Molecular Profiling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University of Wolverhampton
Course Specification Published Date: 14-Sep-2020 Produced By: Laura Clode Status: Validated Core Information Awarding Body / Institution: University of Wolverhampton School / Institute: Wolverhampton School of Sciences Course Code(s): BM021K23UV Sandwich 4 Years UCAS Code: B991 Course Title: BSc (Hons) Biomedical Science with Sandwich Placement Hierarchy of Awards: Bachelor of Science with Honours Biomedical Science, having satisfactorily completed a sandwich placement Bachelor of Science with Honours Biomedical Science, having satisfactorily completed a sandwich placement Bachelor of Science Medical Laboratory Science, having satisfactorily completed a sandwich placement Bachelor of Science Biomedical Science, having satisfactorily completed a sandwich placement Diploma of Higher Education Medical Laboratory Science Certificate of Higher Education Medical Laboratory Science University Statement of Credit University Statement of Credit Language of Study: English Date of DAG approval: 05/Jun/2018 Last Review: 2017/8 Course Specification valid from: 2010/1 Course Specification valid to: 2023/4 Academic Staff Course Leader: Dr Elizabeth O'Gara Head of Department: Dr Elizabeth O'Gara Course Information Location of Delivery: University of Wolverhampton Category of Partnership: Not delivered in partnership Teaching Institution: University of Wolverhampton Open / Closed Course: This course is open to all suitably qualified candidates. Entry Requirements: Entry requirements are subject to regular review. The entry requirements applicable to a particular academic year will be published on the University website (and externally as appropriate e.g. UCAS 240 UCAS points including a science subject at A-level or equivalent. GCSE English and Maths at grade C or above. Distinctive Features of the Course: This course involves the study of a variety of biomedical science disciplines and takes place at an institution where fellow students are undertaking programmes in other disciplines and vocational courses in a wide variety of medicine-related subjects. -
Synovial Sarcoma: Recent Discoveries As a Roadmap to New Avenues for Therapy
Published OnlineFirst January 22, 2015; DOI: 10.1158/2159-8290.CD-14-1246 REVIEW Synovial Sarcoma: Recent Discoveries as a Roadmap to New Avenues for Therapy Torsten O. Nielsen 1 , Neal M. Poulin 1 , and Marc Ladanyi 2 ABSTRACT Oncogenesis in synovial sarcoma is driven by the chromosomal translocation t(X,18; p11,q11), which generates an in-frame fusion of the SWI/SNF subunit SS18 to the C-terminal repression domains of SSX1 or SSX2. Proteomic studies have identifi ed an integral role of SS18–SSX in the SWI/SNF complex, and provide new evidence for mistargeting of polycomb repression in synovial sarcoma. Two recent in vivo studies are highlighted, providing additional support for the importance of WNT signaling in synovial sarcoma: One used a conditional mouse model in which knock- out of β-catenin prevents tumor formation, and the other used a small-molecule inhibitor of β-catenin in xenograft models. Signifi cance: Synovial sarcoma appears to arise from still poorly characterized immature mesenchymal progenitor cells through the action of its primary oncogenic driver, the SS18–SSX fusion gene, which encodes a multifaceted disruptor of epigenetic control. The effects of SS18–SSX on polycomb-mediated gene repression and SWI/SNF chromatin remodeling have recently come into focus and may offer new insights into the basic function of these processes. A central role for deregulation of WNT–β-catenin sig- naling in synovial sarcoma has also been strengthened by recent in vivo studies. These new insights into the the biology of synovial sarcoma are guiding novel preclinical and clinical studies in this aggressive cancer. -
Molecular Diagnostic Testing for Hematology and Oncology Indications Table of Contents Related Coverage Resources
Effective February 15, 2021 Medical Coverage Policy Effective Date.............................................. 2/15/2021 Next Review Date ..................................... 11/15/2021 Coverage Policy Number ................................... 0520 Molecular Diagnostic Testing for Hematology and Oncology Indications Table of Contents Related Coverage Resources Overview ....................................................................... 2 Genetics Coverage Policy ........................................................... 2 Genetic Testing Collateral File General Criteria for Somatic Pathogenic or Likely Pathogenic Variant Genetic Testing ........................... 2 Tumor Profile/Gene Expression Classifier Testing - ...................................................................... 3 Prostate Cancer Screening and Prognostic Tests ..... 6 Tumor Tissue-Based Molecular Assays for Prostate Cancer .......................................................... 6 Hematologic Cancer and Myeloproliferative and Myelodysplastic Disease ............................................ 7 Occult Neoplasms ....................................................... 8 Solid Tumor Cancers .................................................. 9 Other Tumor Profile Testing ....................................... 9 General Background .................................................... 9 General Criteria for Somatic Mutation Genetic Testing ........................................................................ 9 Tumor Profile/Gene Expression Classifier Testing -
BRCA1/2 Mutation Detection in the Tumor Tissue from Selected Polish Patients with Breast Cancer Using Next Generation Sequencing
G C A T T A C G G C A T genes Article BRCA1/2 Mutation Detection in the Tumor Tissue from Selected Polish Patients with Breast Cancer Using Next Generation Sequencing Ewelina Szczerba 1,2, Katarzyna Kami ´nska 1, Tomasz Mierzwa 3, Marcin Misiek 4, Janusz Kowalewski 2 and Marzena Anna Lewandowska 1,2,* 1 The F. Lukaszczyk Oncology Center, Molecular Oncology and Genetics Department, Innovative Medical Forum, 85-796 Bydgoszcz, Poland; [email protected] (E.S.); [email protected] (K.K.) 2 Department of Thoracic Surgery and Tumors, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-067 Torun, Poland; [email protected] 3 The F. Lukaszczyk Oncology Center, Department of Prevention and Health Promotion, 85-796 Bydgoszcz, Poland; [email protected] 4 Swi˛etokrzyskieCancer´ Center, Clinical Department of Gynaecological Oncology, 25-734 Kielce, Poland; [email protected] * Correspondence: [email protected] Abstract: (1) Background: Although, in the mutated BRCA detected in the Polish population of patients with breast cancer, there is a large percentage of recurrent pathogenic variants, an increasing need for the assessment of rare BRCA1/2 variants using NGS can be observed. (2) Methods: We studied 75 selected patients with breast cancer (negative for the presence of 5 mutations tested in the Polish population in the prophylactic National Cancer Control Program). DNA extracted from Citation: Szczerba, E.; Kami´nska,K.; the cancer tissue of these patients was used to prepare a library and to sequence all coding regions Mierzwa, T.; Misiek, M.; Kowalewski, of the BRCA1/2 genes. -
Whole Genome Sequencing in Oncology: Using Scenario Drafting to Explore Future Developments Michiel Van De Ven1†, Martijn J
Ven et al. BMC Cancer (2021) 21:488 https://doi.org/10.1186/s12885-021-08214-8 RESEARCH ARTICLE Open Access Whole genome sequencing in oncology: using scenario drafting to explore future developments Michiel van de Ven1†, Martijn J. H. G. Simons2,3†, Hendrik Koffijberg1, Manuela A. Joore2,3, Maarten J. IJzerman1,4,5, Valesca P. Retèl1,6*† and Wim H. van Harten1,6,7† Abstract Background: In oncology, Whole Genome Sequencing (WGS) is not yet widely implemented due to uncertainties such as the required infrastructure and expertise, costs and reimbursements, and unknown pan-cancer clinical utility. Therefore, this study aimed to investigate possible future developments facilitating or impeding the use of WGS as a molecular diagnostic in oncology through scenario drafting. Methods: A four-step process was adopted for scenario drafting. First, the literature was searched for barriers and facilitators related to the implementation of WGS. Second, they were prioritized by international experts, and third, combined into coherent scenarios. Fourth, the scenarios were implemented in an online survey and their likelihood of taking place within 5 years was elicited from another group of experts. Based on the minimum, maximum, and most likely (mode) parameters, individual Program Evaluation and Review Technique (PERT) probability density functions were determined. Subsequently, individual opinions were aggregated by performing unweighted linear pooling, from which summary statistics were extracted and reported. Results: Sixty-two unique barriers and facilitators were extracted from 70 articles. Price, clinical utility, and turnaround time of WGS were ranked as the most important aspects. Nine scenarios were developed and scored on likelihood by 18 experts. -
MLLT10 (AF10) Antibody (Center) Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap1906b
苏州工业园区双圩路9号1幢 邮 编 : 215000 电 话 : 0512-88856768 MLLT10 (AF10) Antibody (Center) Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP1906b Specification MLLT10 (AF10) Antibody (Center) - Product info Application WB, IF Primary Accession P55197 Reactivity Human Host Rabbit Clonality Polyclonal Isotype Rabbit Ig MLLT10 (AF10) Antibody (Center) - Additional info Gene ID 8028 Other Names Protein AF-10, ALL1-fused gene from chromosome 10 protein, MLLT10, AF10 Western blot analysis of MLLT10 (Cat. Target/Specificity #AP1906b) in K562 cell line lysates This MLLT10 (AF10) antibody is generated from rabbits (35ug/lane). MLLT10 (arrow) was immunized with a KLH conjugated synthetic peptide between detected using the purified Pab.(2ug/ml) 294-323 amino acids from the Central region of human MLLT10 (AF10). Dilution WB~~1:1000 IF~~1:10~50 Format Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is prepared by Saturated Ammonium Sulfate (SAS) precipitation followed by dialysis against PBS. Storage Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. Precautions MLLT10 (AF10) Antibody (Center) is for research use only and Fluorescent confocal image of Hela cell not for use in diagnostic or therapeutic procedures. stained with MLLT10 (AF10) Antibody (Center)(Cat#AP1906b).HeLa cells were fixed with 4% PFA (20 min), MLLT10 (AF10) Antibody (Center) - Protein Information permeabilized with Triton X-100 (0.1%, 10 min), then incubated with MLLT10 Name MLLT10 (HGNC:16063) primary antibody (1:25, 1 h at 37℃). For secondary antibody, Alexa Fluor® 488 Function conjugated donkey anti-rabbit antibody Probably involved in transcriptional regulation. -
The Era of Transformative Molecular Oncology
LURIE CANCER CENTER ONCOSET SYMPOSIUM The Era of Transformative Molecular Oncology Robert H. Lurie Comprehensive Cancer Center of Northwestern University Chairs: Leonidas Platanias, MD, PhD Massimo Cristofanilli, MD Date: March 19, 2021 VIRTUAL EVENT - 9:00 A.M. - 4:30 P.M. CENTRAL TIME | MATERIALS AVAILABLE THROUGH APRIL 2 Lurie Cancer Center OncoSET Symposium: The Era of Transformative Molecular Oncology OPENING REMARKS 9:00 a.m. Welcome Leonidas Platanias, MD, PhD and Massimo Cristofanilli, MD Lurie Cancer Center KEYNOTE ADDRESS 9:05 a.m. The Evolution of Molecular Oncology: Actionable, Druggable, Undruggable? David Hong, MD The University of Texas MD Anderson Cancer Center SESSION 1: Molecularly Targeted Therapies and Immune Therapy Selection Co-Chairs: Amir Behdad, MD and Young Chae, MD, MPH, MBA, Lurie Cancer Center 9:45 a.m. The Central Role of Tumor and Germline DNA Alterations in Cancer Treatment Pamela Munster, MD UCSF Helen Diller Family Comprehensive Cancer Center 10:15 a.m. The Implementation of Precision Medicine in an Academic Center: It Takes a Village Milan Radovich, PhD Indiana University Simon Cancer Center 10:50 a.m. Panel Discussion 11:10 a.m. Break & Exhibits SESSION 2: Evolving Role of Liquid Biopsy: Detection, Monitoring and Early Detection Co-Chairs: Massimo Cristofanilli, MD and Dai Horiuchi, PhD, Lurie Cancer Center 11:40 p.m. Liquid Biopsy in Cancer Diagnostics: Fulfilling the Dream of Earlier Detection? Nickolas Papadopoulos, PhD Johns Hopkins Medicine 12:10 p.m. Precision Medicine Delivery in Metastatic Prostate Cancer: Foresight “2020” Manish Kohli, MD Huntsman Cancer Institute - University of Utah Health 12:50 p.m. -
Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A. -
Usbiological Datasheet
MLLT10, CT (AF10) (Protein AF-10, AF10, ALL1-fused Gene From Chromosome 10 Protein) (Biotin) Catalog number A0923-60C-Biotin Supplier United States Biological Translocations affecting chromosome 11q23 involve many partner chromosome regions and occur in various leukemias. The 11q23 gene involved in the translocations is MLL. MLLT10 is the partner gene to MLL1 involved in t(10;11)(p12;q23) translocations. In an analysis of two leukemia patients, the in t(10;11)(p12;q23) translocation fuses MLL1, a SET domain containg histone methyltransferase, to the MLLT10 gene. The MLLT10 gene encodes a predicted 1,027aa protein containing an N-terminal zinc finger and a C-terminal leucine zipper domain. The MLLT10 gene is one of the few MLL partner genes to be independently rearranged with a third gene in leukemia, the CALM gene in the t(10;11)(p12;q14) translocation. Chimeric fusion proteins MLL/AF10 and CALM/AF10 consistently retain the leucine zipper motif of MLLT10. The leucine zipper interacts with GAS41, a protein previously identified as the product of an amplified gene in a glioblastoma. GAS41 interacts with integrase interactor-1 (INI1), a component of the SWI/SNF complex, which acts to remodel chromatin and to modulate transcription. Retention of the leucine zipper in the MLL and CALM fusions suggested that a key feature of these chimeric proteins may be their ability to interfere in normal gene regulation through interaction with the adenosine triphosphate-dependent chromatin remodeling complexes. Applications Suitable for use in ELISA, Western Blot, and Immunohistochemistry. Other applications not tested. Recommended Dilution ELISA: 1:1,000 Western Blot: 1:100-1:500 Immunohistochemistry: 1:10-1:50 Optimal dilutions to be determined by the researcher. -
Cannabinoid Modulation of Cisplatin Induced Neuropathy
University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 2015 Cannabinoid Modulation Of Cisplatin Induced Neuropathy Hannah Marie Harris University of Mississippi Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Biological Psychology Commons Recommended Citation Harris, Hannah Marie, "Cannabinoid Modulation Of Cisplatin Induced Neuropathy" (2015). Electronic Theses and Dissertations. 1142. https://egrove.olemiss.edu/etd/1142 This Thesis is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. CANNABINOID MODULATION OF CISPLATIN INDUCED NEUROPATHY A Thesis presented in partial fulfillment of requirements for the degree of Master of Arts in the Department of Psychology The University of Mississippi by Hannah Marie Harris December 2015 Copyright Hannah Marie Harris 2015 ALL RIGHTS RESERVED ABSTRACT Endocannabinoid modulation of cancer-related pain is well-documented. Sativex, a cannabinoid extract with a 1:1 ratio of tetrahydrocannabinol (THC) and cannabidiol (CBD) has been shown to alleviate neuropathic pain associated with chemotherapy. This research examined whether THC or CBD alone is effective in attenuating or preventing tactile allodynia associated with cisplatin-administration. Mice (C57BL/6) were given eight doses of 2.3 mg/kg cisplatin or saline solution IP every second day to induce tactile allodynia (Ringers on alternate days). Tactile responses to hind-paws were quantified in g of force using an electric von Frey (eVF) prior to (baseline) and after the cisplatin administration protocol. Separate groups of mice were then given vehicle, 100 mg/kg gabapentin, 2 mg/kg THC or 2 mg/kg CBD IP and tested 60 m later on eVF. -
Recurrent Involvement of Ring-Type Zinc Finger Genes in Complex
Leukemia (2013) 27, 1745–1791 & 2013 Macmillan Publishers Limited All rights reserved 0887-6924/13 www.nature.com/leu LETTERS TO THE EDITOR Recurrent involvement of ring-type zinc finger genes in complex molecular rearrangements in childhood acute myelogeneous leukemia with translocation t(10;11)(p12;q23) Leukemia (2013) 27, 1745–1791; doi:10.1038/leu.2013.1 the MLL/MLLT10 fusion gene had been detected by conventional FISH and RT-PCR (Table S1). A specimen of the initial and remission sample was obtained in six children; in three of them a Complex rearrangements involving the MLL gene on chromosome relapse sample was available and additionally analyzed after 11q23 and MLLT10 on 10p have been reported in 15% of pediatric informed consent. By analyzing paired-end reads, we were able to patients with MLL rearranged acute myelogeneous leukemia describe these alterations in depth, revealing the precise pattern (AML). Owing to the opposite direction of MLL and MLLT10 of molecular rearrangement and finding other involved chromo- rearrangements (inversion and subsequent translocation or somes. For paired-end sequencing, DNA was isolated from insertion) with three or more breaks are required to result in a peripheral blood lymphocytes, and fragment libraries with a fusion gene.1,2 There are several additional reported median insert size of 450 bp were prepared. Samples of patients recombination partners of the MLL gene, in which a simple 1–3 were sequenced on a GAIIx platform; samples of patients 4–6 reciprocal translocation is insufficient due to incompatible on a HiSeq 2000 (Illumina Inc., San Diego, CA, USA). -
MLLT10 and IL3 Rearrangement Together with a Complex Four-Way
ONCOLOGY REPORTS 33: 625-630, 2015 MLLT10 and IL3 rearrangement together with a complex four-way translocation and trisomy 4 in a patient with early T-cell precursor acute lymphoblastic leukemia: A case report MoNEEB A.K. oTHMAN1, JoANA B. MELo2,3, ISABEL M. CARREIRA2,3, Martina RINCIC1,4, EyAd ALHouRANI1, Kathleen WILHELM1,5, BERNd GRuHN5, Anita GLASER1 and THoMAS LIEHR1 1Jena university Hospital, Friedrich Schiller university, Institute of Human Genetics, Jena, Germany; 2Laboratory of Cytogenetics and Genomics, Faculty of Medicine, university of Coimbra, Coimbra; 3CIMAGo, Centro de Investigação em Meio Ambiente, Genéticae oncobiologia, Coimbra, Portugal; 4Croatian Institute of Brain Research, Zagreb, Croatia; 5department of Pediatrics (oncology and Hematology), Jena university Hospital, Friedrich Schiller university, Jena, Germany Received September 3, 2014; Accepted october 13, 2014 DOI: 10.3892/or.2014.3624 Abstract. Cytogenetic classification of acute lymphoblastic Introduction leukemia (ALL) is primarily based on numerical and struc- tural chromosomal abnormalities. In T-cell ALL (T-ALL), T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive chromosomal rearrangements are identified in up to 70% leukemia derived from malignant transformation of T cell of the patients while the remaining patients show a normal progenitors and is more common in males than in females. karyotype. In the present study, a 16-year-old male was diag- T-ALL affects mainly older children and adolescents and nosed with T-precursor cell ALL and a normal karyotype represents 10-15% of pediatric and 25% of young adult ALL after standard GTG-banding, was studied retrospectively cases (1). Hyperdiploidy (>46 chromosomes) is found in 30% (>10 years after diagnosis) in frame of a research project of childhood and 10% of adulthood ALL cases.