On Numbers, Germs, and Transseries
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Formal Power Series - Wikipedia, the Free Encyclopedia
Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series -
On Numbers, Germs, and Transseries
On Numbers, Germs, and Transseries Matthias Aschenbrenner, Lou van den Dries, Joris van der Hoeven Abstract Germs of real-valued functions, surreal numbers, and transseries are three ways to enrich the real continuum by infinitesimal and infinite quantities. Each of these comes with naturally interacting notions of ordering and deriva- tive. The category of H-fields provides a common framework for the relevant algebraic structures. We give an exposition of our results on the model theory of H-fields, and we report on recent progress in unifying germs, surreal num- bers, and transseries from the point of view of asymptotic differential algebra. Contemporaneous with Cantor's work in the 1870s but less well-known, P. du Bois- Reymond [10]{[15] had original ideas concerning non-Cantorian infinitely large and small quantities [34]. He developed a \calculus of infinities” to deal with the growth rates of functions of one real variable, representing their \potential infinity" by an \actual infinite” quantity. The reciprocal of a function tending to infinity is one which tends to zero, hence represents an \actual infinitesimal”. These ideas were unwelcome to Cantor [39] and misunderstood by him, but were made rigorous by F. Hausdorff [46]{[48] and G. H. Hardy [42]{[45]. Hausdorff firmly grounded du Bois-Reymond's \orders of infinity" in Cantor's set-theoretic universe [38], while Hardy focused on their differential aspects and introduced the logarithmico-exponential functions (short: LE-functions). This led to the concept of a Hardy field (Bourbaki [22]), developed further mainly by Rosenlicht [63]{[67] and Boshernitzan [18]{[21]. For the role of Hardy fields in o-minimality see [61]. -
Local Topological Algebraicity of Analytic Function Germs Marcin Bilski, Adam Parusinski, Guillaume Rond
Local topological algebraicity of analytic function germs Marcin Bilski, Adam Parusinski, Guillaume Rond To cite this version: Marcin Bilski, Adam Parusinski, Guillaume Rond. Local topological algebraicity of analytic function germs. Journal of Algebraic Geometry, American Mathematical Society, 2017, 26 (1), pp.177 - 197. 10.1090/jag/667. hal-01255235 HAL Id: hal-01255235 https://hal.archives-ouvertes.fr/hal-01255235 Submitted on 13 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LOCAL TOPOLOGICAL ALGEBRAICITY OF ANALYTIC FUNCTION GERMS MARCIN BILSKI, ADAM PARUSINSKI,´ AND GUILLAUME ROND Abstract. T. Mostowski showed that every (real or complex) germ of an analytic set is homeomorphic to the germ of an algebraic set. In this paper we show that every (real or com- plex) analytic function germ, defined on a possibly singular analytic space, is topologically equivalent to a polynomial function germ defined on an affine algebraic variety. 1. Introduction and statement of results The problem of approximation of analytic objects (sets or mappings) by algebraic ones has attracted many mathematicians, see e.g. [2] and the bibliography therein. Nevertheless there are very few positive results if one requires that the approximation gives a homeomorphism between the approximated object and the approximating one. -
On Numbers, Germs, and Transseries
On Numbers, Germs, and Transseries Matthias Aschenbrenner, Lou van den Dries, Joris van der Hoeven Abstract Germs of real-valued functions, surreal numbers, and transseries are three ways to enrich the real continuum by infinitesimal and infinite quantities. Each of these comes with naturally interacting notions of ordering and deriva- tive. The category of H-fields provides a common framework for the relevant algebraic structures. We give an exposition of our results on the model theory of H-fields, and we report on recent progress in unifying germs, surreal num- bers, and transseries from the point of view of asymptotic differential algebra. Contemporaneous with Cantor's work in the 1870s but less well-known, P. du Bois- Reymond [10]{[15] had original ideas concerning non-Cantorian infinitely large and small quantities [34]. He developed a \calculus of infinities” to deal with the growth rates of functions of one real variable, representing their \potential infinity" by an \actual infinite” quantity. The reciprocal of a function tending to infinity is one which tends to zero, hence represents an \actual infinitesimal”. These ideas were unwelcome to Cantor [39] and misunderstood by him, but were made rigorous by F. Hausdorff [46]{[48] and G. H. Hardy [42]{[45]. Hausdorff firmly grounded du Bois-Reymond's \orders of infinity" in Cantor's set-theoretic universe [38], while Hardy focused on their differential aspects and introduced the logarithmico-exponential functions (short: LE-functions). This led to the concept of a Hardy field (Bourbaki [22]), developed further mainly by Rosenlicht [63]{[67] and Boshernitzan [18]{[21]. For the role of Hardy fields in o-minimality see [61]. -
SHEAF THEORY 1. Presheaves Definition 1.1. a Presheaf on A
SHEAF THEORY 1. Presheaves Definition 1.1. A presheaf on a space X (any top. space) is a contravariant functor from open sets on X to a category (usually Ab= category of abelian groups). That is, given U open ⊆ X, you have an abelian group A (U), and if V ⊆ U, then you have a restriction map rV,U : A (U) → A (V ). Then rU,U = 1, rW,V rV,U = rW,U etc. Example 1.2. Let A (U) = G, a fixed abelian group ∀U, rU,V = 1 (constant presheaf) Example 1.3. Let A (U) = G, a fixed abelian group ∀U, rU,V = 0 (Texas A&M presheaf) Example 1.4. Let A (X) = G, A (U) = 0 ∀proper U ⊆ X (TCC presheaf) 0 if x∈ / U Example 1.5. Skyscraper presheaf: x ∈ X; A (U) = G if x ∈ U Example 1.6. X = M, A (U) = {real analytic fcns on U} Example 1.7. adapt above using words like continuous, holomorphic, polynomial, differen- tial forms, kth cohomology group Hk (U), ∞ ∞ 2 Example 1.8. or Hk (U) (closed support homology). For example, Hk (open disk in R ) = Z k = 2 0 otherwise restriction maps: cut things off ∗ ∞ Note: Poincare duality for closed support: H (M) = Hn−∗ (M)(M possibly noncompact) ∗ c Poincare duality for compact support: Hc (M) = Hn−∗ (M) ∞ Example 1.9. Orientation presheaf: on an n-manifold, Hn (U) 2. Sheaves Definition 2.1. A sheaf A is a space together with a projection π : A → X such that −1 (1) Ax := π (x) is an abelian group (or could generalize to other categories) ∀x ∈ X (stalk at x) (2) π is a local homeomorphism (⇒ π−1 (x) is discrete) (3) group operations are continuous, ie {(a, b) ∈ A × A | π (a) = π (b)} → A given by (a, b) 7→ ab−1 is continuous. -
Math 396. Derivations and Vector Fields the Aim of These Notes Is To
Math 396. Derivations and vector fields The aim of these notes is to work out the precise correspondence between C1 vector fields and derivations on C1 functions over open sets in a C1 premanifold with corners X. Throughout what follows, all vector fields, functions, and premanifolds are understood to be of class C1, which we may abbreviate by the word \smooth". 1. Main result Let (X; O) be a smooth premanifold with corners. For any open set U X, we let VecX (U) ⊆ be the set of smooth vector fields ~v on U. Let DerX (U) be the set of R-linear derivations D of , by which we mean a collection R-linear derivations D : (U ) (U ) for all open U U O U U 0 O 0 O 0 0 satisfyingj the compatibility condition with respect to restrictions: if!U U is an inclusion⊆ of 00 ⊆ 0 opens in U then for all f O(U ) we have DU (f) U = DU (f U ) in O(U ). 2 0 0 j 00 00 j 00 00 For any ~v VecX (U) we define D~v to be the collection of maps 2 D~v;U : O(U 0) h : U 0 R 0 ! f ! g given by D (f): u ~v(u )(f) R for open U U. Roughly speaking, D maps a smooth ~v;U 0 0 0 0 ~v;U 0 function on U to the function7! whose2 value at each⊆ point u U is the directional derivative of f 0 0 2 0 in the direction ~v(u ) Tu (U ) = Tu (X) at u . -
NOTES in COMMUTATIVE ALGEBRA: PART 1 1. Results/Definitions Of
NOTES IN COMMUTATIVE ALGEBRA: PART 1 KELLER VANDEBOGERT 1. Results/Definitions of Ring Theory It is in this section that a collection of standard results and definitions in commutative ring theory will be presented. For the rest of this paper, any ring R will be assumed commutative with identity. We shall also use "=" and "∼=" (isomorphism) interchangeably, where the context should make the meaning clear. 1.1. The Basics. Definition 1.1. A maximal ideal is any proper ideal that is not con- tained in any strictly larger proper ideal. The set of maximal ideals of a ring R is denoted m-Spec(R). Definition 1.2. A prime ideal p is such that for any a, b 2 R, ab 2 p implies that a or b 2 p. The set of prime ideals of R is denoted Spec(R). p Definition 1.3. The radical of an ideal I, denoted I, is the set of a 2 R such that an 2 I for some positive integer n. Definition 1.4. A primary ideal p is an ideal such that if ab 2 p and a2 = p, then bn 2 p for some positive integer n. In particular, any maximal ideal is prime, and the radical of a pri- mary ideal is prime. Date: September 3, 2017. 1 2 KELLER VANDEBOGERT Definition 1.5. The notation (R; m; k) shall denote the local ring R which has unique maximal ideal m and residue field k := R=m. Example 1.6. Consider the set of smooth functions on a manifold M. -
Holomorphic Germs on Banach Spaces Annales De L’Institut Fourier, Tome 21, No 3 (1971), P
ANNALES DE L’INSTITUT FOURIER CHAE SOO BONG Holomorphic germs on Banach spaces Annales de l’institut Fourier, tome 21, no 3 (1971), p. 107-141 <http://www.numdam.org/item?id=AIF_1971__21_3_107_0> © Annales de l’institut Fourier, 1971, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst Fourier Grenoble 21,3 (1971), 107-141 HOLOMORPHIC GERMS ON BANACH SPACES* by SOO BONG CHAE Introduction. Let E and F be complex Banach spaces, U a non-empty open subset of E and K a compact subset of E. The concept of holomorphy type 0 between E and F, and the natural locally convex topology %^ 0 on the space S^ (U ; F) of all holomorphic mappings of a given holomorphy type 0 from U to F were considered first by L. Nachbin in his monograph [N6]. Motivated by [N6], we introduce the locally convex space S^CK ; F) of all germs of holomorphic mappings into F around K of a given holomorphy type 6 and study its interplay with XQ (U ; F). If E is infinite dimensional, a study of the locally convex space S^Q (U ; F) is by no means straightforward. -
Maximal D-Avoiding Subsets of Z
Maximal D-avoiding subsets of Z Nathan Ramesh Mentor: Christian Gaetz PRIMES Conference May 19, 2018 Example I f1; 4; 5; 8; 11g is f2; 5g-avoiding Example I f1; 3; 5; 7; · · · g is f1; 5g-avoiding Introduction I D is a finite set of positive integers I S ⊂ N called D-avoiding if there do not exist x; y 2 S such that x − y 2 D Example I f1; 3; 5; 7; · · · g is f1; 5g-avoiding Introduction I D is a finite set of positive integers I S ⊂ N called D-avoiding if there do not exist x; y 2 S such that x − y 2 D Example I f1; 4; 5; 8; 11g is f2; 5g-avoiding Introduction I D is a finite set of positive integers I S ⊂ N called D-avoiding if there do not exist x; y 2 S such that x − y 2 D Example I f1; 4; 5; 8; 11g is f2; 5g-avoiding Example I f1; 3; 5; 7; · · · g is f1; 5g-avoiding I to compare the size of two subsets A and B; compare the − germs of Aq and Bq as q ! 1 ; i. e. when q = 1 − " I If Aq > Bq when q = 1 − "; we write A B Example I A = f0; 2; 4; 6; · · · g I B = f1; 3; 5; 7; · · · g 2 4 1 I Aq = 1 + q + q + ··· = 1−q2 3 5 q I Bq = q + q + q + ··· = 1−q2 I =) A B Subset Generating Function I for a subset S; define the generating function X n Sq = q n2S I If Aq > Bq when q = 1 − "; we write A B Example I A = f0; 2; 4; 6; · · · g I B = f1; 3; 5; 7; · · · g 2 4 1 I Aq = 1 + q + q + ··· = 1−q2 3 5 q I Bq = q + q + q + ··· = 1−q2 I =) A B Subset Generating Function I for a subset S; define the generating function X n Sq = q n2S I to compare the size of two subsets A and B; compare the − germs of Aq and Bq as q ! 1 ; i. -
The Recent History of Model Theory
The recent history of model theory Enrique Casanovas Universidad de Barcelona The history of Model Theory can be traced back to the work of Charles Sanders Peirce and Ernst Schr¨oder, when semantics started playing a role in Logic. But the first outcome dates from 1915. It appears in the paper Uber¨ M¨oglichkeiten im Relativkalk¨ul (Math. Ann. 76, 445-470) by Leopold L¨owenheim. The period from 1915 to 1935 is, in words of R.L. Vaught, extraordinary. The method of elimination of quantifiers is developed and applied to give decision methods for the theories of (Q, <) (C.H. Langford), of (ω, +) and (Z, +, <) (M. Presburger) and, finally, of the field of complex numbers and of the ordered field of real numbers (A. Tarski). Also the completeness theorem of Kurt G¨odel (1930) has to be considered among the earliest results of Model Theory. The influence of Alfred Tarski was decisive in this early stage and in the successive years. This is due not only to his discovery of unquestionable definitions of the notions of truth and definability in a structure, but also to his founding of the basic notions of the theory, such as elementary equivalence and elementary extension. In the fifties and six- ties JerryLoˇsintroduced the ultraproducts, Ronald Fra¨ıss´edeveloped the back-and-forth methods and investigated amalgamation properties, and Abraham Robinson started his voluminous contribution to Model Theory, including his celebrated non-standard analysis. Robinson’s non-standard analysis attracted the attention of mathematicians and philoso- phers. But at that time a feeling of exhaustion started pervading the whole theory. -
Notices of the American Mathematical
ISSN 0002-9920 Notices of the American Mathematical Society AMERICAN MATHEMATICAL SOCIETY Graduate Studies in Mathematics Series The volumes in the GSM series are specifically designed as graduate studies texts, but are also suitable for recommended and/or supplemental course reading. With appeal to both students and professors, these texts make ideal independent study resources. The breadth and depth of the series’ coverage make it an ideal acquisition for all academic libraries that of the American Mathematical Society support mathematics programs. al January 2010 Volume 57, Number 1 Training Manual Optimal Control of Partial on Transport Differential Equations and Fluids Theory, Methods and Applications John C. Neu FROM THE GSM SERIES... Fredi Tro˝ltzsch NEW Graduate Studies Graduate Studies in Mathematics in Mathematics Volume 109 Manifolds and Differential Geometry Volume 112 ocietty American Mathematical Society Jeffrey M. Lee, Texas Tech University, Lubbock, American Mathematical Society TX Volume 107; 2009; 671 pages; Hardcover; ISBN: 978-0-8218- 4815-9; List US$89; AMS members US$71; Order code GSM/107 Differential Algebraic Topology From Stratifolds to Exotic Spheres Mapping Degree Theory Matthias Kreck, Hausdorff Research Institute for Enrique Outerelo and Jesús M. Ruiz, Mathematics, Bonn, Germany Universidad Complutense de Madrid, Spain Volume 110; 2010; approximately 215 pages; Hardcover; A co-publication of the AMS and Real Sociedad Matemática ISBN: 978-0-8218-4898-2; List US$55; AMS members US$44; Española (RSME). Order code GSM/110 Volume 108; 2009; 244 pages; Hardcover; ISBN: 978-0-8218- 4915-6; List US$62; AMS members US$50; Ricci Flow and the Sphere Theorem The Art of Order code GSM/108 Simon Brendle, Stanford University, CA Mathematics Volume 111; 2010; 176 pages; Hardcover; ISBN: 978-0-8218- page 8 Training Manual on Transport 4938-5; List US$47; AMS members US$38; and Fluids Order code GSM/111 John C. -
A CATEGORICAL INTRODUCTION to SHEAVES Contents 1
A CATEGORICAL INTRODUCTION TO SHEAVES DAPING WENG Abstract. Sheaf is a very useful notion when defining and computing many different cohomology theories over topological spaces. There are several ways to build up sheaf theory with different axioms; however, some of the axioms are a little bit hard to remember. In this paper, we are going to present a \natural" approach from a categorical viewpoint, with some remarks of applications of sheaf theory at the end. Some familiarity with basic category notions is assumed for the readers. Contents 1. Motivation1 2. Definitions and Constructions2 2.1. Presheaf2 2.2. Sheaf 4 3. Sheafification5 3.1. Direct Limit and Stalks5 3.2. Sheafification in Action8 3.3. Sheafification as an Adjoint Functor 12 4. Exact Sequence 15 5. Induced Sheaf 18 5.1. Direct Image 18 5.2. Inverse Image 18 5.3. Adjunction 20 6. A Brief Introduction to Sheaf Cohomology 21 Conclusion and Acknowlegdment 23 References 23 1. Motivation In many occasions, we may be interested in algebraic structures defined over local neigh- borhoods. For example, a theory of cohomology of a topological space often concerns with sets of maps from a local neighborhood to some abelian groups, which possesses a natural Z-module struture. Another example is line bundles (either real or complex): since R or C are themselves rings, the set of sections over a local neighborhood forms an R or C-module. To analyze this local algebraic information, mathematians came up with the notion of sheaves, which accommodate local and global data in a natural way. However, there are many fashion of introducing sheaves; Tennison [2] and Bredon [1] have done it in two very different styles in their seperate books, though both of which bear the name \Sheaf Theory".