February 9 22 7. February 14 26 8. February 16 30 9. February 21 33 10. February 23 38 11. March 1 42 12. March 6 45 13. March 8 49 14. March 20 52 15. March 22 56 16. March 27 60 17. March 29 63 18. April 3 65 19. April 5 68 20. April 10 71 21. April 12 74 22. April 17 77 Math 229 Barry Mazur Lecture 1 1. January 24 1.1. Arithmetic functions and first example. An arithmetic function is a func- tion N ! C, which we will denote n 7! c(n). For example, let rk;d(n) be the number of ways n can be expressed as a sum of d kth powers. Waring's problem asks what this looks like asymptotically. For example, we know r3;2(1729) = 2 (Ramanujan). Our aim is to derive statistics for (interesting) arithmetic functions via a study of the analytic properties of generating functions that package them. Here is a generating function: 1 X n Fc(q) = c(n)q n=1 (You can think of this as a Fourier series, where q = e2πiz.) You can retrieve c(n) as a Cauchy residue: 1 I F (q) dq c(n) = c · 2πi qn q This is the Hardy-Littlewood method. We can understand Waring's problem by defining 1 X nk fk(q) = q n=1 (the generating function for the sequence that tells you if n is a perfect kth power). -
Arxiv:Math/0201082V1
2000]11A25, 13J05 THE RING OF ARITHMETICAL FUNCTIONS WITH UNITARY CONVOLUTION: DIVISORIAL AND TOPOLOGICAL PROPERTIES. JAN SNELLMAN Abstract. We study (A, +, ⊕), the ring of arithmetical functions with unitary convolution, giving an isomorphism between (A, +, ⊕) and a generalized power series ring on infinitely many variables, similar to the isomorphism of Cashwell- Everett[4] between the ring (A, +, ·) of arithmetical functions with Dirichlet convolution and the power series ring C[[x1,x2,x3,... ]] on countably many variables. We topologize it with respect to a natural norm, and shove that all ideals are quasi-finite. Some elementary results on factorization into atoms are obtained. We prove the existence of an abundance of non-associate regular non-units. 1. Introduction The ring of arithmetical functions with Dirichlet convolution, which we’ll denote by (A, +, ·), is the set of all functions N+ → C, where N+ denotes the positive integers. It is given the structure of a commutative C-algebra by component-wise addition and multiplication by scalars, and by the Dirichlet convolution f · g(k)= f(r)g(k/r). (1) Xr|k Then, the multiplicative unit is the function e1 with e1(1) = 1 and e1(k) = 0 for k> 1, and the additive unit is the zero function 0. Cashwell-Everett [4] showed that (A, +, ·) is a UFD using the isomorphism (A, +, ·) ≃ C[[x1, x2, x3,... ]], (2) where each xi corresponds to the function which is 1 on the i’th prime number, and 0 otherwise. Schwab and Silberberg [9] topologised (A, +, ·) by means of the norm 1 arXiv:math/0201082v1 [math.AC] 10 Jan 2002 |f| = (3) min { k f(k) 6=0 } They noted that this norm is an ultra-metric, and that ((A, +, ·), |·|) is a valued ring, i.e. -
Nine Chapters of Analytic Number Theory in Isabelle/HOL
Nine Chapters of Analytic Number Theory in Isabelle/HOL Manuel Eberl Technische Universität München 12 September 2019 + + 58 Manuel Eberl Rodrigo Raya 15 library unformalised 173 18 using analytic methods In this work: only multiplicative number theory (primes, divisors, etc.) Much of the formalised material is not particularly analytic. Some of these results have already been formalised by other people (Avigad, Harrison, Carneiro, . ) – but not in the context of a large library. What is Analytic Number Theory? Studying the multiplicative and additive structure of the integers In this work: only multiplicative number theory (primes, divisors, etc.) Much of the formalised material is not particularly analytic. Some of these results have already been formalised by other people (Avigad, Harrison, Carneiro, . ) – but not in the context of a large library. What is Analytic Number Theory? Studying the multiplicative and additive structure of the integers using analytic methods Much of the formalised material is not particularly analytic. Some of these results have already been formalised by other people (Avigad, Harrison, Carneiro, . ) – but not in the context of a large library. What is Analytic Number Theory? Studying the multiplicative and additive structure of the integers using analytic methods In this work: only multiplicative number theory (primes, divisors, etc.) Some of these results have already been formalised by other people (Avigad, Harrison, Carneiro, . ) – but not in the context of a large library. What is Analytic Number Theory? Studying the multiplicative and additive structure of the integers using analytic methods In this work: only multiplicative number theory (primes, divisors, etc.) Much of the formalised material is not particularly analytic. -
The Mobius Function and Mobius Inversion
Ursinus College Digital Commons @ Ursinus College Transforming Instruction in Undergraduate Number Theory Mathematics via Primary Historical Sources (TRIUMPHS) Winter 2020 The Mobius Function and Mobius Inversion Carl Lienert Follow this and additional works at: https://digitalcommons.ursinus.edu/triumphs_number Part of the Curriculum and Instruction Commons, Educational Methods Commons, Higher Education Commons, Number Theory Commons, and the Science and Mathematics Education Commons Click here to let us know how access to this document benefits ou.y Recommended Citation Lienert, Carl, "The Mobius Function and Mobius Inversion" (2020). Number Theory. 12. https://digitalcommons.ursinus.edu/triumphs_number/12 This Course Materials is brought to you for free and open access by the Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) at Digital Commons @ Ursinus College. It has been accepted for inclusion in Number Theory by an authorized administrator of Digital Commons @ Ursinus College. For more information, please contact [email protected]. The Möbius Function and Möbius Inversion Carl Lienert∗ January 16, 2021 August Ferdinand Möbius (1790–1868) is perhaps most well known for the one-sided Möbius strip and, in geometry and complex analysis, for the Möbius transformation. In number theory, Möbius’ name can be seen in the important technique of Möbius inversion, which utilizes the important Möbius function. In this PSP we’ll study the problem that led Möbius to consider and analyze the Möbius function. Then, we’ll see how other mathematicians, Dedekind, Laguerre, Mertens, and Bell, used the Möbius function to solve a different inversion problem.1 Finally, we’ll use Möbius inversion to solve a problem concerning Euler’s totient function. -
Lagrange Inversion Theorem for Dirichlet Series Arxiv:1911.11133V1
Lagrange Inversion Theorem for Dirichlet series Alexey Kuznetsov ∗ November 26, 2019 Abstract We prove an analogue of the Lagrange Inversion Theorem for Dirichlet series. The proof is based on studying properties of Dirichlet convolution polynomials, which are analogues of convolution polynomials introduced by Knuth in [4]. Keywords: Dirichlet series, Lagrange Inversion Theorem, convolution polynomials 2010 Mathematics Subject Classification : Primary 30B50, Secondary 11M41 1 Introduction 0 The Lagrange Inversion Theorem states that if φ(z) is analytic near z = z0 with φ (z0) 6= 0 then the function η(w), defined as the solution to φ(η(w)) = w, is analytic near w0 = φ(z0) and is represented there by the power series X bn η(w) = z + (w − w )n; (1) 0 n! 0 n≥0 where the coefficients are given by n−1 n d z − z0 bn = lim n−1 : (2) z!z0 dz φ(z) − φ(z0) 0 This result can be stated in the following simpler form. We assume that φ(z0) = z0 = 0 and φ (0) = 1. We define A(z) = z=φ(z) and check that A is analytic near z = 0 and is represented there by the power series arXiv:1911.11133v1 [math.NT] 25 Nov 2019 X n A(z) = 1 + anz : (3) n≥1 Let us define B(z) implicitly via A(zB(z)) = B(z): (4) Then the function η(z) = zB(z) solves equation η(z)=A(η(z)) = z, which is equivalent to φ(η(z)) = z. Applying Lagrange Inversion Theorem in the form (2) we obtain X an(n + 1) B(z) = zn; (5) n + 1 n≥0 ∗Dept. -
On the Fourier Transform of the Greatest Common Divisor
On the Fourier transform of the greatest common divisor Peter H. van der Kamp Department of Mathematics and Statistics La Trobe University Victoria 3086, Australia January 17, 2012 Abstract The discrete Fourier transform of the greatest common divisor m X ka id[b a](m) = gcd(k; m)αm ; k=1 with αm a primitive m-th root of unity, is a multiplicative function that generalises both the gcd-sum function and Euler's totient function. On the one hand it is the Dirichlet convolution of the identity with Ramanujan's sum, id[b a] = id ∗ c•(a), and on the other hand it can be written as a generalised convolution product, id[b a] = id ∗a φ. We show that id[b a](m) counts the number of elements in the set of ordered pairs (i; j) such that i·j ≡ a mod m. Furthermore we generalise a dozen known identities for the totient function, to identities which involve the discrete Fourier transform of the greatest common divisor, including its partial sums, and its Lambert series. 1 Introduction In [15] discrete Fourier transforms of functions of the greatest common divisor arXiv:1201.3139v1 [math.NT] 16 Jan 2012 were studied, i.e. m X ka bh[a](m) = h(gcd(k; m))αm ; k=1 where αm is a primitive m-th root of unity. The main result in that paper is 1 the identity bh[a] = h ∗ c•(a), where ∗ denoted Dirichlet convolution, i.e. X m bh[a](m) = h( )cd(a); (1) d djm 1Similar results in the context of r-even function were obtained earlier, see [10] for details. -
Analytic Number Theory What Is Analytic Number Theory?
Math 259: Introduction to Analytic Number Theory What is analytic number theory? One may reasonably define analytic number theory as the branch of mathematics that uses analytical techniques to address number-theoretical problems. But this “definition”, while correct, is scarcely more informative than the phrase it purports to define. (See [Wilf 1982].) What kind of problems are suited to \analytical techniques"? What kind of mathematical techniques will be used? What style of mathematics is this, and what will its study teach you beyond the statements of theorems and their proofs? The next few sections briefly answer these questions. The problems of analytic number theory. The typical problem of ana- lytic number theory is an enumerative problem involving primes, Diophantine equations, or similar number-theoretic objects, and usually concerns what hap- pens for large values of some parameter. Such problems are of long-standing intrinsic interest, and the answers that analytic number theory provides often have uses in mathematics (see below) or related disciplines (notably in various algorithmic aspects of primes and prime factorization, including applications to cryptography). Examples of problems that we shall address are: How many 100-digit primes are there, and how many of these have the last • digit 7? More generally, how do the prime-counting functions π(x) and π(x; a mod q) behave for large x? [For the 100-digit problems we would take x = 1099 and x = 10100, q = 10, a = 7.] Given a prime p > 0, a nonzero c mod p, and integers a1; b1; -
ANALYTIC NUMBER THEORY (Spring 2019)
ANALYTIC NUMBER THEORY (Spring 2019) Eero Saksman Chapter 1 Arithmetic functions 1.1 Basic properties of arithmetic functions We denote by P := f2; 3; 5; 7; 11;:::g the prime numbers. Any function f : N ! C is called and arithmetic function1. Some examples: ( 1 if n = 1; I(n) := 0 if n > 1: u(n) := 1; n ≥ 1: X τ(n) = 1 (divisor function). djn φ(n) := #fk 2 f1; : : : ; ng j (k; n))1g (Euler's φ -function). X σ(n) = (divisor sum). djn !(n) := #fp 2 P : pjng ` ` X Y αk Ω(n) := αk if n = pk : k=1 k=1 Q` αk Above n = k=1 pk was the prime decomposition of n, and we employed the notation X X f(n) := f(n): djn d2f1;:::;ng djn Definition 1.1. If f and g are arithmetic functions, their multiplicative (i.e. Dirichlet) convolution is the arithmetic function f ∗ g, where X f ∗ g(n) := f(d)g(n=d): djn 1In this course N := f1; 2; 3;:::g 1 Theorem 1.2. (i) f ∗ g = g ∗ f, (ii) f ∗ I = I ∗ f = f, (iii) f ∗ (g + h) = f ∗ g + f ∗ h, (iv) f ∗ (g ∗ h) = (f ∗ g) ∗ h. Proof. (i) follows from the symmetric representation X f ∗ g(n) = f(k)f(`) k`=n (note that we assume automatically that above k; l are positive integers). In a similar vain, (iv) follows by iterating this to write X (f ∗ g) ∗ h(n) = f(k1)g(k2)h(k3): k1k2k3=n Other claims are easy. Theorem 1.3. -
LECTURES on ANALYTIC NUMBER THEORY Contents 1. What Is Analytic Number Theory?
LECTURES ON ANALYTIC NUMBER THEORY J. R. QUINE Contents 1. What is Analytic Number Theory? 2 1.1. Generating functions 2 1.2. Operations on series 3 1.3. Some interesting series 5 2. The Zeta Function 6 2.1. Some elementary number theory 6 2.2. The infinitude of primes 7 2.3. Infinite products 7 2.4. The zeta function and Euler product 7 2.5. Infinitude of primes of the form 4k + 1 8 3. Dirichlet characters and L functions 9 3.1. Dirichlet characters 9 3.2. Construction of Dirichlet characters 9 3.3. Euler product for L functions 12 3.4. Outline of proof of Dirichlet's theorem 12 4. Analytic tools 13 4.1. Summation by parts 13 4.2. Sums and integrals 14 4.3. Euler's constant 14 4.4. Stirling's formula 15 4.5. Hyperbolic sums 15 5. Analytic properties of L functions 16 5.1. Non trivial characters 16 5.2. The trivial character 17 5.3. Non vanishing of L function at s = 1 18 6. Prime counting functions 20 6.1. Generating functions and counting primes 20 6.2. Outline of proof of PNT 22 6.3. The M¨obiusfunction 24 7. Chebyshev's estimates 25 7.1. An easy upper estimate 25 7.2. Upper and lower estimates 26 8. Proof of the Prime Number Theorem 28 8.1. PNT and zeros of ζ 28 8.2. There are no zeros of ζ(s) on Re s = 1 29 8.3. Newman's Analytic Theorem 30 8.4. -
Analytic Number Theory
Analytic Number Theory Donald J. Newman Springer Graduate Texts in Mathematics 177 Editorial Board S. Axler F.W. Gehring K.A. Ribet Springer New York Berlin Heidelberg Barcelona Hong Kong London Milan Paris Singapore Tokyo Donald J. Newman Analytic Number Theory 13 Donald J. Newman Professor Emeritus Temple University Philadelphia, PA 19122 USA Editorial Board S. Axler F.W. Gehring K.A. Ribet Department of Department of Department of Mathematics Mathematics Mathematics San Francisco State University University of Michigan University of California San Francisco, CA 94132 Ann Arbor, MI 48109 at Berkeley USA USA Berkeley, CA 94720-3840 USA Mathematics Subject Classification (1991): 11-01, 11N13, 11P05, 11P83 Library of Congress Cataloging-in-Publication Data Newman, Donald J., 1930– Analytic number theory / Donald J. Newman. p. cm. – (Graduate texts in mathematics; 177) Includes index. ISBN 0-387-98308-2 (hardcover: alk. paper) 1. Number Theory. I. Title. II. Series. QA241.N48 1997 512’.73–dc21 97-26431 © 1998 Springer-Verlag New York, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. -
Number Theory, Lecture 3
Number Theory, Lecture 3 Number Theory, Lecture 3 Jan Snellman Arithmetical functions, Dirichlet convolution, Multiplicative functions, Arithmetical functions M¨obiusinversion Definition Some common arithmetical functions Dirichlet 1 Convolution Jan Snellman Matrix interpretation Order, Norms, 1 Infinite sums Matematiska Institutionen Multiplicative Link¨opingsUniversitet function Definition Euler φ M¨obius inversion Multiplicativity is preserved by multiplication Matrix verification Divisor functions Euler φ again µ itself Link¨oping,spring 2019 Lecture notes availabe at course homepage http://courses.mai.liu.se/GU/TATA54/ Number Summary Theory, Lecture 3 Jan Snellman Arithmetical functions Definition Some common Definition arithmetical functions 1 Arithmetical functions Dirichlet Euler φ Convolution Definition Matrix 3 M¨obiusinversion interpretation Some common arithmetical Order, Norms, Multiplicativity is preserved by Infinite sums functions Multiplicative multiplication function Dirichlet Convolution Definition Matrix verification Euler φ Matrix interpretation Divisor functions M¨obius Order, Norms, Infinite sums inversion Euler φ again Multiplicativity is preserved by multiplication 2 Multiplicative function µ itself Matrix verification Divisor functions Euler φ again µ itself Number Summary Theory, Lecture 3 Jan Snellman Arithmetical functions Definition Some common Definition arithmetical functions 1 Arithmetical functions Dirichlet Euler φ Convolution Definition Matrix 3 M¨obiusinversion interpretation Some common arithmetical Order, Norms,