Understanding Structural Engineering: from Science to Engineering
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Atwood's Machine? (5 Points)
rev 09/2019 Atwood’s Machine Equipment Qty Equipment Part Number 1 Mass and Hanger Set ME‐8979 1 Photogate with Pully ME‐6838A 1 Universal Table Clamp ME‐9376B 1 Large Rod ME‐8736 1 Small Rod ME‐8977 1 Double rod Clamp ME‐9873 1 String Background Newton’s 2nd Law (NSL) states that the acceleration a mass experiences is proportional to the net force applied to it, and inversely proportional to its inertial mass ( ). An Atwood’s Machine is a simple device consisting of a pulley, with two masses connected by a string that runs over the pulley. For an ‘ideal Atwood’s Machine’ we assume the pulley is massless, and frictionless, that the string is unstretchable, therefore a constant length, and also massless. Consider the following diagram of an ideal Atwood’s machine. One of the standard ways to apply NSL is to draw Free Body Diagrams for the masses in the system, then write Force Summation Equations for each Free Body Diagram. We will use the standard practice of labeling masses from smallest to largest, therefore m2 > m1. For an Atwood’s Machine there are only forces acting on the masses in the vertical direction so we will only need to write Force Summation Equations for the y‐direction. We obtain the following Free Body Diagrams for the two masses. Each of the masses have two forces acting on it. Each has its own weight (m1g, or m2g) pointing downwards, and each has the tension (T) in the string pointing upwards. By the assumption of an ideal string the tension is the same throughout the string. -
3 Concepts of Stress Analysis
FEA Concepts: SW Simulation Overview J.E. Akin 3 Concepts of Stress Analysis 3.1 Introduction Here the concepts of stress analysis will be stated in a finite element context. That means that the primary unknown will be the (generalized) displacements. All other items of interest will mainly depend on the gradient of the displacements and therefore will be less accurate than the displacements. Stress analysis covers several common special cases to be mentioned later. Here only two formulations will be considered initially. They are the solid continuum form and the shell form. Both are offered in SW Simulation. They differ in that the continuum form utilizes only displacement vectors, while the shell form utilizes displacement vectors and infinitesimal rotation vectors at the element nodes. As illustrated in Figure 3‐1, the solid elements have three translational degrees of freedom (DOF) as nodal unknowns, for a total of 12 or 30 DOF. The shell elements have three translational degrees of freedom as well as three rotational degrees of freedom, for a total of 18 or 36 DOF. The difference in DOF types means that moments or couples can only be applied directly to shell models. Solid elements require that couples be indirectly applied by specifying a pair of equivalent pressure distributions, or an equivalent pair of equal and opposite forces at two nodes on the body. Shell node Solid node Figure 3‐1 Nodal degrees of freedom for frames and shells; solids and trusses Stress transfer takes place within, and on, the boundaries of a solid body. The displacement vector, u, at any point in the continuum body has the units of meters [m], and its components are the primary unknowns. -
Structural Analysis
Module 1 Energy Methods in Structural Analysis Version 2 CE IIT, Kharagpur Lesson 1 General Introduction Version 2 CE IIT, Kharagpur Instructional Objectives After reading this chapter the student will be able to 1. Differentiate between various structural forms such as beams, plane truss, space truss, plane frame, space frame, arches, cables, plates and shells. 2. State and use conditions of static equilibrium. 3. Calculate the degree of static and kinematic indeterminacy of a given structure such as beams, truss and frames. 4. Differentiate between stable and unstable structure. 5. Define flexibility and stiffness coefficients. 6. Write force-displacement relations for simple structure. 1.1 Introduction Structural analysis and design is a very old art and is known to human beings since early civilizations. The Pyramids constructed by Egyptians around 2000 B.C. stands today as the testimony to the skills of master builders of that civilization. Many early civilizations produced great builders, skilled craftsmen who constructed magnificent buildings such as the Parthenon at Athens (2500 years old), the great Stupa at Sanchi (2000 years old), Taj Mahal (350 years old), Eiffel Tower (120 years old) and many more buildings around the world. These monuments tell us about the great feats accomplished by these craftsmen in analysis, design and construction of large structures. Today we see around us countless houses, bridges, fly-overs, high-rise buildings and spacious shopping malls. Planning, analysis and construction of these buildings is a science by itself. The main purpose of any structure is to support the loads coming on it by properly transferring them to the foundation. -
Schaum's Outlines Strength of Materials
Strength Of Materials This page intentionally left blank Strength Of Materials Fifth Edition William A. Nash, Ph.D. Former Professor of Civil Engineering University of Massachusetts Merle C. Potter, Ph.D. Professor Emeritus of Mechanical Engineering Michigan State University Schaum’s Outline Series New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2011, 1998, 1994, 1972 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. ISBN: 978-0-07-163507-3 MHID: 0-07-163507-6 The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-163508-0, MHID: 0-07-163508-4. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To contact a representative please e-mail us at [email protected]. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. -
Module Code CE7S02 Module Name Advanced Structural Analysis ECTS
Module Code CE7S02 Module Name Advanced Structural Analysis 1 ECTS Weighting 5 ECTS Semester taught Semester 1 Module Coordinator/s Module Coordinator: Assoc. Prof. Dermot O’Dwyer ([email protected]) Module Learning Outcomes with reference On successful completion of this module, students should be able to: to the Graduate Attributes and how they are developed in discipline LO1. Identify the appropriate differential equations and boundary conditions for analysing a range of structural analysis and solid mechanics problems. LO2. Implement the finite difference method to solve a range of continuum problems. LO3. Implement a basic beam-element finite element analysis. LO4. Implement a basic variational-based finite element analysis. LO5. Implement time-stepping algorithms and modal analysis algorithms to analyse structural dynamics problems. L06. Detail the assumptions and limitations underlying their analyses and quantify the errors/check for convergence. Graduate Attributes: levels of attainment To act responsibly - ho ose an item. To think independently - hoo se an item. To develop continuously - hoo se an it em. To communicate effectively - hoo se an item. Module Content The Advanced Structural Analysis Module can be taken as a Level 9 course in a single year for 5 credits or as a Level 10 courses over two years for the total of 10 credits. The first year of the module is common to all students, in the second year Level 10 students who have completed the first year of the module will lead the work groups. The course will run throughout the first semester. The aim of the course is to develop the ability of postgraduate Engineering students to develop and implement non-trivial analysis and modelling algorithms. -
Strength Versus Gravity
3 Strength versus gravity The existence of any differences of height on the Earth’s surface is decisive evidence that the internal stress is not hydrostatic. If the Earth was liquid any elevation would spread out horizontally until it disap- peared. The only departure of the surface from a spherical form would be the ellipticity; the outer surface would become a level surface, the ocean would cover it to a uniform depth, and that would be the end of us. The fact that we are here implies that the stress departs appreciably from being hydrostatic; … H. Jeffreys, Earthquakes and Mountains (1935) 3.1 Topography and stress Sir Harold Jeffreys (1891–1989), one of the leading geophysicists of the early twentieth century, was fascinated (one might almost say obsessed) with the strength necessary to support the observed topographic relief on the Earth and Moon. Through several books and numerous papers he made quantitative estimates of the strength of the Earth’s interior and compared the results of those estimates to the strength of common rocks. Jeffreys was not the only earth scientist who grasped the fundamental importance of rock strength. Almost ifty years before Jeffreys, American geologist G. K. Gilbert (1843–1918) wrote in a similar vein: If the Earth possessed no rigidity, its materials would arrange themselves in accordance with the laws of hydrostatic equilibrium. The matter speciically heaviest would assume the lowest position, and there would be a graduation upward to the matter speciically lightest, which would constitute the entire surface. The surface would be regularly ellipsoidal, and would be completely covered by the ocean. -
“Linear Buckling” Analysis Branch
Appendix A Eigenvalue Buckling Analysis 16.0 Release Introduction to ANSYS Mechanical 1 © 2015 ANSYS, Inc. February 27, 2015 Chapter Overview In this Appendix, performing an eigenvalue buckling analysis in Mechanical will be covered. Mechanical enables you to link the Eigenvalue Buckling analysis to a nonlinear Static Structural analysis that can include all types of nonlinearities. This will not be covered in this section. We will focused on Linear buckling. Contents: A. Background On Buckling B. Buckling Analysis Procedure C. Workshop AppA-1 2 © 2015 ANSYS, Inc. February 27, 2015 A. Background on Buckling Many structures require an evaluation of their structural stability. Thin columns, compression members, and vacuum tanks are all examples of structures where stability considerations are important. At the onset of instability (buckling) a structure will have a very large change in displacement {x} under essentially no change in the load (beyond a small load perturbation). F F Stable Unstable 3 © 2015 ANSYS, Inc. February 27, 2015 … Background on Buckling Eigenvalue or linear buckling analysis predicts the theoretical buckling strength of an ideal linear elastic structure. This method corresponds to the textbook approach of linear elastic buckling analysis. • The eigenvalue buckling solution of a Euler column will match the classical Euler solution. Imperfections and nonlinear behaviors prevent most real world structures from achieving their theoretical elastic buckling strength. Linear buckling generally yields unconservative results -
Structural Analysis (Statics & Mechanics)
APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS Structural Requirements ARCH 631 • serviceability DR. ANNE NICHOLS FALL 2013 – strength – deflections lecture two • efficiency – economy of materials • construction structural analysis • cost (statics & mechanics) • other www.pbs.org/wgbh/buildingbig/ Analysis 1 Applied Architectural Structures F2009abn Analysis 2 Architectural Structures III F2009abn Lecture 2 ARCH 631 Lecture 2 ARCH 631 Structure Requirements Structure Requirements • strength & • stability & equilibrium stiffness – safety – stability of – stresses components not greater – minimum than deflection and strength vibration – adequate – adequate foundation foundation Analysis 3 Architectural Structures III F2008abn Analysis 4 Architectural Structures III F2008abn Lecture 2 ARCH 631 Lecture 2 ARCH 631 1 Structure Requirements Relation to Architecture • economy and “The geometry and arrangement of the construction load-bearing members, the use of – minimum material materials, and the crafting of joints all represent opportunities for buildings to – standard sized express themselves. The best members buildings are not designed by – simple connections architects who after resolving the and details formal and spatial issues, simply ask – maintenance the structural engineer to make sure it – fabrication/ erection doesn’t fall down.” - Onouy & Kane Analysis 5 Architectural Structures III F2008abn Analysis 6 Architectural Structures III F2008abn Lecture 2 ARCH 631 Lecture 2 ARCH 631 Structural Loads - STATIC Structural -
Physics 114 Tutorial 5: Tension Instructor: Adnan Khan
• Please do not sit alone. Sit next to at least one student. • Please leave rows C, F, J, and M open. Physics 114 Tutorial 5: Tension Instructor: Adnan Khan 5/7/19 1 Blocks connected by a rope q Section 1: Two blocks, A and B, are tied together with a rope of mass M. Block B is being pushed with a constant horizontal force as shown at right. Assume that there is no friction between the blocks and the blocks are moving to the right. 1. Describe the motion of block A, block B, and the rope. 2. Compare the acceleration of block A, block B and the rope. 5/7/19 2 Blocks connected by a rope 2. Compare the accelerations of block A, block B and the rope. A. aA > aR > aB B. aB > aA > aR C. aA > aB > aR D. aB > aR > aA E. aA = aR = aB 5/7/19 3 Blocks connected by a rope 3. Draw a separate free-body diagram for each block and for the rope. Clearly label your forces. 5/7/19 4 Blocks connected by a rope 4. Rank, from largest to smallest, the magnitudes of the horizontal components of the forces on your diagrams. 5/7/19 5 Blocks connected by a very light string q Section 2: The blocks in section 1 are now connected with a very light, flexible, and inextensible string of mass m (m < M). Suppose the hand pushes so the acceleration of the blocks is the same as in section 1. Blocks have same acceleration as with rope 5. -
Simulating Sliding Wear with Finite Element Method
Tribology International 32 (1999) 71–81 www.elsevier.com/locate/triboint Simulating sliding wear with finite element method Priit Po˜dra a,*,So¨ren Andersson b a Department of Machine Science, Tallinn Technical University, TTU, Ehitajate tee 5, 19086 Tallinn, Estonia b Machine Elements, Department of Machine Design, Royal Institute of Technology, KTH, S-100 44 Stockholm, Sweden Received 5 September 1997; received in revised form 18 January 1999; accepted 25 March 1999 Abstract Wear of components is often a critical factor influencing the product service life. Wear prediction is therefore an important part of engineering. The wear simulation approach with commercial finite element (FE) software ANSYS is presented in this paper. A modelling and simulation procedure is proposed and used with the linear wear law and the Euler integration scheme. Good care, however, must be taken to assure model validity and numerical solution convergence. A spherical pin-on-disc unlubricated steel contact was analysed both experimentally and with FEM, and the Lim and Ashby wear map was used to identify the wear mech- anism. It was shown that the FEA wear simulation results of a given geometry and loading can be treated on the basis of wear coefficientϪsliding distance change equivalence. The finite element software ANSYS is well suited for the solving of contact problems as well as the wear simulation. The actual scatter of the wear coefficient being within the limits of ±40–60% led to considerable deviation of wear simulation results. These results must therefore be evaluated on a relative scale to compare different design options. 1999 Elsevier Science Ltd. -
Structural Analysis and Design, University of Houston-Downtown
Session 3615 STRUCTURAL ANALYSIS DESIGN: A DISTINCTIVE ENGINEERING TECHNOLOGY PROGRAM Alberto Gomez-Rivas, and George Pincus Professors of Structural Analysis and Design, University of Houston-Downtown Abstract Graduates of the Structural Analysis and Design Engineering Technology program, University of Houston-Downtown, are successful in reaching responsible positions in industry and government. The strong emphasis on computer technology provides an advantage to graduates of the program because they are highly productive. The Structural Analysis Design (SAD) Engineering Technology program, University of Houston-Downtown, is focused on the design of bridges, buildings, towers, offshore platforms and other structures. It is not traditional civil engineering but includes all aspects of structural design, including soil mechanics, foundation design, and construction surveying by GIS-GPS. Students take an intensive course in applications of computers, a visualization course, and two courses in computer-aided design, followed by a course in 3-D modeling including the most common CADD software packages: MicroStation, AutoCAD, and 3D Studio. Structural Analysis deals with application of finite element theory to beams and frames. A second course, Finite Element Analysis, utilizes ANSYS and ROBOT. Since the program focuses on structural analysis and design, students are exposed to several techniques and practices that are taught in schools of civil engineering at the graduate level. Examples include instruction on finite element analysis and use of structural software packages used in industry. Structural Analysis Design – Program Description This program covers the design of structures, bridges, buildings, towers, and offshore platforms and in general what is called civil structures. However, the program is not civil engineering because that field is considered broader. -
DEPARTMENT of ENGINEERING Course CE 25200 – Strength of Materials Cross-Listed Course ME 25200 – Strength of Ma
DEPARTMENT OF ENGINEERING Course CE 25200 – Strength of Materials Cross-listed Course ME 25200 – Strength of Materials Type of Course Required for CE program Catalog Description Plane stress, plane strain, and stress-strain laws. Applications of stress and deformation analysis to members subjected to centric, torsional, flexural, and combined loading. Introduction to theories of failure, buckling, and energy methods. Credits 3 Contact Hours 3 Prerequisite Courses CE 25000 Corequisite Courses None Prerequisites by Classification of forces Topics Equilibrium of a rigid body Internal forces Centroids and moments of inertia Textbook Mechanics of Materials, William F. Riley, Leroy D. Sturges, and Dan H. Morris, John Wiley & Sons, current edition. Course Objectives To provide basic knowledge in mechanics of materials so that the students can solve real engineering problems and design engineering systems. Course Outcomes Students who successfully complete this course will have demonstrated an ability to: 1. Understand the concepts of stress and strain at a point as well as the stress-strain relationships for homogenous, isotropic materials. (e) 2. Calculate the stresses and strains in axially-loaded members, circular torsion members, and members subject to flexural loadings. (a, e) 3. Calculate the stresses and strains associated with thin-wall spherical and cylindrical pressure vessels. (a, e) Department Syllabus CE – 25200 Page | 1 4. Determine the stresses and strains in members subjected to combined loading and apply the theories of failure for static loading. (a, e) 5. Determine and illustrate principal stresses, maximum shearing stress, and the stresses acting on a structural member. (a, e) 6. Determine the deflections and rotations produced by the three fundamental types of loads: axial, torsional, and flexural.