On the Dynamic Effect of Infinite Redshift Surface: Lorentz Factor Analysis Method
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From Relativistic Time Dilation to Psychological Time Perception
From relativistic time dilation to psychological time perception: an approach and model, driven by the theory of relativity, to combine the physical time with the time perceived while experiencing different situations. Andrea Conte1,∗ Abstract An approach, supported by a physical model driven by the theory of relativity, is presented. This approach and model tend to conciliate the relativistic view on time dilation with the current models and conclusions on time perception. The model uses energy ratios instead of geometrical transformations to express time dilation. Brain mechanisms like the arousal mechanism and the attention mechanism are interpreted and combined using the model. Matrices of order two are generated to contain the time dilation between two observers, from the point of view of a third observer. The matrices are used to transform an observer time to another observer time. Correlations with the official time dilation equations are given in the appendix. Keywords: Time dilation, Time perception, Definition of time, Lorentz factor, Relativity, Physical time, Psychological time, Psychology of time, Internal clock, Arousal, Attention, Subjective time, Internal flux, External flux, Energy system ∗Corresponding author Email address: [email protected] (Andrea Conte) 1Declarations of interest: none Preprint submitted to PsyArXiv - version 2, revision 1 June 6, 2021 Contents 1 Introduction 3 1.1 The unit of time . 4 1.2 The Lorentz factor . 6 2 Physical model 7 2.1 Energy system . 7 2.2 Internal flux . 7 2.3 Internal flux ratio . 9 2.4 Non-isolated system interaction . 10 2.5 External flux . 11 2.6 External flux ratio . 12 2.7 Total flux . -
Aspects of Spatially Homogeneous and Isotropic Cosmology
Faculty of Technology and Science Department of Physics and Electrical Engineering Mikael Isaksson Aspects of Spatially Homogeneous and Isotropic Cosmology Degree Project of 15 credit points Physics Program Date/Term: 02-04-11 Supervisor: Prof. Claes Uggla Examiner: Prof. Jürgen Fuchs Karlstads universitet 651 88 Karlstad Tfn 054-700 10 00 Fax 054-700 14 60 [email protected] www.kau.se Abstract In this thesis, after a general introduction, we first review some differential geom- etry to provide the mathematical background needed to derive the key equations in cosmology. Then we consider the Robertson-Walker geometry and its relation- ship to cosmography, i.e., how one makes measurements in cosmology. We finally connect the Robertson-Walker geometry to Einstein's field equation to obtain so- called cosmological Friedmann-Lema^ıtre models. These models are subsequently studied by means of potential diagrams. 1 CONTENTS CONTENTS Contents 1 Introduction 3 2 Differential geometry prerequisites 8 3 Cosmography 13 3.1 Robertson-Walker geometry . 13 3.2 Concepts and measurements in cosmography . 18 4 Friedmann-Lema^ıtre dynamics 30 5 Bibliography 42 2 1 INTRODUCTION 1 Introduction Cosmology comes from the Greek word kosmos, `universe' and logia, `study', and is the study of the large-scale structure, origin, and evolution of the universe, that is, of the universe taken as a whole [1]. Even though the word cosmology is relatively recent (first used in 1730 in Christian Wolff's Cosmologia Generalis), the study of the universe has a long history involving science, philosophy, eso- tericism, and religion. Cosmologies in their earliest form were concerned with, what is now known as celestial mechanics (the study of the heavens). -
Simulating Gamma-Ray Binaries with a Relativistic Extension of RAMSES? A
A&A 560, A79 (2013) Astronomy DOI: 10.1051/0004-6361/201322266 & c ESO 2013 Astrophysics Simulating gamma-ray binaries with a relativistic extension of RAMSES? A. Lamberts1;2, S. Fromang3, G. Dubus1, and R. Teyssier3;4 1 UJF-Grenoble 1 / CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, 38041 Grenoble, France e-mail: [email protected] 2 Physics Department, University of Wisconsin-Milwaukee, Milwaukee WI 53211, USA 3 Laboratoire AIM, CEA/DSM - CNRS - Université Paris 7, Irfu/Service d’Astrophysique, CEA-Saclay, 91191 Gif-sur-Yvette, France 4 Institute for Theoretical Physics, University of Zürich, Winterthurestrasse 190, 8057 Zürich, Switzerland Received 11 July 2013 / Accepted 29 September 2013 ABSTRACT Context. Gamma-ray binaries are composed of a massive star and a rotation-powered pulsar with a highly relativistic wind. The collision between the winds from both objects creates a shock structure where particles are accelerated, which results in the observed high-energy emission. Aims. We want to understand the impact of the relativistic nature of the pulsar wind on the structure and stability of the colliding wind region and highlight the differences with colliding winds from massive stars. We focus on how the structure evolves with increasing values of the Lorentz factor of the pulsar wind, keeping in mind that current simulations are unable to reach the expected values of pulsar wind Lorentz factors by orders of magnitude. Methods. We use high-resolution numerical simulations with a relativistic extension to the hydrodynamics code RAMSES we have developed. We perform two-dimensional simulations, and focus on the region close to the binary, where orbital motion can be ne- glected. -
Doppler Boosting and Cosmological Redshift on Relativistic Jets
Doppler Boosting and cosmological redshift on relativistic jets Author: Jordi Fernández Vilana Advisor: Valentí Bosch i Ramon Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Abstract: In this study our goal was to identify the possible effects that influence with the Spectral Energy Distribution of a blazar, which we deducted that are Doppler Boosting effect and cosmological redshift. Then we investigated how the spectral energy distribution varies by changing intrinsic parameters of the jet like its Lorentz factor, the angle of the line of sight respect to the jet orientation or the blazar redshift. The obtained results showed a strong enhancing of the Spectral Energy Distribution for nearly 0º angles and high Lorentz factors, while the increase in redshift produced the inverse effect, reducing the normalization of the distribution and moving the peak to lower energies. These two effects compete in the observations of all known blazars and our simple model confirmed the experimental results, that only those blazars with optimal characteristics, if at very high redshift, are suitable to be measured by the actual instruments, making the study of blazars with a high redshift an issue that needs very deep observations at different wavelengths to collect enough data to properly characterize the source population. jet those particles are moving at relativistic speeds, producing I. INTRODUCTION high energy interactions in the process. This scenario produces a wide spectrum of radiation that mainly comes, as we can see in more detail in [2], from Inverse Compton We know that active galactic nuclei or AGN are galaxies scattering. Low energy photons inside the jet are scattered by with an accreting supermassive blackhole in the centre. -
(Special) Relativity
(Special) Relativity With very strong emphasis on electrodynamics and accelerators Better: How can we deal with moving charged particles ? Werner Herr, CERN Reading Material [1 ]R.P. Feynman, Feynman lectures on Physics, Vol. 1 + 2, (Basic Books, 2011). [2 ]A. Einstein, Zur Elektrodynamik bewegter K¨orper, Ann. Phys. 17, (1905). [3 ]L. Landau, E. Lifschitz, The Classical Theory of Fields, Vol2. (Butterworth-Heinemann, 1975) [4 ]J. Freund, Special Relativity, (World Scientific, 2008). [5 ]J.D. Jackson, Classical Electrodynamics (Wiley, 1998 ..) [6 ]J. Hafele and R. Keating, Science 177, (1972) 166. Why Special Relativity ? We have to deal with moving charges in accelerators Electromagnetism and fundamental laws of classical mechanics show inconsistencies Ad hoc introduction of Lorentz force Applied to moving bodies Maxwell’s equations lead to asymmetries [2] not shown in observations of electromagnetic phenomena Classical EM-theory not consistent with Quantum theory Important for beam dynamics and machine design: Longitudinal dynamics (e.g. transition, ...) Collective effects (e.g. space charge, beam-beam, ...) Dynamics and luminosity in colliders Particle lifetime and decay (e.g. µ, π, Z0, Higgs, ...) Synchrotron radiation and light sources ... We need a formalism to get all that ! OUTLINE Principle of Relativity (Newton, Galilei) - Motivation, Ideas and Terminology - Formalism, Examples Principle of Special Relativity (Einstein) - Postulates, Formalism and Consequences - Four-vectors and applications (Electromagnetism and accelerators) § ¤ some slides are for your private study and pleasure and I shall go fast there ¦ ¥ Enjoy yourself .. Setting the scene (terminology) .. To describe an observation and physics laws we use: - Space coordinates: ~x = (x, y, z) (not necessarily Cartesian) - Time: t What is a ”Frame”: - Where we observe physical phenomena and properties as function of their position ~x and time t. -
Surface Curvature-Quantized Energy and Forcefield in Geometrochemical Physics
Title: Surface curvature-quantized energy and forcefield in geometrochemical physics Author: Z. R. Tian, Univ. of Arkansas, Fayetteville, AR 72701, USA, (Email) [email protected]. Text: Most recently, simple-shape particles’ surface area-to-volume ratio has been quantized into a geometro-wavenumber (Geo), or geometro-energy (EGeo) hcGeo, to quantitatively predict and compare nanoparticles (NPs), ions, and atoms geometry- quantized properties1,2. These properties range widely, from atoms’ electronegativity (EN) and ionization potentials to NPs’ bonding energy, atomistic nature, chemical potential of formation, redox potential, surface adsorbates’ stability, and surface defects’ reactivity. For countless irregular- or complex-shaped molecules, clusters, and NPs whose Geo values are uneasy to calculate, however, the EGeo application seems limited. This work has introduced smaller surfaces’ higher curvature-quantized energy and forcefield for linking quantum mechanics, thermodynamics, electromagnetics, and Newton’s mechanics with Einstein’s general relativity. This helps quantize the gravity, gravity-counterbalancing levity, and Einstein’s spacetime, geometrize Heisenberg’s Uncertainty, and support many known theories consistently for unifying naturally the energies and forcefields in physics, chemistry, and biology. Firstly, let’s quantize shaper corners’ 1.24 (keVnm). Indeed, smaller atoms’ higher and edges’ greater surface curvature (1/r) into EN and smaller 0-dimensional (0D) NPs’ a spacetime wavenumber (ST), i.e. Spacetime lower melting point (Tm) and higher (i.e. Energy (EST) = hc(ST) = hc(1/r) (see the Fig. more blue-shifted) optical bandgap (EBG) (see 3 below), where the r = particle radius, h = the Supplementary Table S1)3-9 are linearly Planck constant, c = speed of light, and hc governed by their greater (1/r) i.e. -
Gravitational Redshift/Blueshift of Light Emitted by Geodesic
Eur. Phys. J. C (2021) 81:147 https://doi.org/10.1140/epjc/s10052-021-08911-5 Regular Article - Theoretical Physics Gravitational redshift/blueshift of light emitted by geodesic test particles, frame-dragging and pericentre-shift effects, in the Kerr–Newman–de Sitter and Kerr–Newman black hole geometries G. V. Kraniotisa Section of Theoretical Physics, Physics Department, University of Ioannina, 451 10 Ioannina, Greece Received: 22 January 2020 / Accepted: 22 January 2021 / Published online: 11 February 2021 © The Author(s) 2021 Abstract We investigate the redshift and blueshift of light 1 Introduction emitted by timelike geodesic particles in orbits around a Kerr–Newman–(anti) de Sitter (KN(a)dS) black hole. Specif- General relativity (GR) [1] has triumphed all experimental ically we compute the redshift and blueshift of photons that tests so far which cover a wide range of field strengths and are emitted by geodesic massive particles and travel along physical scales that include: those in large scale cosmology null geodesics towards a distant observer-located at a finite [2–4], the prediction of solar system effects like the perihe- distance from the KN(a)dS black hole. For this purpose lion precession of Mercury with a very high precision [1,5], we use the killing-vector formalism and the associated first the recent discovery of gravitational waves in Nature [6–10], integrals-constants of motion. We consider in detail stable as well as the observation of the shadow of the M87 black timelike equatorial circular orbits of stars and express their hole [11], see also [12]. corresponding redshift/blueshift in terms of the metric physi- The orbits of short period stars in the central arcsecond cal black hole parameters (angular momentum per unit mass, (S-stars) of the Milky Way Galaxy provide the best current mass, electric charge and the cosmological constant) and the evidence for the existence of supermassive black holes, in orbital radii of both the emitter star and the distant observer. -
A Stellar Flare-Coronal Mass Ejection Event Revealed by X-Ray Plasma Motions
A stellar flare-coronal mass ejection event revealed by X-ray plasma motions C. Argiroffi1,2⋆, F. Reale1,2, J. J. Drake3, A. Ciaravella2, P. Testa3, R. Bonito2, M. Miceli1,2, S. Orlando2, and G. Peres1,2 1 University of Palermo, Department of Physics and Chemistry, Piazza del Parlamento 1, 90134, Palermo, Italy. 2 INAF - Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134, Palermo, Italy. 3 Smithsonian Astrophysical Observatory, MS-3, 60 Garden Street, Cambridge, MA 02138, USA. ⋆ costanza.argiroffi@unipa.it May 28, 2019 Coronal mass ejections (CMEs), often associ- transported along the magnetic field lines and heats ated with flares 1,2,3, are the most powerful mag- the underlying chromosphere, that expands upward netic phenomena occurring on the Sun. Stars at hundreds of kms−1, filling the overlying magnetic show magnetic activity levels up to 104 times structure (flare rising phase). Then this plasma gradu- higher 4, and CME effects on stellar physics and ally cools down radiatively and conductively (flare de- circumstellar environments are predicted to be cay). The flare magnetic drivers often cause also large- significant 5,6,7,8,9. However, stellar CMEs re- scale expulsions of previously confined plasma, CMEs, main observationally unexplored. Using time- that carry away large amounts of mass and energy. resolved high-resolution X-ray spectroscopy of a Solar observations demonstrate that CME occurrence, stellar flare on the active star HR 9024 observed mass, and kinetic energy increase with increasing flare with Chandra/HETGS, we distinctly detected energy 1,2, corroborating the flare-CME link. Doppler shifts in S xvi, Si xiv, and Mg xii lines Active stars have stronger magnetic fields, higher that indicate upward and downward motions of flare energies, hotter and denser coronal plasma 12. -
Uniform Relativistic Acceleration
Uniform Relativistic Acceleration Benjamin Knorr June 19, 2010 Contents 1 Transformation of acceleration between two reference frames 1 2 Rindler Coordinates 4 2.1 Hyperbolic motion . .4 2.2 The uniformly accelerated reference frame - Rindler coordinates .5 3 Some applications of accelerated motion 8 3.1 Bell's spaceship . .8 3.2 Relation to the Schwarzschild metric . 11 3.3 Black hole thermodynamics . 12 1 Abstract This paper is based on a talk I gave by choice at 06/18/10 within the course Theoretical Physics II: Electrodynamics provided by PD Dr. A. Schiller at Uni- versity of Leipzig in the summer term of 2010. A basic knowledge in special relativity is necessary to be able to understand all argumentations and formulae. First I shortly will revise the transformation of velocities and accelerations. It follows some argumentation about the hyperbolic path a uniformly accelerated particle will take. After this I will introduce the Rindler coordinates. Lastly there will be some examples and (probably the most interesting part of this paper) an outlook of acceleration in GRT. The main sources I used for information are Rindler, W. Relativity, Oxford University Press, 2006, and arXiv:0906.1919v3. Chapter 1 Transformation of acceleration between two reference frames The Lorentz transformation is the basic tool when considering more than one reference frames in special relativity (SR) since it leaves the speed of light c invariant. Between two different reference frames1 it is given by x = γ(X − vT ) (1.1) v t = γ(T − X ) (1.2) c2 By the equivalence -
Observation of Exciton Redshift-Blueshift Crossover in Monolayer WS2
Observation of exciton redshift-blueshift crossover in monolayer WS2 E. J. Sie,1 A. Steinhoff,2 C. Gies,2 C. H. Lui,3 Q. Ma,1 M. Rösner,2,4 G. Schönhoff,2,4 F. Jahnke,2 T. O. Wehling,2,4 Y.-H. Lee,5 J. Kong,6 P. Jarillo-Herrero,1 and N. Gedik*1 1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States 2Institut für Theoretische Physik, Universität Bremen, P.O. Box 330 440, 28334 Bremen, Germany 3Department of Physics and Astronomy, University of California, Riverside, California 92521, United States 4Bremen Center for Computational Materials Science, Universität Bremen, 28334 Bremen, Germany 5Materials Science and Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan 6Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States *Corresponding Author: [email protected] Abstract: We report a rare atom-like interaction between excitons in monolayer WS2, measured using ultrafast absorption spectroscopy. At increasing excitation density, the exciton resonance energy exhibits a pronounced redshift followed by an anomalous blueshift. Using both material-realistic computation and phenomenological modeling, we attribute this observation to plasma effects and an attraction-repulsion crossover of the exciton-exciton interaction that mimics the Lennard- Jones potential between atoms. Our experiment demonstrates a strong analogy between excitons and atoms with respect to inter-particle interaction, which holds promise to pursue the predicted liquid and crystalline phases of excitons in two-dimensional materials. Keywords: Monolayer WS2, exciton, plasma, Lennard-Jones potential, ultrafast optics, many- body theory Table of Contents Graphic Page 1 of 13 Main Text: Excitons in semiconductors are often perceived as the solid-state analogs to hydrogen atoms. -
Gravitational Redshift/Blueshift of Light Emitted by Geodesic Test Particles
Eur. Phys. J. C (2021) 81:147 https://doi.org/10.1140/epjc/s10052-021-08911-5 Regular Article - Theoretical Physics Gravitational redshift/blueshift of light emitted by geodesic test particles, frame-dragging and pericentre-shift effects, in the Kerr–Newman–de Sitter and Kerr–Newman black hole geometries G. V. Kraniotisa Section of Theoretical Physics, Physics Department, University of Ioannina, 451 10 Ioannina, Greece Received: 22 January 2020 / Accepted: 22 January 2021 © The Author(s) 2021 Abstract We investigate the redshift and blueshift of light 1 Introduction emitted by timelike geodesic particles in orbits around a Kerr–Newman–(anti) de Sitter (KN(a)dS) black hole. Specif- General relativity (GR) [1] has triumphed all experimental ically we compute the redshift and blueshift of photons that tests so far which cover a wide range of field strengths and are emitted by geodesic massive particles and travel along physical scales that include: those in large scale cosmology null geodesics towards a distant observer-located at a finite [2–4], the prediction of solar system effects like the perihe- distance from the KN(a)dS black hole. For this purpose lion precession of Mercury with a very high precision [1,5], we use the killing-vector formalism and the associated first the recent discovery of gravitational waves in Nature [6–10], integrals-constants of motion. We consider in detail stable as well as the observation of the shadow of the M87 black timelike equatorial circular orbits of stars and express their hole [11], see also [12]. corresponding redshift/blueshift in terms of the metric physi- The orbits of short period stars in the central arcsecond cal black hole parameters (angular momentum per unit mass, (S-stars) of the Milky Way Galaxy provide the best current mass, electric charge and the cosmological constant) and the evidence for the existence of supermassive black holes, in orbital radii of both the emitter star and the distant observer. -
Massachusetts Institute of Technology Midterm
Massachusetts Institute of Technology Physics Department Physics 8.20 IAP 2005 Special Relativity January 18, 2005 7:30–9:30 pm Midterm Instructions • This exam contains SIX problems – pace yourself accordingly! • You have two hours for this test. Papers will be picked up at 9:30 pm sharp. • The exam is scored on a basis of 100 points. • Please do ALL your work in the white booklets that have been passed out. There are extra booklets available if you need a second. • Please remember to put your name on the front of your exam booklet. • If you have any questions please feel free to ask the proctor(s). 1 2 Information Lorentz transformation (along the xaxis) and its inverse x� = γ(x − βct) x = γ(x� + βct�) y� = y y = y� z� = z z = z� ct� = γ(ct − βx) ct = γ(ct� + βx�) � where β = v/c, and γ = 1/ 1 − β2. Velocity addition (relative motion along the xaxis): � ux − v ux = 2 1 − uxv/c � uy uy = 2 γ(1 − uxv/c ) � uz uz = 2 γ(1 − uxv/c ) Doppler shift Longitudinal � 1 + β ν = ν 1 − β 0 Quadratic equation: ax2 + bx + c = 0 1 � � � x = −b ± b2 − 4ac 2a Binomial expansion: b(b − 1) (1 + a)b = 1 + ba + a 2 + . 2 3 Problem 1 [30 points] Short Answer (a) [4 points] State the postulates upon which Einstein based Special Relativity. (b) [5 points] Outline a derviation of the Lorentz transformation, describing each step in no more than one sentence and omitting all algebra. (c) [2 points] Define proper length and proper time.