Magnetic Ordering in Ce1-xYbxRhIn5 Heavy as a Function of Doping

NIST August 5, 2015

JOHN CALIFF COLLINI1 MENTOR: DR. STEVE DISSELER2 1 ROCHESTER INSTITUTE OF TECHNOLOGY NCNR SURF GROUP AT NIST 2 NCNR CONDENSED MATTER SCIENCE GROUP One Definition: Types of Magnetic States (only 3 shown) > : DISORDERED < : ORDERED

𝑻𝑻Paramagnetic𝑻𝑻𝒄𝒄 Ferromagnetic 𝑻𝑻 𝑻𝑻𝒄𝒄 Antiferromagnetic

< > = 0 < > 0 < > = 0

𝑀𝑀 𝑀𝑀 β‰  𝑀𝑀 = = =

π‘šπ‘š , , 𝑀𝑀 πœ’πœ’ 𝐻𝐻 𝐻𝐻 βˆ’ 𝐽𝐽 οΏ½ 𝑠𝑠⃗𝑖𝑖 οΏ½ 𝑠𝑠⃗𝑗𝑗 𝐻𝐻 βˆ’ 𝐽𝐽 οΏ½ 𝑠𝑠⃗𝑖𝑖 οΏ½ 𝑠𝑠⃗𝑗𝑗 > 0 𝑖𝑖 𝑗𝑗 < 0 𝑖𝑖 𝑗𝑗

𝐽𝐽Ex: Iron and Cobalt Ex: Common𝐽𝐽 Metal-Oxides Types of Magnetic States (only 3 shown) > : DISORDERED < : ORDERED

𝑻𝑻Paramagnetic𝑻𝑻𝒄𝒄 Ferromagnetic 𝑻𝑻 𝑻𝑻𝒄𝒄 Antiferromagnetic

< > = 0 < > 0 < > = 0

𝑀𝑀 𝑀𝑀 β‰  𝑀𝑀 = = =

π‘šπ‘š , , 𝑀𝑀 πœ’πœ’ 𝐻𝐻 𝐻𝐻 βˆ’ 𝐽𝐽 οΏ½ 𝑠𝑠⃗𝑖𝑖 οΏ½ 𝑠𝑠⃗𝑗𝑗 𝐻𝐻 βˆ’ 𝐽𝐽 οΏ½ 𝑠𝑠⃗𝑖𝑖 οΏ½ 𝑠𝑠⃗𝑗𝑗 > 0 𝑖𝑖 𝑗𝑗 < 0 𝑖𝑖 𝑗𝑗

𝐽𝐽Ex: Iron and Cobalt Ex: Common𝐽𝐽 Metal-Oxides Types of Magnetic States (only 3 shown) > : DISORDERED < : ORDERED

𝑻𝑻Paramagnetic𝑻𝑻𝒄𝒄 Ferromagnetic 𝑻𝑻 𝑻𝑻𝒄𝒄 Antiferromagnetic

< > = 0 < > 0 < > = 0

𝑀𝑀 𝑀𝑀 β‰  𝑀𝑀 = = =

π‘šπ‘š , , 𝑀𝑀 πœ’πœ’ 𝐻𝐻 𝐻𝐻 βˆ’ 𝐽𝐽 οΏ½ 𝑠𝑠⃗𝑖𝑖 οΏ½ 𝑠𝑠⃗𝑗𝑗 𝐻𝐻 βˆ’ 𝐽𝐽 οΏ½ 𝑠𝑠⃗𝑖𝑖 οΏ½ 𝑠𝑠⃗𝑗𝑗 > 0 𝑖𝑖 𝑗𝑗 < 0 𝑖𝑖 𝑗𝑗

𝐽𝐽Ex: Iron and Cobalt Ex: Common𝐽𝐽 Metal-Oxides Types of Magnetic States (only 3 shown) > : DISORDERED < : ORDERED

𝑻𝑻Paramagnetic𝑻𝑻𝒄𝒄 Ferromagnetic 𝑻𝑻 𝑻𝑻𝒄𝒄 Antiferromagnetic

< > = 0 < > 0 < > = 0

𝑀𝑀 𝑀𝑀 β‰  𝑀𝑀 = = =

π‘šπ‘š , , 𝑀𝑀 πœ’πœ’ 𝐻𝐻 𝐻𝐻 βˆ’ 𝐽𝐽 οΏ½ 𝑠𝑠⃗𝑖𝑖 οΏ½ 𝑠𝑠⃗𝑗𝑗 𝐻𝐻 βˆ’ 𝐽𝐽 οΏ½ 𝑠𝑠⃗𝑖𝑖 οΏ½ 𝑠𝑠⃗𝑗𝑗 > 0 𝑖𝑖 𝑗𝑗 < 0 𝑖𝑖 𝑗𝑗

𝐽𝐽Ex: Iron and Cobalt Ex: Common𝐽𝐽 Metal-Oxides What are Heavy Fermions?

Kondo Interactions -Conduction spin screening -Suppresses magnetic ordering

RKKY Interactions -Coupled moments dependent on distance -Enhances magnetic ordering

Combining Both -Huge increase in effective mass. Also, increasing , P, doping, ect. -Kondo and RRKY interactions co-exist 𝐻𝐻 *from UNLP* -Possible unconventional near QCP What are Heavy Fermions?

Kondo Effect - spin screening -Suppresses magnetic ordering What are Heavy Fermions?

Kondo Effect Ferro- -Conduction spin screening -Suppresses magnetic ordering

RKKY Interactions Anti -Coupled moments dependent on distance -Enhances magnetic ordering

r Non-magnetic What are Heavy Fermions?

Kondo Effect Ferro- -Conduction spin screening -Suppresses magnetic ordering

RKKY Interactions Anti -Coupled moments dependent on distance -Enhances magnetic ordering

r Non-magnetic What are Heavy Fermions?

Kondo Effect Ferro- -Conduction spin screening -Suppresses magnetic ordering

RKKY Interactions Anti- -Coupled moments dependent on distance -Enhances magnetic ordering r Non-magnetic What are Heavy Fermions?

Kondo Interactions -Conduction spin screening -Suppresses magnetic ordering

RKKY Interactions -Coupled moments dependent on distance -Enhances magnetic ordering

Combining Both -Huge increase in effective mass. Also, increasing , P, doping, ect. -Kondo and RRKY interactions co-exist 𝐻𝐻 *from UNLP* -Possible unconventional superconductivity near QCP Ce1-xYbxRhIn5 QCP -Kondo and RKKY on equal footing. -Material can go superconducting under pressure. -USC is similar to High Temp SC in copperates.

USC or Other

Pressure

CeRhIn5 goes superconducting under applied pressure Ce(1-x)YbxRhIn5 (Heavy Material)

Tetragonal: a=b≠c α=β=γ=90°

Space group: c (β€˜x’ dependent) P 4/m m m

Rh

In2

In1 Ce/Yb site a (β€˜x’ dependent) Goal: Ce1-xYbxRhIn5 Magnetic Transitions Finding the transition (in terms of T and x) For change to commensurate structure CeRhIn YbRhIn 5 Increasing x 5

Metallic Paramagnet 4 Turns antiferromagnetic Finding 3 k=(Β½,Β½,0.297) the transition T=3.8 K (in terms of T and x) (incommensurate structure) For magnetic ordering

3Wei Bao, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, Z. Fisk, 4Z. Bukowski, , K. Gofryk, D. Kaczorowski. Magnetic and transport properties of YbRhIn5 and J.W. Lynn, and R.W Erwin. Incommensurate magnetic structure of CeRhIn5. Phys. B 62-22 YbIrIn5 single crystals . Solid State Communications 134-7. 3 CeRhIn5

3Wei Bao, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, Z. Fisk, J.W. Lynn, and R.W Erwin. Incommensurate magnetic structure of CeRhIn5. Phys. B 62-22 Goal: Ce1-xYbxRhIn5 Magnetic Transitions Finding the transition (in terms of T and x) For change to commensurate structure CeRhIn YbRhIn 5 Increasing x 5

Metallic Paramagnet 4 Turns antiferromagnetic Finding 3 k=(Β½,Β½,0.297) the transition T=3.8 K (in terms of T and x) (incommensurate structure) For magnetic ordering

3Wei Bao, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, Z. Fisk, 4Z. Bukowski, , K. Gofryk, D. Kaczorowski. Magnetic and transport properties of YbRhIn5 and J.W. Lynn, and R.W Erwin. Incommensurate magnetic structure of CeRhIn5. Phys. B 62-22 YbIrIn5 single crystals . Solid State Communications 134-7. Samples go here Include talk on concentration Actual sample concentration were not matching with the concentrations used to make these samples.

Needed a way to measure concentrations.

Made powders and headed to UMD for SQUID measurements.

Prepared by Sooyoung Jang of the Brian Maple group from UC San Diego SQUID Magnetometry for measuring ΞΌeff (superconducting quantum interference device)

SENSITIVE LOW TEMP MAGNETOMETER SQUID AT U MARYLAND COLLEGE PARK

Our powder sample x=β€˜.5’; 25 mg x=β€˜.6’; 32.7 mg

* Hyperphysics SQUID Magnetometer Sample reported as x=β€˜.5’

C= 0.967 +/- 0.004 [(emu K)/or] Curie Temp= -43.2 +/- 0.4 [K]

ΞΌeff = 2.7814 +/- 0.0009 ΞΌB x= 0.090 +/- 0.001

( ) = = πœ‡πœ‡π‘π‘π‘π‘π‘π‘π‘π‘ 𝑇𝑇 𝐢𝐢 πœ’πœ’ 𝑇𝑇 π»π»βˆ—π‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š π‘‡π‘‡βˆ’πœƒπœƒπ‘šπ‘š βˆ’ πœ’πœ’0 T - Temperature [K] C – Curie Number [(emu K)/or] - Curie Temp. [K] (+ Ferro, - Anti)

πœƒπœƒπ‘šπ‘š ( ) = 32 π‘π‘π‘Žπ‘Žπœ‡πœ‡π‘’π‘’π‘’π‘’π‘’π‘’ π‘₯π‘₯ πΆπΆπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š( ) = + 1 π‘˜π‘˜π΅π΅ 2 2 +3 2 +2 πœ‡πœ‡π‘’π‘’π‘’π‘’π‘’π‘’ π‘₯π‘₯= 2.π‘₯π‘₯π‘₯π‘₯54π‘Œπ‘Œπ‘π‘ βˆ’ π‘₯π‘₯ 𝑃𝑃𝐢𝐢𝑒𝑒 +3 = 4.54 𝑃𝑃𝐢𝐢𝑒𝑒 πœ‡πœ‡π΅π΅ +3 π‘ƒπ‘ƒπ‘Œπ‘Œπ‘π‘ πœ‡πœ‡π΅π΅ Sample reported as x=β€˜.6’

C= 0.799 +/- 0.002 [(emu K)/or] Curie Temp= -29.8 +/- 0.4 [K]

ΞΌeff = 2.5280 +/- .0009 ΞΌB x= -0.0043 +/- 0.0004

Effectively close to zero: Only seems to be Ce+3 moment contributing. Very small doping on the order of <1% X-ray powder diffraction Ce1Yb0RhIn5 (x<1%)

Rietveld refinement done with FullProf Software

In (101) X-ray powder diffraction Ce.91Yb.09RhIn5 (x=.09)

Rietveld refinement done with FullProf Software

In (101) Why Neutrons? The power of neutron scattering

β€’ Neutrons have spin and zero charge (nuclear and magnetic scattering). β€’ Large penetration depth (bulk N probe). β€’ Cross-sections good for low Z elements (Nuclear interactions). β€’ (More easily) Controllable energies. β€’ Energy scale great for dynamic interactions (inelastic scattering). e BT4 Triple Axis Spectrometer

Sample (rotate to select Reactor Source area to study)

Entrance slits Analyzer Reactor (Rotate to select source final energy) Analyzer and 3 Monochrometer Sample He Detector (rotate to select Stage incident energy) Measuring the Onset of Magnetic Ordering: x<1%

(Β½ Β½ 1.297)

3 (Parent Compound TN=3.8 K)

TN=3.48 +/- .06 K

Same structure as parent compound. [(001)+k peak] Measuring the Onset of Magnetic Ordering: x~50%

(Β½ Β½ Β½)

TN=2.94 +/- .03 K

Changes from parent compound. New structure was formed! Measuring the Magnetic Structure: x~50%

Each point represents the structure factor of a single diffraction peak Ce1-xYbxRhIn5 k=(Β½ Β½ Β½) structure

.345 Β± .017 0 = 0 + .119 Β± .030 0 0 𝝁𝝁𝒆𝒆𝒆𝒆𝒆𝒆

= .365 Β± .034

πœ‡πœ‡π‘’π‘’π‘’π‘’π‘’π‘’ πœ‡πœ‡π΅π΅

19 degrees

πœƒπœƒ β‰… k=(Β½ Β½ Β½) structure [commensurate] k=(Β½ Β½ .297) structure [spiral] Intermediate Yb concentration Low Yb concentration Conclusion of Ce1-xYbxRhIn5

β€’ We measured properties of Ce1-xYbxRhIn5 using a combination SQUID, XRD, and Neutron Scattering β€’ We found a limited solubility of Yb into CeRhIn5, which needs to be better understood to continue this study. β€’ Results: 1. At low Yb concentrations, these compounds have a lower ordering temperature. 2. At intermediate Yb concentrations, the magnetic structure changes from incommensurate to commensurate. 3. A new magnetic structure was solved for these intermediate concentration. β€’ Future work : 1. Apply pressure and magnetic field at low temperatures to induce new interesting phase transitions. 2. Better measurements of the concentrations in these samples. 3. Study why the magnetic structure changes with Yb concentration. 4. Start to form a complete phase diagram from experiments to make better theories on how unconventional superconductivity works A big thanks to: References and Citations

β€’ NSF β€’ Wei Bao, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, Z. β€’ Steve Disseler Fisk,J.W. Lynn, and R.W Erwin. Incommensurate magnetic structure of CeRhIn5. Phys. B 62-22 β€’ William Ratcliff β€’ Z. Bukowski, , K. Gofryk, D. Kaczorowski. Magnetic and β€’ Julie Borchers transport properties of YbRhIn5 and YbIrIn5 single crystals . Solid State Communications 134-7 β€’ Joseph Lesniewski β€’ Tuson Park, F. Ronning, H. Q. Yuan, M. B. Salamon, R. β€’ Arnold Rubinshtein (MML) Movshovich, J. L. Sarrao & J. D. Thompson. Hidden magnetism and quantum criticality in the heavy fermion β€’ Shanta Ranjan Saha (UMD) superconductor CeRhIn5. Nature 440 β€’ Brian Maple (UC San Diego) β€’ P. Coleman. Heavy Fermions: at the edge of magnetism. Rugters. β€’ Sooyoung Jang (UC San Diego) β€’ Gen Shirane, Stephen M. Shapiro, John M. Tranquada. Neutron Scattering with a Triple-Axis Spectrometer. Cambridge. β€’ Neil W. Ashcroft, N. David Mermin. Solid State Physics. Brooks/Cole. Bragg’s Law for Crystal Diffraction

=

𝒏𝒏𝒏𝒏 𝟐𝟐𝟐𝟐 𝐬𝐬𝐬𝐬𝐬𝐬 𝜽𝜽

πœƒπœƒ d

d … d πœƒπœƒ

d … Nuclear vs. Magnetic Unit Cell in Neutron Scattering

k=(Β½, Β½, Β½) (repeats every 2a,2b, and 2c) Original Goal: Sm1-xCexCoIn5

SmCoIn CeCoIn 5 Increasing x 5

Turns antiferromagnetic Turns superconducting Finding the transition (in terms of T and x) Sm(1-x)CexCoIn5 (Heavy Fermion Material)

Tetragonal: Measured Parameters (x-ray) a=bβ‰ c (x=0 powder) Ξ±=Ξ²=Ξ³=90Β° a = 4.5798 Β± .0001 Γ… c = 7.4708 Β± .0002 Γ… Space group: c (β€˜x’ dependent) P 4/m m m

Co

In2

In1 Sm/Ce site a (β€˜x’ dependent) Laue x-ray diffraction Sample (h00) (0k0)

(00l) face No Magnetic Peaks found for SmCoIn5

Why?

E=35 meV Cross Sections (1x10-24 cm2) Element Formula Unit Atomic Wight (g/m) Coherent Incoherent Absorption

Sm 1 105.360 0.422 39.000 5072.236 Co 1 58.933 0.779 4.800 31.845 In 5 114.820 2.080 0.540 165.991

Data from NCNR Scattering and Activation Database Determining ΞΌeff and x using the SQUID Curie-Weiss Law for Paramagnetism ( ) = = πœ‡πœ‡π‘π‘π‘π‘π‘π‘π‘π‘ 𝑇𝑇 𝐢𝐢 T - Temperatureπœ’πœ’ 𝑇𝑇 [K𝐻𝐻] βˆ—π‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š π‘‡π‘‡βˆ’πœƒπœƒπ‘šπ‘š βˆ’ πœ’πœ’0 C – Curie Number [(emu K)/or] - Curie Temp. [K] (+ Ferro, - Anti)

πœƒπœƒπ‘šπ‘š Fit using: ( ) ( ) = = 32 πœ‡πœ‡π‘π‘π‘π‘π‘π‘π‘π‘ 𝑇𝑇 π‘Žπ‘Ž π‘π‘π‘Žπ‘Žπœ‡πœ‡π‘’π‘’π‘’π‘’π‘’π‘’ π‘₯π‘₯ βˆ’ 𝑏𝑏 πΆπΆπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š = 2.54 = 𝐻𝐻 ( 𝑇𝑇) βˆ’ πœƒπœƒ(π‘šπ‘š ) π‘˜π‘˜π΅π΅ ( ) = + 1 +3 = 4.54 = 𝑃𝑃𝐢𝐢𝑒𝑒 πœ‡πœ‡π΅π΅ π‘Žπ‘Ž π‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š π‘₯π‘₯ βˆ— 𝐢𝐢 π‘₯π‘₯ 2 2 +3 2 +2 +3 𝑒𝑒𝑒𝑒𝑒𝑒 π‘Œπ‘Œπ‘π‘ 𝐢𝐢𝑒𝑒 π‘Œπ‘Œπ‘π‘ 𝐡𝐡 𝑏𝑏 π‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š π‘₯π‘₯ βˆ— πœ’πœ’0 πœ‡πœ‡ π‘₯π‘₯ π‘₯π‘₯π‘₯π‘₯ βˆ’ π‘₯π‘₯ 𝑃𝑃 𝑃𝑃 πœ‡πœ‡ *numbers and equations from Ashcroft Solid State Physics Crash course in crystallography .Lattice + Atomic Basis = Crystal a + 1 2 Crash course in crystallography… .Lattice + Atomic Basis = Crystal .Unit cell … c …

a c b a

a … Crash course in crystallography .Lattice + Atomic Basis = Crystal .Unit cell .Reciprocal space and the Miller indices

A measure of frequency. (001) Crash course in crystallography .Lattice + Atomic Basis = Crystal .Unit cell .Reciprocal space and the Miller indices (100) A measure of frequency. Crash course in crystallography .Lattice + Atomic Basis = Crystal (110) .Unit cell .Reciprocal space and the Miller indices A measure of frequency.