Subroutines.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Subroutines.Pdf Subroutines • aka: user-defined functions, methods, Subroutines procdures, sub-procedures, etc etc etc • We’ll just say Subroutines. – “Functions” generally means built-in functions • We’ll attempt to start out most basic, and work our way up to complicated. The Basics Parameters sub myfunc{ • (aka Arguments, inputs, etc) print “Hey, I’m in a function!\n”; • Can call any subroutine with any number of parameters. } • Get passed in via local @_ variable. … sub myfunc{ myfunc( ); foreach $word (@_){ • Because function already declared, ( ) are optional print “$word ”; myfunc; (ie, can just say ) } • Can declare without defining: $foobar = 82 – sub myfunc; myfunc “hello”, “world”, $foobar; – Make sure you define it eventually…. • prints “hello world 82” • official name of subroutine is &myfunc – ampersand not normally necessary to call it Passing current parameters Squashing array parameters • Can call a function with the current value of • If arrays or hashes passed into a subroutine, @_ as the parameter list by using &. they get ‘squashed’ into one flat array: @_ • &myfunc; @a = (1, 2, 3); @b=(8, 9, 10); – myfunc’s @_ is alias to current @_ myfunc (@a, @b); • same as saying myfunc(@_); • inside myfunc, @_ = (1, 2, 3, 8, 9, 10); – it’s faster internally… • Maybe this is what you want. – if not, need to use references… 1 References in Parameters Return values • In Perl, subroutines return last expression evaluated. • To pass arrays (or hashes), and not squash them: sub count { sub myfunc{ $sum = $_[0] + $_[1]; } ($ref1, $ref2) = @_; $total = count(4, 5); @x = @$ref1; @y = @$ref2; #$total = 9 … • Standard practice is to use return keyword } sub myfunc{ … @a = (1, 2, 3); @b = (8, 9, 10); return $retval; myfunc (\@a, \@b); } Return issues Scalar vs List Returns • Can return values in list or scalar context. • wantarray function sub toupper{ – Built-in function in Perl. – If subroutine called in list context, return true (1) @params = @_; – If subroutine called in scalar context, return false (“”) foreach (@params) {tr/a-z/A-Z/;} – If subroutine called in void context, return undef. return @params; • Perhaps we want to return entire list, or first element if } called in scalar context: @uppers = toupper ($word1, $word2); sub fctn{ $upper = toupper($word1, $word2); … #$upper gets size of @params return wantarray ? @params : $params[0]; } Anonymous functions Scoping • Can declare a function without giving it a name. • Up to now, we’ve used global variables • call it by storing it’s return value in definition exclusively. – $subref = sub { print “Hello\n”; }; • Perl has two ways of creating local • to call, de-reference the return value: variables – &$subref; – local and my • works with parameters too.. • what you may think of as local (from – &$subref($param1, $param2); C/C++) is really achieved via my. 2 my lexical variables • my creates a new variable lexically scoped to inner • Variables declared with my are called “lexical most block variables” or “lexicals” – block may be subroutine, loop, or bare { } • Not only are they not visible outside block, • variables created with my are not accessible (or even mask globals with same name: visible) to anything outside scope. $foo = 10; sub fctn{ { my $x = shift(@_); my $foo = 3; … print $foo; #prints 3 } } print $x; #ERROR!!! print $foo; #prints 10 local Where’s the scope • subroutines declared within a lexical’s scope have • local does not create new variable access to that lexical • instead, assigns temporary value to existing (global) variable – this is one way of implementing static variables in Perl • has dynamic scope, rather than lexical { • functions called from within scope of local variable get the my $num = 20; temporary value sub add_to_num { $num++ } sub fctn { print “a = $a, b = $b\n”; }; $a = 10; $b = 20; sub print_num { print “num = num\n”; } { local $a = 1; } my $b = 2; add_to_num; fctn(); print_num; } print $num; #ERROR! #prints a = 1, b = 20 What to know about scope Prototypes • my is statically (lexically) scoped • Perl’s way of letting you limit how you’ll – look at code. whatever block encloses my is the allow your subroutine to be called. scope of the variable • when defining the function, give it the ‘type’ • local is dynamically scoped of variable you want it to take: – scope is enclosing block, plus subroutines called • sub f1 ($$) {…} from within that block – f1 must take two scalars • Almost always want my instead of local • sub f2($@) {…} – notable exception: cannot create lexical variables – f2 takes a scalar, followed by a list such as $_. Only ‘normal’, alpha-numeric variables • sub f3(\@$) {…} – for built-in variables, localize them. – f3 takes an actual array, followed by a scalar 3 Prototype generalities Prototype conversions if prototype char is: Perl expects: \$ actual scalar variable • sub fctn($$) { … } \@ actual array variable • fctn(@foo, $bar) \% actual hash variable • Perl converts @foo to scalar (ie, takes its $ scalar size), and passes that into the function @ array – ‘eats’ rest of params and • sub fctn2(\@$) {…} force list context % hash – ‘eats’ rest of params and • fctn2(@foo, $bar) forces hash context • Perl automatically creates reference to * file handle @foo to pass as first member of @_ & subroutine (name or definition) Getting around parameters • If you want to ignore parameters, call subroutine with & character in front • sub myfunc (\$\$){ … } • myfunc (@array); #ERROR! • &myfunc (@array); #No error here 4.
Recommended publications
  • Programming Languages
    Programming Languages Recitation Summer 2014 Recitation Leader • Joanna Gilberti • Email: [email protected] • Office: WWH, Room 328 • Web site: http://cims.nyu.edu/~jlg204/courses/PL/index.html Homework Submission Guidelines • Submit all homework to me via email (at [email protected] only) on the due date. • Email subject: “PL– homework #” (EXAMPLE: “PL – Homework 1”) • Use file naming convention on all attachments: “firstname_lastname_hw_#” (example: "joanna_gilberti_hw_1") • In the case multiple files are being submitted, package all files into a ZIP file, and name the ZIP file using the naming convention above. What’s Covered in Recitation • Homework Solutions • Questions on the homeworks • For additional questions on assignments, it is best to contact me via email. • I will hold office hours (time will be posted on the recitation Web site) • Run sample programs that demonstrate concepts covered in class Iterative Languages Scoping • Sample Languages • C: static-scoping • Perl: static and dynamic-scoping (use to be only dynamic scoping) • Both gcc (to run C programs), and perl (to run Perl programs) are installed on the cims servers • Must compile the C program with gcc, and then run the generated executable • Must include the path to the perl executable in the perl script Basic Scope Concepts in C • block scope (nested scope) • run scope_levels.c (sl) • ** block scope: set of statements enclosed in braces {}, and variables declared within a block has block scope and is active and accessible from its declaration to the end of the block
    [Show full text]
  • Chapter 5 Names, Bindings, and Scopes
    Chapter 5 Names, Bindings, and Scopes 5.1 Introduction 198 5.2 Names 199 5.3 Variables 200 5.4 The Concept of Binding 203 5.5 Scope 211 5.6 Scope and Lifetime 222 5.7 Referencing Environments 223 5.8 Named Constants 224 Summary • Review Questions • Problem Set • Programming Exercises 227 CMPS401 Class Notes (Chap05) Page 1 / 20 Dr. Kuo-pao Yang Chapter 5 Names, Bindings, and Scopes 5.1 Introduction 198 Imperative languages are abstractions of von Neumann architecture – Memory: stores both instructions and data – Processor: provides operations for modifying the contents of memory Variables are characterized by a collection of properties or attributes – The most important of which is type, a fundamental concept in programming languages – To design a type, must consider scope, lifetime, type checking, initialization, and type compatibility 5.2 Names 199 5.2.1 Design issues The following are the primary design issues for names: – Maximum length? – Are names case sensitive? – Are special words reserved words or keywords? 5.2.2 Name Forms A name is a string of characters used to identify some entity in a program. Length – If too short, they cannot be connotative – Language examples: . FORTRAN I: maximum 6 . COBOL: maximum 30 . C99: no limit but only the first 63 are significant; also, external names are limited to a maximum of 31 . C# and Java: no limit, and all characters are significant . C++: no limit, but implementers often impose a length limitation because they do not want the symbol table in which identifiers are stored during compilation to be too large and also to simplify the maintenance of that table.
    [Show full text]
  • Writing Fast Fortran Routines for Python
    Writing fast Fortran routines for Python Table of contents Table of contents ............................................................................................................................ 1 Overview ......................................................................................................................................... 2 Installation ...................................................................................................................................... 2 Basic Fortran programming ............................................................................................................ 3 A Fortran case study ....................................................................................................................... 8 Maximizing computational efficiency in Fortran code ................................................................. 12 Multiple functions in each Fortran file ......................................................................................... 14 Compiling and debugging ............................................................................................................ 15 Preparing code for f2py ................................................................................................................ 16 Running f2py ................................................................................................................................. 17 Help with f2py ..............................................................................................................................
    [Show full text]
  • Introduction to Programming in Lisp
    Introduction to Programming in Lisp Supplementary handout for 4th Year AI lectures · D W Murray · Hilary 1991 1 Background There are two widely used languages for AI, viz. Lisp and Prolog. The latter is the language for Logic Programming, but much of the remainder of the work is programmed in Lisp. Lisp is the general language for AI because it allows us to manipulate symbols and ideas in a commonsense manner. Lisp is an acronym for List Processing, a reference to the basic syntax of the language and aim of the language. The earliest list processing language was in fact IPL developed in the mid 1950’s by Simon, Newell and Shaw. Lisp itself was conceived by John McCarthy and students in the late 1950’s for use in the newly-named field of artificial intelligence. It caught on quickly in MIT’s AI Project, was implemented on the IBM 704 and by 1962 to spread through other AI groups. AI is still the largest application area for the language, but the removal of many of the flaws of early versions of the language have resulted in its gaining somewhat wider acceptance. One snag with Lisp is that although it started out as a very pure language based on mathematic logic, practical pressures mean that it has grown. There were many dialects which threaten the unity of the language, but recently there was a concerted effort to develop a more standard Lisp, viz. Common Lisp. Other Lisps you may hear of are FranzLisp, MacLisp, InterLisp, Cambridge Lisp, Le Lisp, ... Some good things about Lisp are: • Lisp is an early example of an interpreted language (though it can be compiled).
    [Show full text]
  • 7. Functions in PHP – II
    7. Functions in PHP – II Scope of variables in Function Scope of variable is the part of PHP script where the variable can be accessed or used. PHP supports three different scopes for a variable. These scopes are 1. Local 2. Global 3. Static A variable declared within the function has local scope. That means this variable is only used within the function body. This variable is not used outside the function. To demonstrate the concept, let us take an example. // local variable scope function localscope() { $var = 5; //local scope echo '<br> The value of $var inside the function is: '. $var; } localscope(); // call the function // using $var outside the function will generate an error echo '<br> The value of $var inside the function is: '. $var; The output will be: The value of $var inside the function is: 5 ( ! ) Notice: Undefined variable: var in H:\wamp\www\PathshalaWAD\function\function localscope demo.php on line 12 Call Stack # Time Memory Function Location 1 0.0003 240416 {main}( ) ..\function localscope demo.php:0 The value of $var inside the function is: Page 1 of 7 If a variable is defined outside of the function, then the variable scope is global. By default, a global scope variable is only available to code that runs at global level. That means, it is not available inside a function. Following example demonstrate it. <?php //variable scope is global $globalscope = 20; // local variable scope function localscope() { echo '<br> The value of global scope variable is :'.$globalscope; } localscope(); // call the function // using $var outside the function will generate an error echo '<br> The value of $globalscope outside the function is: '.
    [Show full text]
  • Object Lifetimes In
    Object Lifetimes in Tcl - Uses, Misuses, Limitations By Phil Brooks - Mentor – A Siemens Corporation Presented at the 25 nd annual Tcl/Tk conference, Houston Texas, November 2018 Mentor – A Siemens Corporation 8005 Boeckman Road Wilsonville, Oregon 97070 [email protected] Abstract: The management of the lifetime of an object in Tcl presents a number of unique challenges. In the C++ world, the technique of Resource Allocation is Initialization (RAII) is commonly used to control the lifetime of certain objects. With this technique, an object on the call stack is used to insure proper cleanup of a resource. When the object goes out of scope, the resource is released. It presents a low overhead mechanism for a garbage collection like facility without the complication of more complete garbage collection systems. Tcl doesn't have a similar direct capability, and the need for it has resulted in two techniques that are commonly used to substitute for the capability. The techniques are: 1) Use of the trace command to catch unset of a variable. 2) Mis-use of the lifetime of a Tcl_Obj created with Tcl_NewObj. Each of these techniques has drawbacks. The primary issue with the trace technique is that it requires the user of an object to arrange for explicit destruction of the object. This makes the interface more error prone. The mis-use of lifetime of a Tcl_Obj is subject to premature cleanup of the resource if the object is shimmered to a string for any reason. This paper surveys these lifetime management patterns and demonstrates the use of a new user level technique for lifetime management.
    [Show full text]
  • Declare Function Inside a Function Python
    Declare Function Inside A Function Python Transisthmian and praetorian Wye never ensphere helter-skelter when Shawn lord his nightshade. Larboard Hal rumors her dizziesacapnia very so encouragingly actinally. that Colbert aurifies very inferentially. Kenyan Tad reframes her botts so irefully that Etienne Closures prove to it efficient way something we took few functions in our code. Hope you have any mutable object. Calling Functions from Other Files Problem Solving with Python. What embassy your website look like? Then you can declare any result of a million developers have been loaded? The coach who asked this gas has marked it as solved. We focus group functions together can a Python module see modules and it this way lead our. What are Lambda Functions and How to Use Them? It working so art the result variable is only accessible inside the function in. Variables inside python node, learn more detail, regardless of instances of a program demonstrates it. The python function inside another, which start here, and beginners start out. Get code examples like python define a function within a function instantly right anytime your google search results with the Grepper Chrome. The function by replacing it contains one function start here are discussed: how do not provide extremely cost efficient as their name? How to the page helpful for case it requires you can declare python data science. Each item from the python function has arbitrary length arguments must first, but are only the output is simply the function to. We declare their perfomance varies with the gathered arguments using a wrapped the arguments does the computed fahrenheit to declare function inside a function python? List of python can declare a function inside a million other functions we declare function inside a function python.
    [Show full text]
  • Scope in Fortran 90
    Scope in Fortran 90 The scope of objects (variables, named constants, subprograms) within a program is the portion of the program in which the object is visible (can be use and, if it is a variable, modified). It is important to understand the scope of objects not only so that we know where to define an object we wish to use, but also what portion of a program unit is effected when, for example, a variable is changed, and, what errors might occur when using identifiers declared in other program sections. Objects declared in a program unit (a main program section, module, or external subprogram) are visible throughout that program unit, including any internal subprograms it hosts. Such objects are said to be global. Objects are not visible between program units. This is illustrated in Figure 1. Figure 1: The figure shows three program units. Main program unit Main is a host to the internal function F1. The module program unit Mod is a host to internal function F2. The external subroutine Sub hosts internal function F3. Objects declared inside a program unit are global; they are visible anywhere in the program unit including in any internal subprograms that it hosts. Objects in one program unit are not visible in another program unit, for example variable X and function F3 are not visible to the module program unit Mod. Objects in the module Mod can be imported to the main program section via the USE statement, see later in this section. Data declared in an internal subprogram is only visible to that subprogram; i.e.
    [Show full text]
  • Programming Language Concepts/Binding and Scope
    Programming Language Concepts/Binding and Scope Programming Language Concepts/Binding and Scope Onur Tolga S¸ehito˘glu Bilgisayar M¨uhendisli˘gi 11 Mart 2008 Programming Language Concepts/Binding and Scope Outline 1 Binding 6 Declarations 2 Environment Definitions and Declarations 3 Block Structure Sequential Declarations Monolithic block structure Collateral Declarations Flat block structure Recursive declarations Nested block structure Recursive Collateral Declarations 4 Hiding Block Expressions 5 Static vs Dynamic Scope/Binding Block Commands Static binding Block Declarations Dynamic binding 7 Summary Programming Language Concepts/Binding and Scope Binding Binding Most important feature of high level languages: programmers able to give names to program entities (variable, constant, function, type, ...). These names are called identifiers. Programming Language Concepts/Binding and Scope Binding Binding Most important feature of high level languages: programmers able to give names to program entities (variable, constant, function, type, ...). These names are called identifiers. definition of an identifier ⇆ used position of an identifier. Formally: binding occurrence ⇆ applied occurrence. Programming Language Concepts/Binding and Scope Binding Binding Most important feature of high level languages: programmers able to give names to program entities (variable, constant, function, type, ...). These names are called identifiers. definition of an identifier ⇆ used position of an identifier. Formally: binding occurrence ⇆ applied occurrence. Identifiers are declared once, used n times. Programming Language Concepts/Binding and Scope Binding Binding Most important feature of high level languages: programmers able to give names to program entities (variable, constant, function, type, ...). These names are called identifiers. definition of an identifier ⇆ used position of an identifier. Formally: binding occurrence ⇆ applied occurrence. Identifiers are declared once, used n times.
    [Show full text]
  • Chapter 5. Using Tcl/Tk
    The Almagest 5-1 Chapter 5. Using Tcl/Tk Authors: Edward A. Lee Other Contributors: Brian L. Evans Wei-Jen Huang Alan Kamas Kennard White 5.1 Introduction Tcl is an interpreted “tool command language” designed by John Ousterhout while at UC Berkeley. Tk is an associated X window toolkit. Both have been integrated into Ptolemy. Parts of the graphical user interface and all of the textual interpreter ptcl are designed using them. Several of the stars in the standard star library also use Tcl/Tk. This chapter explains how to use the most basic of these stars, TclScript, as well how to design such stars from scratch. It is possible to define very sophisticated, totally customized user interfaces using this mechanism. In this chapter, we assume the reader is familiar with the Tcl language. Documentation is provided along with the Ptolemy distribution in the $PTOLEMY/tcltk/itcl/man direc- tory in Unix man page format. HTML format documentation is available from the other.src tar file in $PTOLEMY/src/tcltk. Up-to-date documentation and software releases are available by on the SunScript web page at http://www.sunscript.com. There is also a newsgroup called comp.lang.tcl. This news group accumulates a list of frequently asked questions about Tcl which is available http://www.teraform.com/%7Elvirden/tcl-faq/. The principal use of Tcl/Tk in Ptolemy is to customize the user interface. Stars can be created that interact with the user in specialized ways, by creating customized displays or by soliciting graphical inputs. 5.2 Writing Tcl/Tk scripts for the TclScript star Several of the domains in Ptolemy have a star called TclScript.
    [Show full text]
  • Names, Scopes, and Bindings (Cont.)
    Chapter 3:: Names, Scopes, and Bindings (cont.) Programming Language Pragmatics Michael L. Scott Copyright © 2005 Elsevier Review • What is a regular expression ? • What is a context-free grammar ? • What is BNF ? • What is a derivation ? • What is a parse ? • What are terminals/non-terminals/start symbol ? • What is Kleene star and how is it denoted ? • What is binding ? Copyright © 2005 Elsevier Review • What is early/late binding with respect to OOP and Java in particular ? • What is scope ? • What is lifetime? • What is the “general” basic relationship between compile time/run time and efficiency/flexibility ? • What is the purpose of scope rules ? • What is central to recursion ? Copyright © 2005 Elsevier 1 Lifetime and Storage Management • Maintenance of stack is responsibility of calling sequence and subroutine prolog and epilog – space is saved by putting as much in the prolog and epilog as possible – time may be saved by • putting stuff in the caller instead or • combining what's known in both places (interprocedural optimization) Copyright © 2005 Elsevier Lifetime and Storage Management • Heap for dynamic allocation Copyright © 2005 Elsevier Scope Rules •A scope is a program section of maximal size in which no bindings change, or at least in which no re-declarations are permitted (see below) • In most languages with subroutines, we OPEN a new scope on subroutine entry: – create bindings for new local variables, – deactivate bindings for global variables that are re- declared (these variable are said to have a "hole" in their
    [Show full text]
  • Coding 101: Learn Ruby in 15 Minutes Visit
    Coding 101: Learn Ruby in 15 minutes Visit www.makers.tech 1 Contents 2 Contents 10 Challenge 3 3 About us 11 Defining Methods 4 Installing Ruby 12 Challenge 4 4 Checking you’ve got Ruby 12 Challenge 5 5 Method calls 12 Challenge 6 5 Variables 13 Arrays 6 Truth and Falsehood 14 Hashes 7 Strings, objects and Methods 14 Challenge 7 8 Challenge 1 15 Iterations 8 Challenge 2 16 Challenge 8 9 Method Chaining 16 Challenge 9 10 Conditionals 18 Extra Challenges 2 About Us At Makers, we are creating a new generation of tech talent who are skilled and ready for the changing world of work. We are inspired by the idea of discovering and unlocking potential in people for the benefit of 21st century business and society. We believe in alternative ways to learn how to code, how to be ready for work and how to be of value to an organisation. At our core, Makers combines tech education with employment possibilities that transform lives. Our intensive four-month program (which includes a month-long PreCourse) sets you up to become a high quality professional software engineer. Makers is the only coding bootcamp with 5 years experience training software developers remotely. Your virtual experience will be exactly the same as Makers on-site, just delivered differently. If you’d like to learn more, check out www.makers.tech. 3 Installing Checking Ruby you’ve got Ruby You’ll be happy to know that Ruby comes preinstalled on all Apple computers. However we can’t simply use the system defaults - just in case we mess something up! Open the terminal on your computer and then type in If you’ve got your laptop set up already you can skip this section.
    [Show full text]