Preferential Eradication of Acute Myelogenous Leukemia Stem Cells by Fenretinide
Preferential eradication of acute myelogenous leukemia stem cells by fenretinide Hui Zhanga,1, Jian-Qing Mia,1, Hai Fanga,b,1, Zhao Wanga,1, Chun Wangc, Lin Wua,c, Bin Zhanga, Mark Mindend, Wen-Tao Yanga, Huan-Wei Wanga, Jun-Min Lia, Xiao-Dong Xia, Sai-Juan Chena, Ji Zhanga,b,e,2, Zhu Chena,e,2, and Kan-Kan Wanga,e,2 aState Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU- SM), Shanghai 200025, China; bInstitute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and SJTU-SM, Shanghai 200025, China; cThe First People Hospital, Shanghai Jiao Tong University, Shanghai 200080, China; dPrincess Margaret Hospital/Ontario Cancer Institute, University Health Network, Toronto, ON, Canada M5G 2M9; and eSamuel Waxman Cancer Research Foundation Laboratory, Shanghai Ruijin Hospital, Shanghai 200025, China Contributed by Zhu Chen, February 8, 2013 (sent for review November 14, 2012) Leukemia stem cells (LSCs) play important roles in leukemia activation of nuclear factor κB (NF-κB), active Wnt/β-catenin initiation, progression, and relapse, and thus represent a critical signaling, and elevated levels of interferon regulatory factor-1 target for therapeutic intervention. However, relatively few (IRF-1) and death-associated protein kinase (DAPK) (8–12). agents have been shown to target LSCs, slowing progress in the Most recently, emerging evidence points to oxidative signaling as treatment of acute myelogenous leukemia (AML). Based on in being a two-edged sword in AML: moderate levels of reactive vitro and in vivo evidence, we report here that fenretinide, a well- oxygen species (ROS) are important for driving disease, whereas tolerated vitamin A derivative, is capable of eradicating LSCs higher levels result in cell death (13–15).
[Show full text]