Global Peatland Restoration Cris, R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Riparian Vegetation Management
Engineering in the Water Environment Good Practice Guide Riparian Vegetation Management Second edition, June 2009 Your comments SEPA is committed to ensuring its Good Practice Guides are useful and relevant to those carrying out activities in Scotland’s water environment. We welcome your comments on this Good Practice Guide so that we can improve future editions. A feedback form and details on how to send your comments to us can be found at the back of this guide in Appendix 1. Acknowledgements This document was produced in association with Northern Ecological Services (NES). Page 1 of 47 Engineering in the Water Environment Good Practice Guide: Riparian Vegetation Management Second edition, June 2009 (Document reference: WAT-SG-44) Contents 1 Introduction 3 1.1 What’s included in this Guide? 3 2 Importance of riparian vegetation 6 3 Establishing/creating vegetation 8 3.1 Soft or green engineering techniques 8 3.2 Seeding and planting of bare soil 10 3.3 Creating buffer strips 11 3.4 Planting trees and shrubs 15 3.5 Marginal vegetation 18 3.6 Urban watercourses 21 4 Managing vegetation 24 4.1 Management of grasses and herbs 24 4.2 Management of heath and bog 27 4.3 Management of adjacent wetlands 28 4.4 Management of non-native plant species 29 4.5 Management of scrub and hedgerows 31 4.6 Management of individual trees 31 4.7 Management of trees – riparian woodland 33 4.8 Management of trees – conifer plantations 35 4.9 Large woody debris 37 4.10 Marginal vegetation 37 4.11 Urban watercourses 40 4.12 Use of herbicides 40 4.13 Environmental management of vegetation 41 4.14 Vegetation management plans 41 5 Sources of further information 42 5.1 Publications 42 5.2 Websites 44 Appendix 1: Feedback form – Good Practice Guide WAT-SG-44 45 Page 2 of 47 1 Introduction This document is one of a series of good practice guides produced by SEPA to help people involved in the selection of sustainable engineering solutions that minimise harm to the water environment. -
A Unique Raised Bog at Urbana, Ohio.*
A UNIQUE RAISED BOG AT URBANA, OHIO.* ROBERT B. GORDON, Ohio State University. Located just north of the Champaign County Fair Grounds at Urbana, Ohio, is a unique dome-shaped bog, covered with shrubby vegetation for the most part, in which the center is raised at least ten feet above the margins. An old road crosses the bog. I have been told that it was once the main thorofare from Urbana to Columbus. Horses and wagons passed over it, I suppose, the drivers never realizing that a mat of fibrous roots less than one foot thick was all that held them over a body of water twelve feet in depth. Raised bogs, called "high moors" and "Hochmoore" in foreign literature, have long been known throughout Europe. N. S. Shaler is credited by Nichols with being the first to call attention to these peculiar swamps in North America, in 1888-89. Those which Shaler observed were "mostly limited to the eastern portion of Maine, near the shores of the Bay of Fundy," but some of lesser magnitude were reported for New Hampshire, northern Michigan, and Minnesota. Similar bogs, with centers about 13 feet above their margins, have been reported in the province of New Brunswick by Ganong (1897). Nichols (1919) described bogs of this type encountered in Maine, in which the elevation of the center above the margin varied from 2 or 3 feet to as high as 18 feet (e. g., Denbo Heath, covering several square miles in area). He asserts: "(1) that in the state of Maine raised bogs, in so far as they constitute a distinctive swamp type, are virtually restricted to the proximity of the seacoast; and (2) that in other portions of New England and of the eastern United States this type of bog is practically absent, although in occasional swamps it is possible to detect a slight elevation of the surface above the level of permanent ground water." Warming (1909) has summarized concisely the characteristic features of "Hochmoore." They owe their development to the growth of sphagnum mosses which absorb water that falls in the form of rain or snow. -
Wetlands of the Nile Basin the Many Eco for Their Liveli This Chapt Distribution, Functions and Contribution to Contribution Livelihoods They Provide
important role particular imp into wetlands budget (Sutch 11 in the Blue N icantly 1110difi Wetlands of the Nile Basin the many eco for their liveli This chapt Distribution, functions and contribution to contribution livelihoods they provide. activities, ane rainfall (i.e. 1 Lisa-Maria Rebelo and Matthew P McCartney climate chan: food securit; currently eX' arc under tb Key messages water resour support • Wetlands occur extensively across the Nile Basin and support the livelihoods ofmillions of related ;;ervi people. Despite their importance, there are big gaps in the knowledge about the current better evalu: status of these ecosystems, and how populations in the Nile use them. A better understand systematic I ing is needed on the ecosystem services provided by the difl:erent types of wetlands in the provide. Nile, and how these contribute to local livelihoods. • While many ofthe Nile's wetlands arc inextricably linked to agricultural production systems the basis for making decisions on the extent to which, and how, wetlands can be sustainably used for agriculture is weak. The Nile I: • Due to these infi)fl11atio!1 gaps, the future contribution of wetlands to agriculture is poorly the basin ( understood, and wetlands are otten overlooked in the Nile Basin discourse on water and both the E agriculture. While there is great potential for the further development of agriculture and marsh, fen, fisheries, in particular in the wetlands of Sudan and Ethiopia, at the same time many that is stat wetlands in the basin are threatened by poor management practices and populations. which at \, In order to ensure that the future use of wetlands for agriculture will result in net benefits (i.e. -
National Water Summary Wetland Resources: Maine
National Water Summary-Wetland Resources 213 Maine Wetland Resources M aine is rich in wetland resources. About 5 million acres, or one System Wetland description fourth of the State, is wetland. Maine has a wide variety of wetlands, Palustrine .................. Nontidal and tidal-freshwater wetlands in which ranging from immense inland peatlands to salt marshes and mud vegetation is predominantly trees (forested wet flats along the coast. lands); shrubs (scrub-shrub wetlands); persistent Wetlands are an integral part of Maine's natural resources. or nonpersistent emergent, erect, rooted herba ceous plants (persistent- and nonpersistent Wetlands provide essential habitat for certain types of wildlife and emergent wetlands); or submersed and (or) vegetation, including rare and endangered species. They are used floating plants (aquatic beds). Also, intermit for timber and peat; hunting, fishing, and shellfishing; education tently to permanently flooded open-water bod and research; and bird, wildlife and plant observation, all of which ies of less than 20 acres in which water is less than 6.6 feet deep. boost tourism and the general economy. Wetlands also provide flood control, bank and shoreline-erosion control, sediment retention, lacustrine ................. Nontidal and tidal-freshwater wetlands within an intermittently to permanently flooded lake or water fi ltration, and nutrient uptake. In recognition of the impor reservoir larger than 20 acres and (or) deeper tance of wetlands, many government and private organizations have than 6.6 feet. Vegetation, when present, is pre worked to preserve wetlands and educate the public about wetland dominantly nonpersistent emergent plants (non values. For example, the Maine Department of Conservation owns persistent-emergent wetlands), or submersed and (or) floating plants (aquatic beds), or both. -
K&C 13 Wetland Theme Days Summary Laura Hess
K&C 13 Wetland Theme Days Summary Laura Hess Science Team meeting #13 JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 Post-Copenhagen Considerations (What Obama Faces in the U.S. Congress) “If we decrease the use of carbon dioxide, are we not taking away plant food from the atmosphere? . All our good intentions could be for vain.” Rep. John Shimkus (Illinois) “Wouldn’t it be ironic if in the interest of global warming we mandated massive switches to wind energy, which is a finite resource, which slows the winds down, which causes the temperature to go up? . It’s just something to think about.” Rep. Bill Posey (Florida) Source: “Who’s the Biggest FoolScience on the Team Hill?”, meeting Mother #13 Jones magazine, Jan/Feb 2010 JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 Mapping and Monitoring of Richard Mangroves and Wetlands Lucas Mangrove structural Mangrove change, 2000-2008, northern Australia types, Belize Science Team meeting #13, JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 Mapping Rice Paddies and Agroecological Bill Attributes in Monsoon Asia Salas Poyang Lake Paddy Crop Region, China Area Calendar Science Team meeting #13, JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 Wetlands of the Upper Lisa White Nile Rebelo Sudd Marshes Science Team meeting #13, JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 Central Amazon Wetlands Laura Inundation Periodicity Hess May 2007 (R) June-July 2007 (G) August 2007 (B) Science Team meeting #13, JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 Global Monitoring of Wetland Extent Kyle and Dynamics: Boreal Wetlands McDonald Science Team meeting #13, JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 K&C deliverables: Mangroves • A standardized object-orientated method for characterising mangroves and detecting change. -
The Economic, Cultural and Ecosystem Values of the Sudd Wetland in South Sudan: an Evolutionary Approach to Environment and Development
The Economic, Cultural and Ecosystem Values of the Sudd Wetland in South Sudan: An Evolutionary Approach to Environment and Development JOHN GOWDY HANNES LANG Professor of Economics and Professor of Science Research Associate & Technology Studies School of Life Sciences Rensselaer Polytechnic Institute, Technical University Munich Troy New York, 12180 USA 85354 Freising, Germany [email protected] [email protected] The Economic, Cultural and Ecosystem Values of the Sudd Wetland in South Sudan 1 Contents About the Authors ....................................................................................................................2 Key Findings of this Report .......................................................................................................3 I. Introduction ......................................................................................................................... 4 II. The Sudd ............................................................................................................................ 8 III. Human Presence in the Sudd ..............................................................................................10 IV. Development Threats to the Sudd ........................................................................................ 11 V. Value Transfer as a Framework for Developing the Sudd Wetland ......................................... 15 VI. Maintaining the Ecosystem Services of the Sudd: An Evolutionary Approach to Development and the Environment ...........................................26 -
CINDERELLA Update VIII
CINDERELLA Update VIII 22nd of July 2016, W. Wichtmann “Comparative analysis, integration and exemplary implementation of climate smart land use practices on organic soils: progressing paludicultures after centuries of peatland destruction and neglect” By irregular updates the CINDERELLA community and colleagues are informed about dates, news and other interesting issues within the scope of the CINDERELLA project, ref. paludiculture. All partners are kindly asked to provide current information which can be inserted here. The idea is to keep all project partners informed on the same level, to exchange information, to ask project related current questions, to prepare meetings and to make appointments as well as to prepare common activities (publications, new projects, etc.). Conferences and workshops SWS Potsdam The 11 th annual European Chapter meeting of the Society of Wetlands Scientists (SWS) was held in Potsdam near Berlin, Germany, 17 th -20 th of May 2016. See more information on the homepage: http://www.sws.org/europe-chapter and on our project dropbox. Montpellier The 5 th International EcoSummit Congress 29 th of August – 1st of September 2016 is the next chance for several project partners to meet. There will be a double session on peatland restoration and paludiculture (Monday, 29 th ) as well as round table on paludiculture (Wednesday, 31 st ). For more information: http://www.ecosummit2016.org/ . Gdansk The IWA Specialist Conference on Wetland Systems for Water Pollution Control will take place the 4th – 9th of September in Gdańsk, Poland: http://icws2016.org/ Greifswald - Preparation of the 2 nd reed conference (2017) Some of you will remember our rrr conference which was rather successfully held in Greifswald, February 2013 ( http://www.paludiculture.uni-greifswald.de/en/projekte/rrr2013/index.php ). -
The Republic of South Sudan
THE REPUBLIC OF SOUTH SUDAN PRESENTATION ON AICHI BIODIVERSITY TARGET 5 THE REPUBLIC OF SOUTH SUDAN • Population of 11.3 million, 83% rural • Abundant natural resources, but very poor country, largely due to the 50 years of conflict Land cover map of 2011 Percent of land area agriculture 4% trees 33% shrubs 39% herbaceous plants 23% Significant habitats and wildlife populations Example: • Savannah and woodland ecosystems, wetlands (the Sudd) • Biodiversity hot spots: Imatong mountains. • WCS aerial Survey (2007 – 2010) found • 1.2 million white-eared kob and mongalla gazelle • 4000 Elephants and viable populations of other large bodied species. Drivers of loss of natural habitat and wildlife • 1973 – 2006: annual forest loss 2% per year • Underlying drivers of deforestation: demographic, economic, technological, policy, institutional and cultural factors • Biodiversity assets are threatened by escalating commercial poaching linked to population of fire arms, refugees returning, grazing, water scarcity, extractive industries for oil and minerals NATURAL HABITATS; INCLUDING FORESTS IN SOUTH SUDAN: - Low land forest. - Maintenance forest. - Savannah wood land. - Grass land savanna. - Flood plain. - Sudd swamps and other wetlands. - Semi-arid region WCS 2012 TABLE: SOUTH SUDAN NATIONAL HABITATS: HABITATS IMPORTANCE THREATS NEW STEPS Lowland Manual: chimpanzees, • Communities • Assessment forest elephants, forest hug, • Insecurity • Management Bongo, Buffalo and • Illegal • Conservation practices forest monkeys. harvesting • Poaching Mountain Plants: Albizzia, • Farming • Law enforcement forest podocarpus • Hunting • Policies (9,000 km²) Animals: Bush pig, bush • Fire • Institutional framework bug, colobus monkeys, • Illegal logging Rich bird life. Protected area. Savannah Sited in the iron stone • Shifting • Community based wood land plateau. cultivation. management and Elephants, hippos, • Rehabilitation collaboration. -
Flooding Projections from Elevation and Subsidence Models for Oil Palm Plantations in the Rajang Delta Peatlands, Sarawak, Malaysia
Flooding projections from elevation and subsidence models for oil palm plantations in the Rajang Delta peatlands, Sarawak, Malaysia Flooding projections from elevation and subsidence models for oil palm plantations in the Rajang Delta peatlands, Sarawak, Malaysia Report 1207384 Commissioned by Wetlands International under the project: Sustainable Peatlands for People and Climate funded by Norad May 2015 Flooding projections for the Rajang Delta peatlands, Sarawak Table of Contents 1 Introduction .................................................................................................................... 8 1.1 Land subsidence in peatlands ................................................................................. 8 1.2 Assessing land subsidence and flood risk in tropical peatlands ............................... 8 1.3 This report............................................................................................................. 10 2 The Rajang Delta - peat soils, plantations and subsidence .......................................... 11 2.1 Past assessments of agricultural suitability of peatland in Sarawak ...................... 12 2.2 Current flooding along the Sarawak coast ............................................................. 16 2.3 Land cover developments and status .................................................................... 17 2.4 Subsidence rates in tropical peatlands .................................................................. 23 3 Digitial Terrain Model of the Rajang Delta and coastal -
Proceedings of the Eleventh Muskeg Research Conference Macfarlane, I
NRC Publications Archive Archives des publications du CNRC Proceedings of the Eleventh Muskeg Research Conference MacFarlane, I. C.; Butler, J. For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous. Publisher’s version / Version de l'éditeur: https://doi.org/10.4224/40001140 Technical Memorandum (National Research Council of Canada. Associate Committee on Geotechnical Research), 1966-05-01 NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=05568728-162b-42ca-b690-d97b61f4f15c https://publications-cnrc.canada.ca/fra/voir/objet/?id=05568728-162b-42ca-b690-d97b61f4f15c Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB. Questions? Contact the NRC Publications Archive team at [email protected]. If you wish to email the authors directly, please see the first page of the publication for their contact information. Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à [email protected]. -
This Document Was Withdrawn on 6 November 2017
2017. November 6 on understanding withdrawn was water for wildlife document This Water resources and conservation: the eco-hydrological requirements of habitats and species Assessing We are the Environment Agency. It’s our job to look after your 2017. environment and make it a better place – for you, and for future generations. Your environment is the air you breathe, the water you drink and the ground you walk on. Working with business, Government and society as a whole, we are makingNovember your environment cleaner and healthier. 6 The Environment Agency. Out there, makingon your environment a better place. withdrawn was Published by: Environment Agency Rio House Waterside Drive, Aztec West Almondsbury, Bristol BS32 4UD Tel: 0870document 8506506 Email: [email protected] www.environment-agency.gov.uk This© Environment Agency All rights reserved. This document may be reproduced with prior permission of the Environment Agency. April 2007 Contents Brief summary 1. Introduction 2017. 2. Species and habitats 2.2.1 Coastal and halophytic habitats 2.2.2 Freshwater habitats 2.2.3 Temperate heath, scrub and grasslands 2.2.4 Raised bogs, fens, mires, alluvial forests and bog woodland November 2.3.1 Invertebrates 6 2.3.2 Fish and amphibians 2.3.3 Mammals on 2.3.4 Plants 2.3.5 Birds 3. Hydro-ecological domains and hydrological regimes 4 Assessment methods withdrawn 5. Case studies was 6. References 7. Glossary of abbreviations document This Environment Agency in partnership with Natural England and Countryside Council for Wales Understanding water for wildlife Contents Brief summary The Restoring Sustainable Abstraction (RSA) Programme was set up by the Environment Agency in 1999 to identify and catalogue2017. -
Wind Turbines, Sensitive Bird Populations and Peat Soils
Charity No. 229 325 Wind Turbines, Sensitive Bird Populations and Peat Soils: A Spatial Planning Guide for on-shore wind farm developments in Lancashire, Cheshire, Greater Manchester and Merseyside. July 2008 For more details, contact Tim Youngs [email protected] or Steve White [email protected] Produced by the RSPB and The Wildlife Trust for Lancashire, Manchester & North Merseyside (LWT), in partnership with Lancashire County Council, Natural England and the Merseyside Environmental Advisory Service (EAS) 1 Contents Section Map Annex Page Background 2 How to use the alert maps 4 Introduction 4 Key findings 5 Maps showing ‘important populations’ of ‘sensitive bird 1-5 6- 10 species’ and deep peat sensitive areas in Lancashire, Cheshire, Greater Manchester and Merseyside Legal protection for birds and habitats 11 Methodology and definitions 12- 15 Caveats and notes 16 Distribution of Whooper Swan, Bewick’s Swan and Pink- 17- 22 footed Goose in inland areas of Lancashire, Cheshire, Greater Manchester and Merseyside Thresholds for ‘important’ populations’ (of sensitive species) 1 23 Definition of terms relating to ‘sensitive species’ of bird 2 24 Background The Inspectors who carried out the Examination in Public of the draft NW Regional Spatial Strategy (RSS) between December 06 to February 07, proposed that 'Maps of broad areas where the development of particular types of renewable energy may be considered appropriate should be produced as a matter of urgency and incorporated into an early review of RSS'. This proposal underpins the North West Regional Assembly’s (NWRA) research that is being carried out by Arup consultants. The Secretary of State's response is 'In line with PPS22, we consider that an evidence-based map of broad locations for installation of renewable energy technologies would benefit planning authorities and developers.