10004 Martin Cooper
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oral History of Martin Cooper
Oral History of Martin Cooper Interviewed by: Sean Maloney Recorded: May 2, 2008 Mountain View, California CHM Reference number: X4602.2008 © 2008 Computer History Museum Oral History of Martin Cooper Sean Maloney: [This is an interview with Martin Cooper conducted at the Computer History Museum on May 2, 2008.] So what were your earliest memories of Chicago? Earliest memories? Martin Cooper: I was actually born in Chicago, but my family moved back to Canada, which was where they had come from, when I was only a year old. So my earliest memories really are in Winnipeg. And amazingly enough my earliest memories are technological memories. Watching some older kids with a magnifying glass burning paper and desperately wanting to do that myself and I couldn't understand why when I took a broken bottle and used the base of the bottle, I couldn't get this thing to focus and burn the sun. So, it's those kinds of things; I was always curious about those things; trying to build stuff. Mostly unsuccessfully. Maloney: Did you have brothers and sisters? Cooper: Yeah, I have a younger brother. My younger brother is, or was a banker, and a musician. Both of them, very, very successfully. Maloney: Do you think your parents in any way encouraged you to get in what I guess later you’d call technology? Cooper: No. not at all. But what my parents did was encourage me to read and I've always been just an avid reader, and actually my interest in technology really came out of just being imaginative. -
Comrol of Speech Playback
AUGUST 22. 1974 ICATION 87 Soundsheet: Variable Speech Control 96 Scheduling and loading IC test systems 104 Designing data acquisition into minis Electronics® co mrol of Speech Playback efin eV ..qc -4 IL.) —J 0.500" MIN. Dialight t 4,-10.210" 0.120 - elP. 0.190" 521-9207 sees aneed • (Need: The widest choice for your every application.) 521-9206 521-9189 Your choice of green, yellow and red, with axial leads for dense packaging requirements. Wide viewing angle for 521-9202 easy readability. Low power consumption, low cost, IC compatible. 10mA operation for typical brightness. Size is identical to the most popular red LEDs. 521-9165 .192" .11 .7 •500 " .0454 (mIN.) .240" Now available in green, yellow and red. Mini-sized for maximum front panel density and easy panel mounting. High luminous intensity, low cost. Vibration/shock resist- ant. Solid state for long life. Wide viewing angles. Ideal for applications like panel lighting, film annotation and alpha-numeric displays. 550-0204 550-0405 550-0306 rt .185" .245" LED logic state fault indicators available in 14 models with voltage ratings from 1.7 to 14. Suitable for dense 11 packaging on printed circuit boards—up to 10 units to the inch—IC compatible. With built-in series resistor. MIN. 9 .340" Polarity identified. Low power consumption. Dialight, the company with the widest choice in 1.-.100- -0-11 -•- .020" switches, LEDs, indicator lights and readouts, Mix 'em or match 'em. LED logic state fault indicators looks for needs .. your needs .. and then they are available in red, yellow and green, in a variety of develop solutions for your every application. -
The Great Telecom Meltdown for a Listing of Recent Titles in the Artech House Telecommunications Library, Turn to the Back of This Book
The Great Telecom Meltdown For a listing of recent titles in the Artech House Telecommunications Library, turn to the back of this book. The Great Telecom Meltdown Fred R. Goldstein a r techhouse. com Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the U.S. Library of Congress. British Library Cataloguing in Publication Data Goldstein, Fred R. The great telecom meltdown.—(Artech House telecommunications Library) 1. Telecommunication—History 2. Telecommunciation—Technological innovations— History 3. Telecommunication—Finance—History I. Title 384’.09 ISBN 1-58053-939-4 Cover design by Leslie Genser © 2005 ARTECH HOUSE, INC. 685 Canton Street Norwood, MA 02062 All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark. International Standard Book Number: 1-58053-939-4 10987654321 Contents ix Hybrid Fiber-Coax (HFC) Gave Cable Providers an Advantage on “Triple Play” 122 RBOCs Took the Threat Seriously 123 Hybrid Fiber-Coax Is Developed 123 Cable Modems -
Antenna Design Considerations for LTE Mobile Applications
Antenna Design Considerations for LTE Mobile Applications Dr. C. J. Reddy President EM Software & Systems (USA), Inc. Hampton, VA 23666 CoContributor: Mr. Gopinath Gampala Presented to the Long Island Chapter of the IEEE Antennas & Propagation Society on November 8, 2011 1 OUTLINE Introduction to 4G/LTE Antenna Design challenges Numerical Techniques Design & optimization of Antennas for Handset Handset with a head and SAR Calculations Handset & channel capacity Conclusion 2 History of Mobile Phones Dr. Martin Cooper of Motorola, made the first US analogue mobile phone call on a larger prototype model in 1973 . This is a reenactment in 2007 © Motorola Analog Motorola DynaTAC 8000X Advanced Mobile Phone System mobile phone as of 1983 http://en.wikipedia.org/wiki/History_of_mobile_phones 3 History of Mobile Phones 19972003 http://en.wikipedia.org/wiki/History_of_mobile_phones 4 Smart Phones 20032007 http://en.wikipedia.org/wiki/History_of_mobile_phones 20072011 5 1G, 2G and 3G In 1G, Narrow band analog wireless network is used, with this we can have the voice calls and can send text messages. Then in case of 2G Narrow Band Wireless Digital Network is used. Both the 1G and 2G deals with voice calls and has to utilize the maximum bandwidth as well as limited to sending messages i.e. SMS. In 3G Wide Band Wireless Network is used with which the clarity increases and gives the perfection as like that of a real conversation. In addition to verbal communication it includes data services, access to television/video, categorizing it into triple play service. 3G operates at 2100MHz and has a bandwidth of 1520MHz . -
The People Who Invented the Internet Source: Wikipedia's History of the Internet
The People Who Invented the Internet Source: Wikipedia's History of the Internet PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 22 Sep 2012 02:49:54 UTC Contents Articles History of the Internet 1 Barry Appelman 26 Paul Baran 28 Vint Cerf 33 Danny Cohen (engineer) 41 David D. Clark 44 Steve Crocker 45 Donald Davies 47 Douglas Engelbart 49 Charles M. Herzfeld 56 Internet Engineering Task Force 58 Bob Kahn 61 Peter T. Kirstein 65 Leonard Kleinrock 66 John Klensin 70 J. C. R. Licklider 71 Jon Postel 77 Louis Pouzin 80 Lawrence Roberts (scientist) 81 John Romkey 84 Ivan Sutherland 85 Robert Taylor (computer scientist) 89 Ray Tomlinson 92 Oleg Vishnepolsky 94 Phil Zimmermann 96 References Article Sources and Contributors 99 Image Sources, Licenses and Contributors 102 Article Licenses License 103 History of the Internet 1 History of the Internet The history of the Internet began with the development of electronic computers in the 1950s. This began with point-to-point communication between mainframe computers and terminals, expanded to point-to-point connections between computers and then early research into packet switching. Packet switched networks such as ARPANET, Mark I at NPL in the UK, CYCLADES, Merit Network, Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of protocols. The ARPANET in particular led to the development of protocols for internetworking, where multiple separate networks could be joined together into a network of networks. In 1982 the Internet Protocol Suite (TCP/IP) was standardized and the concept of a world-wide network of fully interconnected TCP/IP networks called the Internet was introduced. -
History of Mobile Telephony MAS 490: Theory and Practice of Mobile Applications
History of Mobile Telephony MAS 490: Theory and Practice of Mobile Applications Professor John F. Clark Everything I know about mobile telephony, I learned from: Evolution is not a theory when it concerns cell phones Early History of Radiophones Nicola Tesla and Guglielmo Marconi were the founders of wireless technology Ship to shore radiotelegraphy employed wireless use of Morse Code Later, radiophones and radiotelephony transmitted speech In 1900 Reginald Fessenden invented early broadcasting, transatlantic two-way voice communication, and later television Tesla, Marconi, and Fessenden The Great Wireless Fiasco Early History of Radiophones In 1926 radiophones connected people traveling on trains in Europe A little later, they were introduced in planes, but this was too late for World War I Radiophones made a huge difference in WWII – planes, tanks, and field communication via backpack radios and walkie-talkies. Later, in the 1950s, radiophones made civil and commercial services possible Military Field Communications Civil Field Communications Civil Field Communications, pt. 2 Early History of Mobile Telephony The 60s and 70s saw a variety of commercial car services – the earliest weighed 90-100 pounds These services operated using high power transmissions The concept of low power transmission in hexagonal cells was introduced in 1947 The electronics were advanced enough by the 60s to pull it off, but there was no method for handoffs from one cell to the next High Power Mobile Phone Low Power Mobile Phone System Early History of Mobile Telephony That problem was solved with the first functioning cell system and first real cell phone call in 1973. The phone, which weighed about six pounds, was developed by Martin Cooper of Motorola Bell Labs and Motorola were the main competitors in the US. -
Theteletypestory.Pdf
Teletype Corporation commemorated its Golden Anniversary in 1957. Fifty years is a short span in thehistory of Communication. Yet in that time, Teletype has developed its equipment from primitive models with limited use or acceptance, to the speedy precision machines which are an indispensable part of modern communications. Today Teletype equipment is an important economic tool, serving in many and varied ways the demands of our way of life. This is the story of Teletype. It is a story of challenges met and problems solved, of faith in the future and of the surpassing of what were only dreams. Tom-toms, church bells, smoke signals, the Dead Sea Scrolls, And it took two operators to get a telegram over the wires – the and the Pony Express – these are all milestones in the endless sender the Morse key to translate the message into dots and effort to bridge time and distance by improving communications. dashes, and another operator at the receiving and to listen for the Until the 19th century the only reliable way to deliver a code on the Morse sounder and write out the telegram by hand or message was hand-to-hand or face-to-face. The fate of nations on a typewriter. often hung on the arrival of a lathered horse and his spent rider. What telegraphy needed was a system whereby the A thousand men died at the Battle of New Orleans because news messages could be received automatically in the form of of a peace treaty signed weeks earlier had not reached the typewritten or “printed” alphabet characters instead of a series of opposing armies. -
CURRICULUM VITAE Aggelos K. Katsaggelos Professor Joseph
CURRICULUM VITAE Aggelos K. Katsaggelos Professor Joseph Cummings Chair Department of EECS Northwestern University Evanston, IL 60208-3118 phone: 847-491-7164 e-mail: [email protected] http://www.eecs.northwestern.edu/˜aggk/ EDUCATION 1985 Ph. D. Electrical Engineering Georgia Institute of Technology, Atlanta, Georgia Thesis advisor: R. W. Schafer 1981 M.S. Electrical Engineering Georgia Institute of Technology, Atlanta, Georgia 1979 B.S. Electrical and Mechanical Engineering Aristotelian University of Thessaloniki, Thessaloniki, Greece EMPLOYMENT HISTORY 1996 - present Professor, Northwestern University Department of EECS, Evanston, Illinois 2015 - present Joseph Cummings Chaired Professor Department of EECS, Evanston, Illinois 2011 - 2015 AT&T Chaired Professor Department of EECS, Evanston, Illinois 2009 - present STA Argonne National Laboratory 2008 - present Affiliated Faculty, Department of Linguistics Northwestern University, Evanston, Illinois 1998 - 2015 Co-Founder and Director Motorola Center for Seamless Communications 1998 - present Academic Affiliate Staff, Department of Medicine, Division of Cardiology, NorthShore University HealthCare System, Evanston, Illinois 1985 - present Director, Image and Video Processing Laboratory 2003 - 2004 Visiting Professor, University of Athens Department of Physics, Athens, Greece 1997 - 2003 Ameritech Chair of Information Technology 1 Northwestern University, Department of ECE, Evanston, Illinois 1992 - 1996 Associate Professor, Northwestern University Department of EECS, Evanston, Illinois -
History of Mobile Phones
History of mobile phones The history of mobile phones begins with early efforts to develop mobile telephony concepts using two-way radios and continues through emergence of modern mobile phones and associated services. Radiophones have a long and varied history going back to Reginald Fessenden's invention and shore-to-ship demonstration of radio telephony, through the Second World War with military use of radio telephony links and civil services in the 1950s, while hand-held mobile radio devices have been available since 1973. Mobile phone history is often divided into generations (first, second, third and so on) to mark significant step changes in capabilities as the technology improved over the years. In Europe, radio telephony was first used on the first-class passenger trains between Berlin and Hamburg in 1926. At the same time, radio telephony was introduced on passenger airplanes for air traffic security. Later radio telephony was introduced on a large scale in German tanks during the Second World War. In all of these cases the service was confined to specialists that were trained to use the equipment. In the early 1950s ships on the Rhine were among the first to use radio telephony with an untrained end customer as a user. However it was the 1940s onwards that saw the . Motorola developed a backpacked two-way radio, the Walkie-Talkie and a large hand-held two-way radio for the US military. This battery powered "Handie-Talkie" (HT) was about the size of a man's forearm. In 1946 in St. Louis, the Mobile Telephone Service was introduced In 1964 Improved Mobile Telephone Service was introduced with additional channels and more automatic handling of calls to the public switched telephone network. -
Invited Speaker Bios
2016 PNT SYMPOSIUM Invited Speaker Bios Marconi - SCPNT Symposium on Advances in Communications Agenda Version '11' - November 2nd & 3rd - Kavli & Panofsky Auditoriums, SLAC Day / ~ Start ~mins Invited Speaker Affilation Title of Presentation Date Time w/ Q&A Wed 8:00am 45 Reception & Coffee Service at SLAC's Panofsky Auditorium Lobby 11/2/16 Payne, David Chairman of the Marconi Society 8:45am 15 Welcome & Introductions 1 - Spilker, Jim - Founder SCPNT Stanford University - Marconi Radio Waves - Marconi to GPS. A short history of the 9:00am 45 Parkinson, Brad 2 Prize Recipient 2016 evolution to their use for Positioning Navigation and Time. Founding Chairman and CEO Position Location at Qualcomm: pre-GPS to SoC 9:45am 30 Jacobs, Irwin Emeritus, Qualcomm - Marconi 3 + Panel Discussion Participant Prize Recipient 2011 10:15am 30 Morning Break Panel Discussion: Moderated by Brad Parkinson Radio Navigation and Radio Communication 10:45am 90 Panelists: I. Jacobs, V. Cerf, J. Cioffi, M. Cooper & D. Payne Synergy and Conflicts Internet Pioneer - Marconi Prize New Roles for Radio in the Internet 10:50am 10 Cerf, Vint 4 Recipient 1998 + Panel Discussion Participant DSL Pioneer - Stanford University - New Roles for Radio in the Internet 11:00am 10 Cioffi, John 5 Marconi Prize Recipient 2006 + Panel Discussion Participant Cellphone Pioneer - Marconi Prize The Myth of Spectrum Scarcity: How GPS can make us 11:10am 10 Cooper, Martin 6 Recipient 2013 more efficient spectrum users + Panelist Photonics Pioneer - Marconi Prize Light: The Cause of and Solution to Data Overload? 11:20am 10 Payne, David 7 Recipient 2008 + Panel Discussion Participant 12:15pm 60 Catered Lunch at Panosky Auditorium & Redwood Grove Ygomi Chair & Member of PNT 1:15pm 30 Shields, T. -
Teletype 4400 Series Data Terminals
C25-830-101 Display Terminals Teletype 4400 Series Data Terminals Teletype Corporation's 4400 Series display terminals feature ergonomic design and ASCII compatibility. MODELS: 4420. 4424, and 4430. DISPLAY: A 13-inch display screen mount ed on a tiltable display stand is standard. KEYBOARD: A detached keyboard with a typewriter-style keyboard is standard. COMPETITION: Anderson Jacobson. ADDS, Hewlett-Packard, Lear Siegler. PRICE: $3,997 to $4.207 in single quantity units. CHARACTERISTICS The 4420 Buffered Display Terminal offers full editing and formatting capabilities and modularity. The microprocessor, VENDOR: Teletype Corporation, 5555 Touhy Avenue, drive logic, and power supply are all housed in the unit's I5-inch Skokie, Illinois 60076. Telephone (312) 982-2000. circular display base. DATE OF ANNOUNCEMENT: Model 4420-October 1980; Model 4424-0ctober 1981; Model 4430-June MANAGEMENT SUMMARY 1981. In October 1980, the Teletype Corporation introduced the DATE OF FIRST DELIVERY: Model 4420-November Model 4420 Data Terminal. Since that time, two additions ' 1980; Model 4424-January 1982; Model 4430-Decem have been added to the Teletype 4400 Series display termi ber 1981. nal family, Models 4424 and 4430. All three units feature ergonomic design and ASCII compatibility. NUMBER DELIVERED TO DATE: Information not available. Model 4420 is a standalone terminal for point-to-point and SERVICED BY: Teletype Corporation. general purpose applications. This unit offers user-friendly operating features and ergonomic design. Model 4424 of CONFIGURATION fers the same basic features as Model 4420, plus interactive The 4400 Series display terminals are standalone units buffering capabilities. featuring a display mounted on a tiltable IS-inch circular base and a detached keyboard. -
A Path Toward an Accessible World
A PATH TOWARD AN ACCESSIBLE WORLD WORLD AN ACCESSIBLE TOWARD A PATH A PATH TOWARD “America is well into the so-called “Information Age.” The best-paying and some of the fastest-growing jobs and careers involve collection, analysis, AN ACCESSIBLE WORLD and interpretation of information. All of us are bombarded daily with more information than were our parents; sifting the wheat of knowledge from the chaff of information is a crucial skill in daily life today.” Dr. Frank G. Bowe - Winter 1997 GA-SK Newsletter 1968 - 2018 “We want that little hand-held gizmo with perfect speech recognition capabilities that we can point to a speaker and be able to read the text of TDI’s 50 Years of Service and Contributions to the Deaf and Hard of Hearing Community what he or she is saying instantly. We’d like CART (computer-aided real time translation) to be within a hair of 100% accurate and give us ALL the information going on around us, including sound effects … I’m just getting warmed up. Stop me now!” Cheryl Heppner 1998.1 GA-SK Newsletter “The original founders of APCOM (the company formed to manufacture acoustic couplers) and TDI were pioneers in advocacy. Their communication 1968 - 2018 methods were different - some of them were f uent in sign language, the rest did not sign for one reason or another. In spite of this difference (remember - diversity!), they all learned to work together to plead their cause before federal agencies and industry. Not only did they talk about their situation, they also came up with possible solutions to problems and acted on them.