THE COMPLETE CENSUS of 70 M–BRIGHT DEBRIS DISKS WITHIN
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Download This Article in PDF Format
A&A 562, A92 (2014) Astronomy DOI: 10.1051/0004-6361/201321493 & c ESO 2014 Astrophysics Li depletion in solar analogues with exoplanets Extending the sample, E. Delgado Mena1,G.Israelian2,3, J. I. González Hernández2,3,S.G.Sousa1,2,4, A. Mortier1,4,N.C.Santos1,4, V. Zh. Adibekyan1, J. Fernandes5, R. Rebolo2,3,6,S.Udry7, and M. Mayor7 1 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica de Canarias, C/ Via Lactea s/n, 38200 La Laguna, Tenerife, Spain 3 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 4 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal 5 CGUC, Department of Mathematics and Astronomical Observatory, University of Coimbra, 3049 Coimbra, Portugal 6 Consejo Superior de Investigaciones Científicas, CSIC, Spain 7 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Sauverny, Switzerland Received 18 March 2013 / Accepted 25 November 2013 ABSTRACT Aims. We want to study the effects of the formation of planets and planetary systems on the atmospheric Li abundance of planet host stars. Methods. In this work we present new determinations of lithium abundances for 326 main sequence stars with and without planets in the Teff range 5600–5900 K. The 277 stars come from the HARPS sample, the remaining targets were observed with a variety of high-resolution spectrographs. Results. We confirm significant differences in the Li distribution of solar twins (Teff = T ± 80 K, log g = log g ± 0.2and[Fe/H] = [Fe/H] ±0.2): the full sample of planet host stars (22) shows Li average values lower than “single” stars with no detected planets (60). -
Arxiv:0809.1275V2
How eccentric orbital solutions can hide planetary systems in 2:1 resonant orbits Guillem Anglada-Escud´e1, Mercedes L´opez-Morales1,2, John E. Chambers1 [email protected], [email protected], [email protected] ABSTRACT The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect ex- oplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a sin- gle planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available datasets, finding that 1) around 35% percent of the published eccentric one-planet solutions are statistically indistinguishible from planetary systems in 2:1 orbital resonance, 2) another 40% cannot be statistically distinguished from a circular orbital solution and 3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets. Subject headings: Exoplanets – Orbital dynamics – Planet detection – Doppler method arXiv:0809.1275v2 [astro-ph] 25 Nov 2009 Introduction Most of the +300 exoplanets found to date have been discovered using the Doppler tech- nique, which measures the reflex motion of the host star induced by the planets (Mayor & Queloz 1995; Marcy & Butler 1996). The diverse characteristics of these exoplanets are somewhat surprising. Many of them are similar in mass to Jupiter, but orbit much closer to their 1Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Rd. -
Mètodes De Detecció I Anàlisi D'exoplanetes
MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits -
A High Contrast Survey for Extrasolar Giant Planets with the Simultaneous Differential Imager (SDI)
A High Contrast Survey for Extrasolar Giant Planets with the Simultaneous Differential Imager (SDI) Item Type text; Electronic Dissertation Authors Biller, Beth Alison Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 03/10/2021 23:58:44 Link to Item http://hdl.handle.net/10150/194542 A HIGH CONTRAST SURVEY FOR EXTRASOLAR GIANT PLANETS WITH THE SIMULTANEOUS DIFFERENTIAL IMAGER (SDI) by Beth Alison Biller A Dissertation Submitted to the Faculty of the DEPARTMENT OF ASTRONOMY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2 0 0 7 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dis- sertation prepared by Beth Alison Biller entitled “A High Contrast Survey for Extrasolar Giant Planets with the Simultaneous Differential Imager (SDI)” and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. Date: June 29, 2007 Laird Close Date: June 29, 2007 Don McCarthy Date: June 29, 2007 John Bieging Date: June 29, 2007 Glenn Schneider Final approval and acceptance of this dissertation is contingent upon the candi- date's submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. -
The Hipparcos HR Diagram of Nearby Stars in the Metallicity Range-1.0
A&A manuscript no. ASTRONOMY (will be inserted by hand later) AND Your thesaurus codes are: 08(08.01.1;08.08.1;08.09.3;08.12.1;10.01.1;10.19.1) ASTROPHYSICS The Hipparcos HR diagram of nearby stars in the metallicity range: -1.0 < [Fe/H] < 0.3 A new constraint on the theory of stellar interiors and model atmospheres Y. Lebreton1⋆, M.-N. Perrin2, R. Cayrel2, A. Baglin3, and J. Fernandes4 1 DASGAL, CNRS URA 335, Observatoire de Paris, Place J. Janssen, 92195 Meudon, France 2 DASGAL, CNRS URA 335, Observatoire de Paris, 61 Av. de l’Observatoire, 75014 Paris, France 3 DESPA, CNRS URA 264, Observatoire de Paris, Place J. Janssen, 92195 Meudon, France 4 Observat´orio Astron´omico da Universidade de Coimbra, 3040 Coimbra, Portugal Received /Accepted Abstract. The Hipparcos mission has provided very high effects, µ Cas A falls on its expected isochrone, within the quality parallaxes of a sample of a hundred nearby disk error bars corresponding to its mass. stars, of spectral types F to K. In parallel, bolometric All stars with -0.3 < [Fe/H] < 0.3 are located be- fluxes, effective temperatures, and accurate Fe/H ratios tween the helium-scaled isochrones corresponding to these of many of these stars became available through infrared metallicities. However five of them are not located exactly photometry and detailed spectroscopic analyses. These where they are expected to be for their metallicity. This new accurate data allow to build the Hertzsprung–Russell may reflect a helium content lower than the metallicity- diagram of stars of the solar neighbourhood with the scaled value. -
Chromospheric Changes in K Stars with Activity 3
Mon. Not. R. Astron. Soc. 000, 1–?? (2009) Printed 31 October 2018 (MN LATEX style file v2.2) Chromospheric changes in K stars with activity Mariela C. Vieytes⋆, Pablo J. D. Mauas, and Rodrigo F. D´ıaz † Instituto de Astronom´ıa y F´ısica del Espacio, CC. 67 Suc. 28 (1428)Buenos Aires, Argentina Accepted . Received ; in original form ABSTRACT We study the differences in chromospheric structure induced in K stars by stellar activity, to expand our previous work for G stars, including the Sun as a star. We selected six stars of spectral type K with 0.82< B −V <0.90, including the widely studied Epsilon Eridani and a variety of magnetic activity levels. We computed chro- mospheric models for the stars in the sample, in most cases in two different moments of activity. The models were constructed to obtain the best possible match with the Ca II K and the Hβ observed profiles. We also computed in detail the net radiative losses for each model to constrain the heating mechanism that can maintain the structure in the atmosphere. We find a strong correlation between these losses and SCaII, the index generally used as a proxy for activity, as we found for G stars. Key words: radiative transfer - stars: atmosphere - stars: activity 1 INTRODUCTION under study. They found that the value of the K1 index and the temperature gradient in the lower chromosphere of Solar and stellar chromospheric models have been developed these stars, as a function of Teff , divides active and inac- to study the dependency of chromospheric plasma parame- tive stars, and that the cooling rate in chromospheric lines ters with height and temperature. -
COMMISSIONS 27 and 42 of the I.A.U. INFORMATION BULLETIN on VARIABLE STARS Nos. 4101{4200 1994 October { 1995 May EDITORS: L. SZ
COMMISSIONS AND OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS Nos Octob er May EDITORS L SZABADOS and K OLAH TECHNICAL EDITOR A HOLL TYPESETTING K ORI KONKOLY OBSERVATORY H BUDAPEST PO Box HUNGARY IBVSogyallakonkolyhu URL httpwwwkonkolyhuIBVSIBVShtml HU ISSN 2 CONTENTS 1994 No page E F GUINAN J J MARSHALL F P MALONEY A New Apsidal Motion Determination For DI Herculis ::::::::::::::::::::::::::::::::::::: D TERRELL D H KAISER D B WILLIAMS A Photometric Campaign on OW Geminorum :::::::::::::::::::::::::::::::::::::::::::: B GUROL Photo electric Photometry of OO Aql :::::::::::::::::::::::: LIU QUINGYAO GU SHENGHONG YANG YULAN WANG BI New Photo electric Light Curves of BL Eridani :::::::::::::::::::::::::::::::::: S Yu MELNIKOV V S SHEVCHENKO K N GRANKIN Eclipsing Binary V CygS Former InsaType Variable :::::::::::::::::::: J A BELMONTE E MICHEL M ALVAREZ S Y JIANG Is Praesep e KW Actually a Delta Scuti Star ::::::::::::::::::::::::::::: V L TOTH Ch M WALMSLEY Water Masers in L :::::::::::::: R L HAWKINS K F DOWNEY Times of Minimum Light for Four Eclipsing of Four Binary Systems :::::::::::::::::::::::::::::::::::::::::: B GUROL S SELAN Photo electric Photometry of the ShortPeriod Eclipsing Binary HW Virginis :::::::::::::::::::::::::::::::::::::::::::::: M P SCHEIBLE E F GUINAN The Sp otted Young Sun HD EK Dra ::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::: M BOS Photo electric Observations of AB Doradus ::::::::::::::::::::: YULIAN GUO A New VR Cyclic Change of H in Tau :::::::::::::: -
SCIENCE CHINA Planet Host Stars in Open Clusters
SCIENCE CHINA Physics, Mechanics & Astronomy • Article • March 2015 Vol. 58 No. 3: 039503 doi: 10.1007/s11433-014-5593-z Planet host stars in open clusters YANG XiaoLing1,2, CHEN YuQin1* & ZHAO Gang1 1Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; 2University of Chinese Academy of Sciences, Beijing 100049, China Received June 3, 2014; accepted August 5, 2014; published online September 28, 2014 We have compiled a list of all planet host star candidates reported in the literature, which are likely to be cluster members, and we checked their memberships by the spatial location, radial velocity, proper motion and photometric criteria. We found that only six stars, BD-13 2130, HD 28305, Kepler-66, Kepler-67, Pr0201 and Pr0211, are planet orbiting stars in open clusters to date. Two stars, HD 70573 and HD 89744, belong to moving groups and one star, TYC 8975-2606-1, may not be a planet host star, while three stars, HD 16175, HD 46375 and HD 108874 are not members of open clusters. We note that all these six planetary systems in the stellar cluster environment are younger than ~1 Gyr, which might indicate that the planetary system in open cluster can not survive for a long time, and we speculate that close stellar encounters between member stars in open clus- ter can potentially destroy, or at least strongly affect, the presence of planetary systems. extrasolar planets, planetary survival, open cluster PACS number(s): 97.82.-j, 97.82.Fs, 98.20.-d, 98.20.Di Citation: Yang X L, Chen Y Q, Zhao G. -
Formation and Evolution of Planetary Systems: Upper Limits to the Gas Mass in Disks Around Sun-Like Stars
Formation and Evolution of Planetary Systems: Upper Limits to the Gas Mass in Disks Around Sun-like Stars I. Pascucci1, U. Gorti2, D. Hollenbach3, J. Najita4, M. R. Meyer1, J. M. Carpenter5, L. A. Hillenbrand5, G. J. Herczeg5, D. L. Padgett5, E. E. Mamajek6, M. D. Silverstone1, W. M. Schlingman1, J. S. Kim1, E. B. Stobie1, J. Bouwman7, S. Wolf7, J. Rodmann7, D. C. Hines8, J. Lunine9, R. Malhotra9 ABSTRACT We have carried out a sensitive search for gas emission lines at infrared and millimeter wave- lengths for a sample of 15 young sun–like stars selected from our dust disk survey with the Spitzer Space Telescope. We have used mid–infrared lines to trace the warm (300–100K) gas in the inner disk and millimeter transitions of 12CO to probe the cold ( 20K) outer disk. We report no gas line detections from our sample. Line flux upper limits are∼ first converted to warm and cold gas mass limits using simple approximations allowing a direct comparison with values from the lit- erature. We also present results from more sophisticated models following Gorti and Hollenbach (2004) which confirm and extend our simple analysis. These models show that the [S i] line at 25.23 µm can set constraining limits on the gas surface density at the disk inner radius and traces disk regions up to a few AU. We find that none of the 15 systems have more than 0.04 MJ of gas within a few AU from the disk inner radius for disk radii from 1 AU up to 40AU. -
Quantization of Planetary Systems and Its Dependency on Stellar Rotation
CSIRO PUBLISHING www.publish.csiro.au/journals/pasa Publications of the Astronomical Society of Australia, 2011, 28, 177–201 Quantization of Planetary Systems and its Dependency on Stellar Rotation Jean-Paul A. Zoghbi American University of Beirut, Bliss St., Beirut, Lebanon. Corresponding author. Email: [email protected] Received 2009 September 24, accepted 2011 February 28 Abstract: With the discovery of now more than 500 exoplanets, we present a statistical analysis of the planetary orbital periods and their relationship to the rotation periods of their parent stars. We test whether the structural variables of planetary orbits, i.e. planetary angular momentum and orbital period, are ‘quantized’ in integer or half-integer multiples of the parent star’s rotation period. The Solar System is first shown to exhibit quantized planetary orbits that correlate with the Sun’s rotation period. The analysis is then expanded over 443 exoplanets to statistically validate this quantization and its association with stellar rotation. The results imply that the exoplanetary orbital periods are highly correlated with the parent star’s rotation periods and follow a discrete half-integer relationship with orbital ranks n ¼ 0.5, 1.0, 1.5, 2.0, 2.5, etc. The probability of obtaining these results by pure chance is p , 0.024. We discuss various mechanisms that could justify this planetary quantization, such as the hybrid gravitational instability models of planet formation, along with possible physical mechanisms such as the inner disc’s magnetospheric truncation, tidal dissipation, and resonance trapping. In conclusion, we statistically demonstrate that a quantized orbital structure should emerge from the formation processes of planetary systems and that this orbital quantization is highly dependent on the parent star’s rotation period. -
Target Selection for the SUNS and DEBRIS Surveys for Debris Discs in the Solar Neighbourhood
Mon. Not. R. Astron. Soc. 000, 1–?? (2009) Printed 18 November 2009 (MN LATEX style file v2.2) Target selection for the SUNS and DEBRIS surveys for debris discs in the solar neighbourhood N. M. Phillips1, J. S. Greaves2, W. R. F. Dent3, B. C. Matthews4 W. S. Holland3, M. C. Wyatt5, B. Sibthorpe3 1Institute for Astronomy (IfA), Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ 2School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS 3UK Astronomy Technology Centre (UKATC), Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ 4Herzberg Institute of Astrophysics (HIA), National Research Council of Canada, Victoria, BC, Canada 5Institute of Astronomy (IoA), University of Cambridge, Madingley Road, Cambridge, CB3 0HA Accepted 2009 September 2. Received 2009 July 27; in original form 2009 March 31 ABSTRACT Debris discs – analogous to the Asteroid and Kuiper-Edgeworth belts in the Solar system – have so far mostly been identified and studied in thermal emission shortward of 100 µm. The Herschel space observatory and the SCUBA-2 camera on the James Clerk Maxwell Telescope will allow efficient photometric surveying at 70 to 850 µm, which allow for the detection of cooler discs not yet discovered, and the measurement of disc masses and temperatures when combined with shorter wavelength photometry. The SCUBA-2 Unbiased Nearby Stars (SUNS) survey and the DEBRIS Herschel Open Time Key Project are complimentary legacy surveys observing samples of ∼500 nearby stellar systems. To maximise the legacy value of these surveys, great care has gone into the target selection process. This paper describes the target selection process and presents the target lists of these two surveys.