Section 2: Examples of Groups
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Math 411 Midterm 2, Thursday 11/17/11, 7PM-8:30PM. Instructions: Exam Time Is 90 Mins
Math 411 Midterm 2, Thursday 11/17/11, 7PM-8:30PM. Instructions: Exam time is 90 mins. There are 7 questions for a total of 75 points. Calculators, notes, and textbook are not allowed. Justify all your answers carefully. If you use a result proved in the textbook or class notes, state the result precisely. 1 Q1. (10 points) Let σ 2 S9 be the permutation 1 2 3 4 5 6 7 8 9 5 8 7 2 3 9 1 4 6 (a) (2 points) Write σ as a product of disjoint cycles. (b) (2 points) What is the order of σ? (c) (2 points) Write σ as a product of transpositions. (d) (4 points) Compute σ100. Q2. (8 points) (a) (3 points) Find an element of S5 of order 6 or prove that no such element exists. (b) (5 points) Find an element of S6 of order 7 or prove that no such element exists. Q3. (12 points) (a) (4 points) List all the elements of the alternating group A4. (b) (8 points) Find the left cosets of the subgroup H of A4 given by H = fe; (12)(34); (13)(24); (14)(23)g: Q4. (10 points) (a) (3 points) State Lagrange's theorem. (b) (7 points) Let p be a prime, p ≥ 3. Let Dp be the dihedral group of symmetries of a regular p-gon (a polygon with p sides of equal length). What are the possible orders of subgroups of Dp? Give an example in each case. 2 Q5. (13 points) (a) (3 points) State a theorem which describes all finitely generated abelian groups. -
Generating the Mathieu Groups and Associated Steiner Systems
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 112 (1993) 41-47 41 North-Holland Generating the Mathieu groups and associated Steiner systems Marston Conder Department of Mathematics and Statistics, University of Auckland, Private Bag 92019, Auckland, New Zealand Received 13 July 1989 Revised 3 May 1991 Abstract Conder, M., Generating the Mathieu groups and associated Steiner systems, Discrete Mathematics 112 (1993) 41-47. With the aid of two coset diagrams which are easy to remember, it is shown how pairs of generators may be obtained for each of the Mathieu groups M,,, MIz, Mz2, M,, and Mz4, and also how it is then possible to use these generators to construct blocks of the associated Steiner systems S(4,5,1 l), S(5,6,12), S(3,6,22), S(4,7,23) and S(5,8,24) respectively. 1. Introduction Suppose you land yourself in 24-dimensional space, and are faced with the problem of finding the best way to pack spheres in a box. As is well known, what you really need for this is the Leech Lattice, but alas: you forgot to bring along your Miracle Octad Generator. You need to construct the Leech Lattice from scratch. This may not be so easy! But all is not lost: if you can somehow remember how to define the Mathieu group Mz4, you might be able to produce the blocks of a Steiner system S(5,8,24), and the rest can follow. In this paper it is shown how two coset diagrams (which are easy to remember) can be used to obtain pairs of generators for all five of the Mathieu groups M,,, M12, M22> Mz3 and Mz4, and also how blocks may be constructed from these for each of the Steiner systems S(4,5,1 I), S(5,6,12), S(3,6,22), S(4,7,23) and S(5,8,24) respectively. -
On Some Generation Methods of Finite Simple Groups
Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography On Some Generation Methods of Finite Simple Groups Ayoub B. M. Basheer Department of Mathematical Sciences, North-West University (Mafikeng), P Bag X2046, Mmabatho 2735, South Africa Groups St Andrews 2017 in Birmingham, School of Mathematics, University of Birmingham, United Kingdom 11th of August 2017 Ayoub Basheer, North-West University, South Africa Groups St Andrews 2017 Talk in Birmingham Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography Abstract In this talk we consider some methods of generating finite simple groups with the focus on ranks of classes, (p; q; r)-generation and spread (exact) of finite simple groups. We show some examples of results that were established by the author and his supervisor, Professor J. Moori on generations of some finite simple groups. Ayoub Basheer, North-West University, South Africa Groups St Andrews 2017 Talk in Birmingham Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography Introduction Generation of finite groups by suitable subsets is of great interest and has many applications to groups and their representations. For example, Di Martino and et al. [39] established a useful connection between generation of groups by conjugate elements and the existence of elements representable by almost cyclic matrices. Their motivation was to study irreducible projective representations of the sporadic simple groups. In view of applications, it is often important to exhibit generating pairs of some special kind, such as generators carrying a geometric meaning, generators of some prescribed order, generators that offer an economical presentation of the group. -
Janko's Sporadic Simple Groups
Janko’s Sporadic Simple Groups: a bit of history Algebra, Geometry and Computation CARMA, Workshop on Mathematics and Computation Terry Gagen and Don Taylor The University of Sydney 20 June 2015 Fifty years ago: the discovery In January 1965, a surprising announcement was communicated to the international mathematical community. Zvonimir Janko, working as a Research Fellow at the Institute of Advanced Study within the Australian National University had constructed a new sporadic simple group. Before 1965 only five sporadic simple groups were known. They had been discovered almost exactly one hundred years prior (1861 and 1873) by Émile Mathieu but the proof of their simplicity was only obtained in 1900 by G. A. Miller. Finite simple groups: earliest examples É The cyclic groups Zp of prime order and the alternating groups Alt(n) of even permutations of n 5 items were the earliest simple groups to be studied (Gauss,≥ Euler, Abel, etc.) É Evariste Galois knew about PSL(2,p) and wrote about them in his letter to Chevalier in 1832 on the night before the duel. É Camille Jordan (Traité des substitutions et des équations algébriques,1870) wrote about linear groups defined over finite fields of prime order and determined their composition factors. The ‘groupes abéliens’ of Jordan are now called symplectic groups and his ‘groupes hypoabéliens’ are orthogonal groups in characteristic 2. É Émile Mathieu introduced the five groups M11, M12, M22, M23 and M24 in 1861 and 1873. The classical groups, G2 and E6 É In his PhD thesis Leonard Eugene Dickson extended Jordan’s work to linear groups over all finite fields and included the unitary groups. -
Arxiv:Hep-Th/0510191V1 22 Oct 2005
Maximal Subgroups of the Coxeter Group W (H4) and Quaternions Mehmet Koca,∗ Muataz Al-Barwani,† and Shadia Al-Farsi‡ Department of Physics, College of Science, Sultan Qaboos University, PO Box 36, Al-Khod 123, Muscat, Sultanate of Oman Ramazan Ko¸c§ Department of Physics, Faculty of Engineering University of Gaziantep, 27310 Gaziantep, Turkey (Dated: September 8, 2018) The largest finite subgroup of O(4) is the noncrystallographic Coxeter group W (H4) of order 14400. Its derived subgroup is the largest finite subgroup W (H4)/Z2 of SO(4) of order 7200. Moreover, up to conjugacy, it has five non-normal maximal subgroups of orders 144, two 240, 400 and 576. Two groups [W (H2) × W (H2)]×Z4 and W (H3)×Z2 possess noncrystallographic structures with orders 400 and 240 respectively. The groups of orders 144, 240 and 576 are the extensions of the Weyl groups of the root systems of SU(3)×SU(3), SU(5) and SO(8) respectively. We represent the maximal subgroups of W (H4) with sets of quaternion pairs acting on the quaternionic root systems. PACS numbers: 02.20.Bb INTRODUCTION The noncrystallographic Coxeter group W (H4) of order 14400 generates some interests [1] for its relevance to the quasicrystallographic structures in condensed matter physics [2, 3] as well as its unique relation with the E8 gauge symmetry associated with the heterotic superstring theory [4]. The Coxeter group W (H4) [5] is the maximal finite subgroup of O(4), the finite subgroups of which have been classified by du Val [6] and by Conway and Smith [7]. -
14.2 Covers of Symmetric and Alternating Groups
Remark 206 In terms of Galois cohomology, there an exact sequence of alge- braic groups (over an algebrically closed field) 1 → GL1 → ΓV → OV → 1 We do not necessarily get an exact sequence when taking values in some subfield. If 1 → A → B → C → 1 is exact, 1 → A(K) → B(K) → C(K) is exact, but the map on the right need not be surjective. Instead what we get is 1 → H0(Gal(K¯ /K), A) → H0(Gal(K¯ /K), B) → H0(Gal(K¯ /K), C) → → H1(Gal(K¯ /K), A) → ··· 1 1 It turns out that H (Gal(K¯ /K), GL1) = 1. However, H (Gal(K¯ /K), ±1) = K×/(K×)2. So from 1 → GL1 → ΓV → OV → 1 we get × 1 1 → K → ΓV (K) → OV (K) → 1 = H (Gal(K¯ /K), GL1) However, taking 1 → µ2 → SpinV → SOV → 1 we get N × × 2 1 ¯ 1 → ±1 → SpinV (K) → SOV (K) −→ K /(K ) = H (K/K, µ2) so the non-surjectivity of N is some kind of higher Galois cohomology. Warning 207 SpinV → SOV is onto as a map of ALGEBRAIC GROUPS, but SpinV (K) → SOV (K) need NOT be onto. Example 208 Take O3(R) =∼ SO3(R)×{±1} as 3 is odd (in general O2n+1(R) =∼ SO2n+1(R) × {±1}). So we have a sequence 1 → ±1 → Spin3(R) → SO3(R) → 1. 0 × Notice that Spin3(R) ⊆ C3 (R) =∼ H, so Spin3(R) ⊆ H , and in fact we saw that it is S3. 14.2 Covers of symmetric and alternating groups The symmetric group on n letter can be embedded in the obvious way in On(R) as permutations of coordinates. -
324 COHOMOLOGY of DIHEDRAL GROUPS of ORDER 2P Let D Be A
324 PHYLLIS GRAHAM [March 2. P. M. Cohn, Unique factorization in noncommutative power series rings, Proc. Cambridge Philos. Soc 58 (1962), 452-464. 3. Y. Kawada, Cohomology of group extensions, J. Fac. Sci. Univ. Tokyo Sect. I 9 (1963), 417-431. 4. J.-P. Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics No. 5, Springer, Berlin, 1964, 5. , Corps locaux et isogênies, Séminaire Bourbaki, 1958/1959, Exposé 185 6. , Corps locaux, Hermann, Paris, 1962. UNIVERSITY OF MICHIGAN COHOMOLOGY OF DIHEDRAL GROUPS OF ORDER 2p BY PHYLLIS GRAHAM Communicated by G. Whaples, November 29, 1965 Let D be a dihedral group of order 2p, where p is an odd prime. D is generated by the elements a and ]3 with the relations ap~fi2 = 1 and (ial3 = or1. Let A be the subgroup of D generated by a, and let p-1 Aoy Ai, • • • , Ap-\ be the subgroups generated by j8, aft, • * • , a /3, respectively. Let M be any D-module. Then the cohomology groups n n H (A0, M) and H (Aif M), i=l, 2, • • • , p — 1 are isomorphic for 1 l every integer n, so the eight groups H~ (Df Af), H°(D, M), H (D, jfef), 2 1 Q # (A Af), ff" ^. M), H (A, M), H-Wo, M), and H»(A0, M) deter mine all cohomology groups of M with respect to D and to all of its subgroups. We have found what values this array takes on as M runs through all finitely generated -D-modules. All possibilities for the first four members of this array are deter mined as a special case of the results of Yang [4]. -
Arxiv:2101.02451V1 [Math.CO] 7 Jan 2021 the Diagonal Graph
The diagonal graph R. A. Bailey and Peter J. Cameron School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, U.K. Abstract According to the O’Nan–Scott Theorem, a finite primitive permu- tation group either preserves a structure of one of three types (affine space, Cartesian lattice, or diagonal semilattice), or is almost simple. However, diagonal groups are a much larger class than those occurring in this theorem. For any positive integer m and group G (finite or in- finite), there is a diagonal semilattice, a sub-semilattice of the lattice of partitions of a set Ω, whose automorphism group is the correspond- ing diagonal group. Moreover, there is a graph (the diagonal graph), bearing much the same relation to the diagonal semilattice and group as the Hamming graph does to the Cartesian lattice and the wreath product of symmetric groups. Our purpose here, after a brief introduction to this semilattice and graph, is to establish some properties of this graph. The diagonal m graph ΓD(G, m) is a Cayley graph for the group G , and so is vertex- transitive. We establish its clique number in general and its chromatic number in most cases, with a conjecture about the chromatic number in the remaining cases. We compute the spectrum of the adjacency matrix of the graph, using a calculation of the M¨obius function of the arXiv:2101.02451v1 [math.CO] 7 Jan 2021 diagonal semilattice. We also compute some other graph parameters and symmetry properties of the graph. We believe that this family of graphs will play a significant role in algebraic graph theory. -
Dihedral Groups Ii
DIHEDRAL GROUPS II KEITH CONRAD We will characterize dihedral groups in terms of generators and relations, and describe the subgroups of Dn, including the normal subgroups. We will also introduce an infinite group that resembles the dihedral groups and has all of them as quotient groups. 1. Abstract characterization of Dn −1 −1 The group Dn has two generators r and s with orders n and 2 such that srs = r . We will show every group with a pair of generators having properties similar to r and s admits a homomorphism onto it from Dn, and is isomorphic to Dn if it has the same size as Dn. Theorem 1.1. Let G be generated by elements x and y where xn = 1 for some n ≥ 3, 2 −1 −1 y = 1, and yxy = x . There is a surjective homomorphism Dn ! G, and if G has order 2n then this homomorphism is an isomorphism. The hypotheses xn = 1 and y2 = 1 do not mean x has order n and y has order 2, but only that their orders divide n and divide 2. For instance, the trivial group has the form hx; yi where xn = 1, y2 = 1, and yxy−1 = x−1 (take x and y to be the identity). Proof. The equation yxy−1 = x−1 implies yxjy−1 = x−j for all j 2 Z (raise both sides to the jth power). Since y2 = 1, we have for all k 2 Z k ykxjy−k = x(−1) j by considering even and odd k separately. Thus k (1.1) ykxj = x(−1) jyk: This shows each product of x's and y's can have all the x's brought to the left and all the y's brought to the right. -
Abstract Algebra
Abstract Algebra Paul Melvin Bryn Mawr College Fall 2011 lecture notes loosely based on Dummit and Foote's text Abstract Algebra (3rd ed) Prerequisite: Linear Algebra (203) 1 Introduction Pure Mathematics Algebra Analysis Foundations (set theory/logic) G eometry & Topology What is Algebra? • Number systems N = f1; 2; 3;::: g \natural numbers" Z = f:::; −1; 0; 1; 2;::: g \integers" Q = ffractionsg \rational numbers" R = fdecimalsg = pts on the line \real numbers" p C = fa + bi j a; b 2 R; i = −1g = pts in the plane \complex nos" k polar form re iθ, where a = r cos θ; b = r sin θ a + bi b r θ a p Note N ⊂ Z ⊂ Q ⊂ R ⊂ C (all proper inclusions, e.g. 2 62 Q; exercise) There are many other important number systems inside C. 2 • Structure \binary operations" + and · associative, commutative, and distributive properties \identity elements" 0 and 1 for + and · resp. 2 solve equations, e.g. 1 ax + bx + c = 0 has two (complex) solutions i p −b ± b2 − 4ac x = 2a 2 2 2 2 x + y = z has infinitely many solutions, even in N (thei \Pythagorian triples": (3,4,5), (5,12,13), . ). n n n 3 x + y = z has no solutions x; y; z 2 N for any fixed n ≥ 3 (Fermat'si Last Theorem, proved in 1995 by Andrew Wiles; we'll give a proof for n = 3 at end of semester). • Abstract systems groups, rings, fields, vector spaces, modules, . A group is a set G with an associative binary operation ∗ which has an identity element e (x ∗ e = x = e ∗ x for all x 2 G) and inverses for each of its elements (8 x 2 G; 9 y 2 G such that x ∗ y = y ∗ x = e). -
SUMMARY of PART II: GROUPS 1. Motivation and Overview 1.1. Why
SUMMARY OF PART II: GROUPS 1. Motivation and overview 1.1. Why study groups? The group concept is truly fundamental not only for algebra, but for mathematics in general, as groups appear in mathematical theories as diverse as number theory (e.g. the solutions of Diophantine equations often form a group), Galois theory (the solutions(=roots) of a polynomial equation may satisfy hidden symmetries which can be put together into a group), geometry (e.g. the isometries of a given geometric space or object form a group) or topology (e.g. an important tool is the fundamental group of a topological space), but also in physics (e.g. the Lorentz group which in concerned with the symmetries of space-time in relativity theory, or the “gauge” symmetry group of the famous standard model). Our task for the course is to understand whole classes of groups—mostly we will concentrate on finite groups which are already very difficult to classify. Our main examples for these shall be the cyclic groups Cn, symmetric groups Sn (on n letters), the alternating groups An and the dihedral groups Dn. The most “fundamental” of these are the symmetric groups, as every finite group can be embedded into a certain finite symmetric group (Cayley’s Theorem). We will be able to classify all groups of order 2p and p2, where p is a prime. We will also find structure results on subgroups which exist for a given such group (Cauchy’s Theorem, Sylow Theorems). Finally, abelian groups can be controlled far easier than general (i.e., possibly non-abelian) groups, and we will give a full classification for all such abelian groups, at least when they can be generated by finitely many elements. -
MAT313 Fall 2017 Practice Midterm II the Actual Midterm Will Consist of 5-6 Problems
MAT313 Fall 2017 Practice Midterm II The actual midterm will consist of 5-6 problems. It will be based on subsections 127-234 from sections 6-11. This is a preliminary version. I might add few more problems to make sure that all important concepts and methods are covered. Problem 1. 2 Let P be a set of lines through 0 in R . The group SL(2; R) acts on X by linear transfor- mations. Let H be the stabilizer of a line defined by the equation y = 0. (1) Describe the set of matrices H. (2) Describe the orbits of H in X. How many orbits are there? (3) Identify X with the set of cosets of SL(2; R). Solution. (1) Denote the set of lines by P = fLm;ng, where Lm;n is equal to f(x; y)jmx+ny = 0g. a b Note that Lkm;kn = Lm;n if k 6= 0. Let g = c d , ad − bc = 1 be an element of SL(2; R). Then gLm;n = f(x; y)jm(ax + by) + n(cx + dy) = 0g = Lma+nc;mb+nd. a b By definition the line f(x; y)jy = 0g is equal to L0;1. Then c d L0;1 = Lc;d. The line Lc;d coincides with L0;1 if c = 0. Then the stabilizer Stab(L0;1) coincides with a b H = f 0 d g ⊂ SL(2; R). (2) We already know one trivial H-orbit O = fL0;1g. The complement PnfL0;1g is equal to fLm:njm 6= 0g = fL1:n=mjm 6= 0g = fL1:tg.