Goblincore-64: a Scalable, Open Architecture for Data Intensive High Performance Computing

Total Page:16

File Type:pdf, Size:1020Kb

Goblincore-64: a Scalable, Open Architecture for Data Intensive High Performance Computing GoblinCore-64: A Scalable, Open Architecture for Data Intensive High Performance Computing by John D. Leidel, B.A. A Doctoral Dissertation In Computer Science Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Approved Dr. Yong Chen Committee Chair Dr. David Haglin Dr. Yu Zhuang Dr. Sunho Lim Dr. Noe Lopez-Benitez Dr. Mark A. Sheridan Dean of the Graduate School May, 2017 c 2017, John D. Leidel Texas Tech University, John D. Leidel, May 2017 ACKNOWLEDGEMENTS I would like to take this opportunity to thank all those that have assisted with my on- going research, development and academic activities. First, I would like to acknowledge the support and guidance from my Ph.D. advisor, Dr. Yong Chen. You took me in as a non-traditional graduate student and guided my research and academic pursuits to a suc- cessful end. We’ve created some wonderful technology together that serves to change the computational world as we know it. My sincere appreciation goes to my committee members. Dr. David Haglin (Pacific Northwest National Laboratory), your guidance and expertise in applying creative solutions to seemingly impossible computational problems is an inspiration to us all. Dr. Yu Zhuang (Texas Tech) and Dr. Noe Lopez-Benitez (Texas Tech), thank you both for your guidance and review of my hardware and system architecture knowledge and designs. Finally, thanks to Dr. Sunho Lim (Tech Tech) for his guidance and advice on interconnection networks and topologies. I would like to thank the J.T. and Margaret Talkington Foundation for their ongoing support in my academic career at Texas Tech University. Your support is a cornerstone of the Lubbock community. For my colleagues in the Data Intensive Scalable Computing Laboratory, thank you for your continued support for your fellow student from afar. Special thanks are in order for my dear friend, Mr. Xi Wang. Your patience and determination are an inspiration to your colleagues in the PhD program. I wish you all the best in your future research and academic career. To my mother, Gloria Leidel, and my father, Dr. David Leidel, you gave me the tools, love and the support as a child to grow and develop into a dedicated and productive member of my local community. The discipline instilled by you as parents has given me the ability to serve my country, my community and my family. I would like to acknowledge the sacrifices made by my family throughout my academic research. My daughter Camdyn Leidel and sons, Kyle and William Leidel. Thank you each for your patience in allowing your father to pursue his dreams. I only hope that my perseverance serves as inspiration for you each to listen to your heart and follow your dreams. ii Texas Tech University, John D. Leidel, May 2017 Finally, I would like to thank my dear wife, Stephanie Leidel. You are my guiding light, my reason for being and my inspiration to excel. With you, all things in life are possible. iii Texas Tech University, John D. Leidel, May 2017 TABLE OF CONTENTS Acknowledgements . ii Abstract . vi List of Tables . vii List of Figures . viii 1. Introduction . .1 1.1 Scalable, Efficient Data Intensive Computing . .1 1.2 Dissertation Overview . .2 1.3 Contributions . .4 1.4 Organization . .5 2. Background . .7 2.1 Data Intensive Computing . .7 2.2 Algorithmic Design . .9 2.3 Programming Models . .9 2.4 Software Infrastructures . 11 3. Core System Architecture . 13 3.1 Machine Hierarchy . 13 3.2 System Interconnect . 20 4. Instruction Set Extensions . 32 4.1 Core Micro Architecture . 32 4.2 Instruction Set Extension . 37 4.3 Hardware-Software Task Interface . 40 4.4 Application of ISA Extensions . 47 4.5 Thread Concurrency Mechanisms . 56 5. Data Intensive Memory Hierarchy . 62 5.1 Memory Hierarchy . 62 5.2 Scratchpad Memory Architecture . 66 5.3 Dynamic Memory Request Coalescing . 66 6. HMC Simulation and Ancillary Device Components . 78 6.1 Software Architecture . 78 6.2 Atomic Memory Operation Unit . 79 iv Texas Tech University, John D. Leidel, May 2017 6.3 HMC Channel Interface . 81 6.4 HMC Memory Devices . 81 7. Performance Evaluation . 108 7.1 Evaluation Methodology . 108 7.2 Evaluation of Results . 116 7.3 Comprehensive Analysis . 137 8. Related Work . 140 8.1 Data Intensive Hardware Architectures . 140 8.2 Data Intensive Software Architectures . 144 9. Conclusion and Future Work . 148 9.1 Conclusion . 148 9.2 Future Work . 149 Bibliography . 151 Appendix A: Instruction Set Encoding . 169 Appendix B: Selected Source Code . 172 v Texas Tech University, John D. Leidel, May 2017 ABSTRACT The current class of mainstream microprocessor architectures rely upon multi-level data caches and relatively low degrees of concurrency to solve a wide range of applications and algorithmic constructs. These mainstream architectures are well suited to efficiently exe- cuting applications that are generally considered to be cache friendly. These may include applications that operate on dense, linear data structures or applications that make heavy reuse of data in cache. However, applications that are generally considered to be data intensive in nature may access memory with irregular memory request patterns or access such large data structures that they cannot reside entirely in an on-chip data cache. In this work, we introduce the GoblinCore-64 (GC64) architecture and instruction set. The goal of GC64 is to provide a scalable, flexible and open architecture for efficiently executing data intensive computing applications and algorithms. The GC64 infrastructure is built upon a hierarchical set of hardware modules designed to support scalable concurrency with explicit support for latency hiding. The infrastruc- ture’s memory hierarchy is constructed using software-managed scratchpad memories for local, application-managed memory requests and Hybrid Memory Cube devices for main memory storage. The instruction set is based upon the RISC-V instruction set specification with additional extensions to support scatter/gather memory requests, task concurrency and task management. Further, the system architecture is bolstered by a high performance main memory subsystem based upon three-dimensional stacked memories, or Hybrid Memory Cubes, coupled to an intelligent memory request coalescing methodology. The result is a simple, effective, and scalable architecture that can be easily adapted to efficiently execute data intensive applications using commodity programming models such as OpenMP, MPI and MapReduce. In order to validate the GC64 infrastructure, we construct a simulation infrastructure based upon the standard RISC-V simulation platform, Spike, that mimics a production GC64 device. We demonstrate the aforementioned system architecture using a wide array of benchmark vehicles that include the GAP Benchmark Suite, NAS Parallel Benchmarks, High Performance Conjugate Gradient Benchmark and the Barcelona OpenMP Task Suite. vi Texas Tech University, John D. Leidel, May 2017 LIST OF TABLES 3.1 HMC Device Packet Control Overhead . 26 3.2 GoblinCore-64 System Inteconnect Packets . 29 3.3 GoblinCore-64 Atomic System Inteconnect Packets . 30 3.4 GoblinCore-64 System Interconnect Performance . 31 4.1 RISC-V ISA Extensions . 33 4.2 RISC-V ISA Register Extensions . 35 4.3 RISC-V Opcode Cost Table . 61 5.1 HMC Device Packet Control Overhead . 68 5.2 DMC Synthesized Physical Design . 74 6.1 Example Atomic Memory Operation Request Stream . 80 6.2 Systolic Atomic Memory Operation Request Stream . 81 6.3 Stream Runtime in Clock Cycles . 99 6.4 RandomAccess Runtime in Clock Cycles . 100 7.1 Evaluation Configurations . 126 7.2 Context Switch Event Derivation . 127 7.3 Peak Speedups by Configuration . 135 vii Texas Tech University, John D. Leidel, May 2017 LIST OF FIGURES 1.1 HPC-Derived Data Intensive Computing . .2 2.1 November 2016 Graph 500 Results . .8 3.1 GC64 Task Processor . 14 3.2 GC64 Task Group . 15 3.3 GC64 Socket Architecture . 16 3.4 GC64 Task Group OpenSoC Fabric Connectivity . 17 3.5 GC64 4x4 Network on Chip Mesh Topology . 19 3.6 GC64 Local Memory Interconnection . 23 3.7 HMC Interconnection Topologies . 24 3.8 GC64 System Interconnection . 25 3.9 GC64 4x4xN Torus Interconnection Topology . 27 3.10 GC64 Extended HMC Packet . 28 4.1 GC64 Task Queue Link Structure . 44 4.2 GC64 Task Keystone Link Structure . 45 4.3 Scatter Gather Code Examples . 48 4.4 OpenMP Taskyield Example . 53 4.5 HPCC RandomAccess Example . 54 4.6 GC64 Thread Context Pipeline . 56 4.7 GC64 Pressure-Driven Context Switch Example . 59 5.1 GC64 Physical Address Format . 65 5.2 GC64 Extended Physical Address Format . 65 5.3 GC64 Software Managed Scratchpad . 66 5.4 Dynamic Memory Coalescing . 69 5.5 Tree Expiration . 71 5.6 DMC Architecture . 73 6.1 Traditional and GC64 Software Architectures . 78 6.2 AMO Systolic Execution Unit . 80 6.3 HMC-Sim API structure hierarchy . 88 6.4 HMC-Sim Sub-cycle state machine . 93 6.5 HMC-Sim sample API sequencing . 95 viii Texas Tech University, John D. Leidel, May 2017 6.6 HPCC StreamTriad results for HMC 4link-2GB device . 100 6.7 HPCC StreamTriad results for HMC 4link-4GB device . 101 6.8 HPCC StreamTriad results for HMC 8link-4GB device . 102 6.9 HPCC StreamTriad results for HMC 8link-8GB device . 103 6.10 HPCC RandomAccess results for HMC 4link-2GB device . ..
Recommended publications
  • Antikernel: a Decentralized Secure Hardware-Software Operating
    Antikernel A Decentralized Secure Hardware-Software Operating System Andrew Zonenberg (@azonenberg) Senior Security Consultant, IOActive Bülent Yener Professor, Rensselaer Polytechnic Institute This work is based on Zonenberg’s 2015 doctoral dissertation, advised by Yener. IOActive, Inc. Copyright ©2016. All Rights Reserved. Kernel mode = full access to all state • What OS code needs this level of access? – Memory manager only needs heap metadata – Scheduler only needs run queue – Drivers only need their peripheral – Nothing needs access to state of user-mode apps • No single subsystem that needs access to all state • Any code with ring 0 privs is incompatible with LRP! IOActive, Inc. Copyright ©2016. All Rights Reserved. Monolithic kernel, microkernel, … Huge Huge attack surface Small Better 0 code size - Ring Can we get here? None Monolithic Micro ??? IOActive, Inc. Copyright ©2016. All Rights Reserved. Exokernel (MIT, 1995) • OS abstractions can often hurt performance – You don’t need a full FS to store temporary data on disk • Split protection / segmentation from abstraction Word proc FS Cache Disk driver DHCP server IOActive, Inc. Copyright ©2016. All Rights Reserved. Exokernel (MIT, 1995) • OS does very little: – Divide resources into blocks (CPU time quanta, RAM pages…) – Provide controlled access to them IOActive, Inc. Copyright ©2016. All Rights Reserved. But wait, there’s more… • By removing non-security abstractions from the kernel, we shrink the TCB and thus the attack surface! IOActive, Inc. Copyright ©2016. All Rights Reserved. So what does the kernel have to do? • Well, obviously a few things… – Share CPU time between multiple processes – Allow processes to talk to hardware/drivers – Allow processes to talk to each other – Page-level RAM allocation/access control IOActive, Inc.
    [Show full text]
  • Mali-400 MP: a Scalable GPU for Mobile Devices
    Mali-400 MP: A Scalable GPU for Mobile Devices Tom Olson Director, Graphics Research, ARM Outline . ARM and Mobile Graphics . Design Constraints for Mobile GPUs . Mali Architecture Overview . Multicore Scaling in Mali-400 MP . Results 2 About ARM . World’s leading supplier of semiconductor IP . Processor Architectures and Implementations . Related IP: buses, caches, debug & trace, physical IP . Software tools and infrastructure . Business Model . License fees . Per-chip royalties . Graphics at ARM . Acquired Falanx in 2006 . ARM Mali is now the world’s most widely licensed GPU family 3 Challenges for Mobile GPUs . Size . Power . Memory Bandwidth 4 More Challenges . Graphics is going into “anything that has a screen” . Mobile . Navigation . Set Top Box/DTV . Automotive . Video telephony . Cameras . Printers . Huge range of form factors, screen sizes, power budgets, and performance requirements . In some applications, a huge difference between peak and average performance requirements 5 Solution: Scalability . Address a wide variety of performance points and applications with a single IP and a single software stack. Need static scalability to adapt to different peak requirements in different platforms / markets . Need dynamic scalability to reduce power when peak performance isn’t needed 6 Options for Scalability . Fine-grained: Multiple pipes, wide SIMD, etc . Proven approach, efficient and effective . But, adding pipes / lanes is invasive . Hard for IP licensees to do on their own . And, hard to partition to provide dynamic scalability . Coarse-grained: Multicore . Easy for licensees to select desired performance . Putting cores on separate power islands allows dynamic scaling 7 Mali 400-MP Top Level Architecture Asynch Mali-400 MP Top-Level APB Geometry Pixel Processor Pixel Processor Pixel Processor Pixel Processor Processor #1 #2 #3 #4 CLKs MaliMMUs RESETs IRQs IDLEs MaliL2 AXI .
    [Show full text]
  • Nyami: a Synthesizable GPU Architectural Model for General-Purpose and Graphics-Specific Workloads
    Nyami: A Synthesizable GPU Architectural Model for General-Purpose and Graphics-Specific Workloads Jeff Bush Philip Dexter†, Timothy N. Miller†, and Aaron Carpenter⇤ San Jose, California †Dept. of Computer Science [email protected] ⇤ Dept. of Electrical & Computer Engineering Binghamton University {pdexter1, millerti, carpente}@binghamton.edu Abstract tempt to bridge this gap, Intel developed Larrabee (now called Graphics processing units (GPUs) continue to grow in pop- Xeon Phi) [25]. Larrabee is architected around small in-order ularity for general-purpose, highly parallel, high-throughput cores with wide vector ALUs to facilitate graphics rendering and systems. This has forced GPU vendors to increase their fo- multi-threading to hide instruction latencies. The use of small, cus on general purpose workloads, sometimes at the expense simple processor cores allows many cores to be packed onto a of the graphics-specific workloads. Using GPUs for general- single die and into a limited power envelope. purpose computation is a departure from the driving forces be- Although GPUs were originally designed to render images for hind programmable GPUs that were focused on a narrow subset visual displays, today they are used frequently for more general- of graphics rendering operations. Rather than focus on purely purpose applications. However, they must still efficiently per- graphics-related or general-purpose use, we have designed and form what would be considered traditional graphics tasks (i.e. modeled an architecture that optimizes for both simultaneously rendering images onto a screen). GPUs optimized for general- to efficiently handle all GPU workloads. purpose computing may downplay graphics-specific optimiza- In this paper, we present Nyami, a co-optimized GPU archi- tions, even going so far as to offload them to software.
    [Show full text]
  • Dynamic Task Scheduling and Binding for Many-Core Systems Through Stream Rewriting
    Dynamic Task Scheduling and Binding for Many-Core Systems through Stream Rewriting Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) der Fakultät für Informatik und Elektrotechnik der Universität Rostock vorgelegt von Lars Middendorf, geb. am 21.09.1982 in Iserlohn aus Rostock Rostock, 03.12.2014 Gutachter Prof. Dr.-Ing. habil. Christian Haubelt Lehrstuhl "Eingebettete Systeme" Institut für Angewandte Mikroelektronik und Datentechnik Universität Rostock Prof. Dr.-Ing. habil. Heidrun Schumann Lehrstuhl Computergraphik Institut für Informatik Universität Rostock Prof. Dr.-Ing. Michael Hübner Lehrstuhl für Eingebettete Systeme der Informationstechnik Fakultät für Elektrotechnik und Informationstechnik Ruhr-Universität Bochum Datum der Abgabe: 03.12.2014 Datum der Verteidigung: 05.03.2015 Acknowledgements First of all, I would like to thank my supervisor Prof. Dr. Christian Haubelt for his guidance during the years, the scientific assistance to write this thesis, and the chance to research on a very individual topic. In addition, I thank my colleagues for interesting discussions and a pleasant working environment. Finally, I would like to thank my family for supporting and understanding me. Contents 1 INTRODUCTION........................................................................................................................1 1.1 STREAM REWRITING ...................................................................................................................5 1.2 RELATED WORK .........................................................................................................................7
    [Show full text]
  • An Overview of MIPS Multi-Threading White Paper
    Public Imagination Technologies An Overview of MIPS Multi-Threading White Paper Copyright © Imagination Technologies Limited. All Rights Reserved. This document is Public. This publication contains proprietary information which is subject to change without notice and is supplied ‘as is’, without any warranty of any kind. Filename : Overview_of_MIPS_Multi_Threading.docx Version : 1.0.3 Issue Date : 19 Dec 2016 Author : Imagination Technologies 1 Revision 1.0.3 Imagination Technologies Public Contents 1. Motivations for Multi-threading ................................................................................................. 3 2. Performance Gains from Multi-threading ................................................................................. 4 3. Types of Multi-threading ............................................................................................................ 4 3.1. Coarse-Grained MT ............................................................................................................ 4 3.2. Fine-Grained MT ................................................................................................................ 5 3.3. Simultaneous MT ................................................................................................................ 6 4. MIPS Multi-threading .................................................................................................................. 6 5. R6 Definition of MT: Virtual Processors ..................................................................................
    [Show full text]
  • C for a Tiny System Implementing C for a Tiny System and Making the Architecture More Suitable for C
    Abstract We have implemented support for Padauk microcontrollers, tiny 8-Bit devices with 60 B to 256 B of RAM, in the Small Device C Compiler (SDCC), showing that the use of (mostly) standard C to program such minimal devices is feasible. We report on our experience and on the difficulties in supporting the hardware multithreading present on some of these devices. To make the devices a better target for C, we propose various enhancements of the architecture, and empirically evaluated their impact on code size. arXiv:2010.04633v1 [cs.PL] 9 Oct 2020 1 C for a tiny system Implementing C for a tiny system and making the architecture more suitable for C Philipp Klaus Krause, Nicolas Lesser October 12, 2020 1 The architecture Padauk microcontrollers use a Harvard architecture with an OTP or Flash pro- gram memory and an 8 bit wide RAM data memory. There also is a third address space for input / output registers. These three memories are accessed using separate instructions. Figure 1 shows the 4 architecture variants, which are commonly called pdk13, pdk14, pdk15 and pdk16 (these names are different from the internal names found in files from the manufacturer-provided IDE) by the width of their program memory. Each instruction is exactly one word in program memory. Most instructions execute in a single cycle, the few excep- tions take 2 cycles. Most instructions use either implicit addressing or direct addressing; the latter usually use the accumulator and one memory operand and write their result into the accumulator or memory. On the pdk13, pdk14 and pdk15, the bit set, reset and test instructions, which use direct addressing, can only access the lower half of the data address space.
    [Show full text]
  • Antikernel: a Decentralized Secure Hardware-Software Operating System Architecture
    Antikernel: A Decentralized Secure Hardware-Software Operating System Architecture Andrew Zonenberg1 and B¨ulent Yener2 1 IOActive Inc., Seattle WA 98105, USA, [email protected] 2 Rensselaer Polytechnic Institute, Troy NY 12180, USA, [email protected] Abstract. The \kernel" model has been part of operating system ar- chitecture for decades, but upon closer inspection it clearly violates the principle of least required privilege. The kernel is a single entity which provides many services (memory management, interfacing to drivers, context switching, IPC) having no real relation to each other, and has the ability to observe or tamper with all state of the system. This work presents Antikernel, a novel operating system architecture consisting of both hardware and software components and designed to be fundamen- tally more secure than the state of the art. To make formal verification easier, and improve parallelism, the Antikernel system is highly modular and consists of many independent hardware state machines (one or more of which may be a general-purpose CPU running application or systems software) connected by a packet-switched network-on-chip (NoC). We create and verify an FPGA-based prototype of the system. Keywords: network on chip · system on chip · security · operating sys- tems · hardware accelerators 1 Introduction The Antikernel architecture is intended to be more, yet less, than simply a \ker- nel in hardware". By breaking up functionality and decentralizing as much as possible we aim to create a platform that allows applications to pick and choose the OS features they wish to use, thus reducing their attack surface dramati- cally compared to a conventional OS (and potentially experiencing significant performance gains, as in an exokernel).3 Antikernel is a decentralized architecture with no system calls; all OS func- tionality is accessed through message passing directly to the relevant service.
    [Show full text]
  • On the Exploration of the DRISC Architecture
    UvA-DARE (Digital Academic Repository) On the exploration of the DRISC architecture Yang, Q. Publication date 2014 Link to publication Citation for published version (APA): Yang, Q. (2014). On the exploration of the DRISC architecture. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:30 Sep 2021 Chapter 1 Introduction Contents 1.1 Background . 8 1.2 Multithreading . 8 1.3 Multiple cores . 10 1.4 What’s next . 11 1.5 Case study . 12 1.6 What have we done . 14 1.7 Overview and organization . 16 7 8 CHAPTER 1. INTRODUCTION 1.1 Background Moore’s law, first raised in 1965 [M 65] but later widely accepted as being “the number of transistors on integrated circuits+ doubles approximately every two year” (fig.
    [Show full text]
  • Programming the Cray XMT at PNNL
    21‐May‐12 What is parallel computing? Using multiple computing elements to solve a problem faster Multiple systems Multiple processors Multiple nodes Multiple cores Parallel computing is becoming ubiquitous due to power constraints Multiple cores rather than faster clock speeds Programming the Cray XMT Since cores share memory and programming cores as separate computing elements is too heavy weight, shared memory programming John Feo will become ubiquitous Director Center for Adaptive Supercomputing Software Intel 48‐core x86 processor AMD Athlon X2 6400+ dual‐core en.wikipedia.org/wiki/Multi‐core_processor www.pcper.com/reviews/Processors/Intel‐Shows‐48‐core‐x86‐Processor‐Single‐chip‐Cloud‐Computer May 21, 2012 1 Shared memory Hiding memory latencies The Good Memory hierarchy Read and write any data item C1 . Cn Reduce latency by storing some data nearby No partitioning No message passing Vectors L1 L1 Reads and write performed by Amortize latency by fetching N words at a time L2 L2 hardware Little overhead lower latency, Parallelism higher bandwidth Hide latency by switching tasks The Bad L3 Can also hide other forms of latencies Read and write any data item Race conditions Memory 4 1 21‐May‐12 Barrel processor Multithreading Many threads per processor core Hide latencies via parallelism Thread-level context switch at every instruction cycle Maintain multiple active threads per processor, so that gaps introduced by long latency operations in one thread are filled by instructions in other threads registers ALU “stream” program counter
    [Show full text]
  • Abstract PRET Machines
    Abstract PRET Machines Invited TCRTS award paper Edward A. Lee (award recipient) Jan Reineke Michael Zimmer UC Berkeley Saarland University Swarm64 AS Berkeley, CA 94720 Saarland Informatics Campus Berlin, Germany Email: [email protected] Saarbrucken,¨ Germany Email: [email protected] Email: [email protected] Abstract—Prior work has shown that it is possible to design stability is maintained if events occur within some specified microarchitectures called PRET machines that deliver precise latency after some stimulus. and repeatable timing of software execution without sacrificing No engineered system is perfect. No matter what specifica- performance. That prior work provides specific designs for PRET microarchitectures and compares them against conventional de- tions we use for what a “correct behavior” of the system is, signs. This paper defines a class of microarchitectures called there will always be the possibility that the realized system will abstract PRET machines (APMs) that capture the essential deviate from that behavior in the field. The goal of engineering, temporal properties of PRET machines. We show that APMs therefore, needs to be to clearly define what is a correct deliver deterministic timing with no loss of performance for a behavior, to design a system that realizes that behavior with family of real-time problems consisting of sporadic event streams with deadlines equal to periods. On the other hand, we observe high probability, to provide detectors for violations, and to a tradeoff between deterministic timing and the ability to meet provide safe fallback behaviors when violations occur. deadlines for sporadic event streams with constrained deadlines. A straightforward way to define correct behavior is to specify what properties the output of a system must exhibit for each possible input.
    [Show full text]
  • Concurrent Programming CLASS NOTES
    COMP 409 Concurrent Programming CLASS NOTES Based on professor Clark Verbrugge's notes Format and figures by Gabriel Lemonde-Labrecque Contents 1 Lecture: January 4th, 2008 7 1.1 Final Exam . .7 1.2 Syllabus . .7 2 Lecture: January 7th, 2008 8 2.1 What is a thread (vs a process)? . .8 2.1.1 Properties of a process . .8 2.1.2 Properties of a thread . .8 2.2 Lifecycle of a process . .9 2.3 Achieving good performances . .9 2.3.1 What is speedup? . .9 2.3.2 What are threads good for then? . 10 2.4 Concurrent Hardware . 10 2.4.1 Basic Uniprocessor . 10 2.4.2 Multiprocessors . 10 3 Lecture: January 9th, 2008 11 3.1 Last Time . 11 3.2 Basic Hardware (continued) . 11 3.2.1 Cache Coherence Issue . 11 3.2.2 On-Chip Multiprocessing (multiprocessors) . 11 3.3 Granularity . 12 3.3.1 Coarse-grained multi-threading (CMT) . 12 3.3.2 Fine-grained multithreading (FMT) . 12 3.4 Simultaneous Multithreading (SMT) . 12 4 Lecture: January 11th, 2008 14 4.1 Last Time . 14 4.2 \replay architecture" . 14 4.3 Atomicity . 15 5 Lecture: January 14th, 2008 16 6 Lecture: January 16th, 2008 16 6.1 Last Time . 16 6.2 At-Most-Once (AMO) . 16 6.3 Race Conditions . 18 7 Lecture: January 18th, 2008 19 7.1 Last Time . 19 7.2 Mutual Exclusion . 19 8 Lecture: January 21st, 2008 21 8.1 Last Time . 21 8.2 Kessel's Algorithm . 22 8.3 Brief Interruption to Introduce Java and PThreads .
    [Show full text]
  • Understanding SPARC Processor Performance
    Understanding SPARC Processor Performance MAY 15 & 16, 2019 CLEVELAND PUBLIC AUDITORIUM, CLEVELAND, OHIO WWW.NEOOUG.ORG/GLOC About the Speaker • Akiva Lichtner • Physics background • Twenty years experience in IT • Enterprise production support analyst • Java developer • Oracle query plan manager … • Spoke here at G.L.O.C. about TDD and Java dynamic tracing Audience • Developers • System administrators • Tech support analysts • IT managers Motivation • I have been working in tech support for a large application • We have run SPARC T4 servers and now we run T7 servers • Application servers, database servers • Environments are all different • Users complained for years about “environment X” being slow, finally figured out why • What I learned can be very useful for users of SPARC servers What is SPARC? • First released in 1987, created by Sun Microsystems to replace the Motorola 68000 in its workstation products • During the .com boom Solaris/SPARC and Windows/Intel were the only supported platforms for the JVM • In 2000 the bubble burst and Sun server sales plunged • Sun acquired Afara Websystems, which had built an interesting new processor, and renamed it the UltraSPARC T1 • Was followed by T2 through M8, evolutions of the same design • More recently Oracle has added significant new functionality Processor Design • High core count (even in the early days) • Many threads per core • “Barrel” processor • Designed to switch efficiently • Non-uniform memory access • Per-processor shared cache • Core-level shared cache A picture speaks a thousand
    [Show full text]