Quaternions: a History of Complex Noncommutative Rotation Groups in Theoretical Physics

Total Page:16

File Type:pdf, Size:1020Kb

Quaternions: a History of Complex Noncommutative Rotation Groups in Theoretical Physics QUATERNIONS: A HISTORY OF COMPLEX NONCOMMUTATIVE ROTATION GROUPS IN THEORETICAL PHYSICS Johannes C. Familton Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2015 © 2015 Johannes C. Familton All rights reserved ABSTRACT Quaternions: a history of complex Noncommutative rotation groups in theoretical physics Johannes C. Familton The purpose of this dissertation is to clarify the emergence of quaternions in order to make the history of quaternions less opaque to teachers and students in mathematics and physics. ‘Quaternion type Rotation Groups’ are important in modern physics. They are usually encountered by students in the form of: Pauli matrices, and SU(2) & SO(4) rotation groups. These objects did not originally appear in the neat form presented to students in modern mathematics or physics courses. What is presented to students by instructors is usually polished and complete due to many years of reworking. Often neither students of physics, mathematics or their instructors have an understanding about how these objects came into existence, or became incorporated into their respected subject in the first place. This study was done to bridge the gaps between the history of quaternions and their associated rotation groups, and the subject matter that students encounter in their course work. TABLE OF CONTENTS List of Figures ..................................................................................................... iv List of Tables ...................................................................................................... vi Acknowledgements ........................................................................................... vii Chapter I: Introduction......................................................................................... 1 A. Need for Study ......................................................................................... 2 B. Purpose of Study ..................................................................................... 2 C. Procedure of Study .................................................................................. 4 Chapter II: Historical Development .................................................................... 6 A. What are Quaternions? ............................................................................ 6 B. William Rowan Hamilton and the discovery of Quaternions .............. 8 C. Grassmann: A more Geometric approach to Algebra........................15 D. Gibbs and Heaviside: Combining Hamilton and Grassmann .............. 18 i. Gibbs: a well-educated American ............................................ 19 ii. Heaviside: a self-taught English electrician ............................. 20 E. The Joining of Quaternions with Grassmann algebras: William Kingdon Clifford .................................................................... 24 F. Sophus Lie ........................................................................................ 26 Chapter III: Mathematical Development .......................................................... 30 A. Algebra of Quaternions ......................................................................... 31 B. Gibbs Vector analysis and Quaternions ................................................ 36 C. Geometry of Quaternions ...................................................................... 40 i. Euler’s Rotation Theorem ...................................................... 41 ii. Quaternion Rotations in 3-Dimensions .................................... 42 iii. Rodrigues’ Rotation Formula………………………………..45 D. Octonians ............................................................................................... 49 E. Grassmann algebras ............................................................................... 53 F. Clifford algebras .................................................................................... 58 G. Lie Groups, Lie Algebras ...................................................................... 60 H. Quaternions, Rotation Groups and their associated Lie groups ........... 63 i. The rotation group SU(2) and its associated Lie group and algebra ....................................................................................... 64 ii. The rotation group SO(3) and its associated Lie group and algebra ...................................................................................... 67 iii. The rotation group SU(3) and its associated Lie group and algebra ....................................................................................... 71 iv. The rotation group SO(4) and its associated Lie group and algebra ....................................................................................... 72 i Chapter IV: Applications of Quaternions in Physics ........................................ 73 A. Tait and the Elementary Treatise of Quaternions ................................ 74 i. Kinematics and Rigid body motion .......................................... 76 ii. Electricity and magnetism ........................................................ 81 iii. The operator “del”, and the Laplacian ..................................... 81 B. Maxwell and Quaternions ..................................................................83 C. Quaternions and Special Relativity ....................................................... 89 i. Quaternions and Lorentz transformations ................................ 91 ii. Clifford algebras and Lorentz transformations ........................ 93 D. Quaternions and Quantum Mechanics .................................................. 94 i. Spinors ............................................................................................. 95 ii. The Heisenberg Uncertainty Principal ........................................... 95 E. Quaternions in Particle Physics…………………………….………..97 i. Isospin ....................................................................................... 97 ii. Higher Symmetries ................................................................... 99 iii. Electroweak isospin .................................................................. 99 F. Octonions and String Theory .............................................................. 101 Chapter V: Jury Evaluation of the Source Book ............................................. 103 Chapter VI: Summery, Conclusions and Recommendations ........................ 110 i. Summery ....................................................................................... 110 ii. Conclusions ................................................................................... 112 iii. Recommendations ......................................................................... 114 Bibliography ..................................................................................................... 117 ii LIST OF FIGURES Number Page 1. The Fino plane for quaternions ............................................................. 34 2. Quaternion Angle .................................................................................. 35 3. Geometric interpretation for the proof of Theorem 1 ........................... 35 4. Quaternion rotations through the complex plane ................................. 40 5. Graphical representation of quaternion units product as 90ᵒ rotation in 4-dimentional space ............................................................ 41 6. A vector diagram for the derivation for the rotation formula .............. 46 7. The Fino plane for Octinons ................................................................. 52 8. A “2-blade” ............................................................................................ 53 9. Geometric interpretation of ba = -ab ............................................... 55 10. abc ..................................................................................................... 55 11. Rotation on a plane ................................................................................ 61 12. SO(2) .................................................................................................... 62 13. Double cover of SO(2) ......................................................................... 63 14. The 3-Sphere SU(2) projected from R4 ................................................ 65 15. SO(3) .................................................................................................... 68 16. Torus illustrating 2 types of closed loops ............................................ 69 17. SO(3) Double Cover ............................................................................. 69 18. Maxwell’s Diagrams ............................................................................. 89 19. Macfarlane’s Figure 7…….…. ............................................................. 90 20. Two ways a string can wrap around a torus ....................................... 102 iv LIST OF TABLES Number Page 1. Multiplication Table for the Quaternion Group. .................................. 34 2. Multiplication Table for Octonions ...................................................... 51 3. Maxwell’s Equations ............................................................................. 84 4. Hyperbolic Quaternion Table................................................................ 89 vi ACKNOWLEDGMENTS This thesis is dedicated to Dr. Richard Friedberg Professor emeritus of Barnard
Recommended publications
  • Models of 2-Dimensional Hyperbolic Space and Relations Among Them; Hyperbolic Length, Lines, and Distances
    Models of 2-dimensional hyperbolic space and relations among them; Hyperbolic length, lines, and distances Cheng Ka Long, Hui Kam Tong 1155109623, 1155109049 Course Teacher: Prof. Yi-Jen LEE Department of Mathematics, The Chinese University of Hong Kong MATH4900E Presentation 2, 5th October 2020 Outline Upper half-plane Model (Cheng) A Model for the Hyperbolic Plane The Riemann Sphere C Poincar´eDisc Model D (Hui) Basic properties of Poincar´eDisc Model Relation between D and other models Length and distance in the upper half-plane model (Cheng) Path integrals Distance in hyperbolic geometry Measurements in the Poincar´eDisc Model (Hui) M¨obiustransformations of D Hyperbolic length and distance in D Conclusion Boundary, Length, Orientation-preserving isometries, Geodesics and Angles Reference Upper half-plane model H Introduction to Upper half-plane model - continued Hyperbolic geometry Five Postulates of Hyperbolic geometry: 1. A straight line segment can be drawn joining any two points. 2. Any straight line segment can be extended indefinitely in a straight line. 3. A circle may be described with any given point as its center and any distance as its radius. 4. All right angles are congruent. 5. For any given line R and point P not on R, in the plane containing both line R and point P there are at least two distinct lines through P that do not intersect R. Some interesting facts about hyperbolic geometry 1. Rectangles don't exist in hyperbolic geometry. 2. In hyperbolic geometry, all triangles have angle sum < π 3. In hyperbolic geometry if two triangles are similar, they are congruent.
    [Show full text]
  • Vectors and Beyond: Geometric Algebra and Its Philosophical
    dialectica Vol. 63, N° 4 (2010), pp. 381–395 DOI: 10.1111/j.1746-8361.2009.01214.x Vectors and Beyond: Geometric Algebra and its Philosophical Significancedltc_1214 381..396 Peter Simons† In mathematics, like in everything else, it is the Darwinian struggle for life of ideas that leads to the survival of the concepts which we actually use, often believed to have come to us fully armed with goodness from some mysterious Platonic repository of truths. Simon Altmann 1. Introduction The purpose of this paper is to draw the attention of philosophers and others interested in the applicability of mathematics to a quiet revolution that is taking place around the theory of vectors and their application. It is not that new math- ematics is being invented – on the contrary, the basic concepts are over a century old – but rather that this old theory, having languished for many decades as a quaint backwater, is being rediscovered and properly applied for the first time. The philosophical importance of this quiet revolution is not that new applications for old mathematics are being found. That presumably happens much of the time. Rather it is that this new range of applications affords us a novel insight into the reasons why vectors and their mathematical kin find application at all in the real world. Indirectly, it tells us something general but interesting about the nature of the spatiotemporal world we all inhabit, and that is of philosophical significance. Quite what this significance amounts to is not yet clear. I should stress that nothing here is original: the history is quite accessible from several sources, and the mathematics is commonplace to those who know it.
    [Show full text]
  • The Construction of Spinors in Geometric Algebra
    The Construction of Spinors in Geometric Algebra Matthew R. Francis∗ and Arthur Kosowsky† Dept. of Physics and Astronomy, Rutgers University 136 Frelinghuysen Road, Piscataway, NJ 08854 (Dated: February 4, 2008) The relationship between spinors and Clifford (or geometric) algebra has long been studied, but little consistency may be found between the various approaches. However, when spinors are defined to be elements of the even subalgebra of some real geometric algebra, the gap between algebraic, geometric, and physical methods is closed. Spinors are developed in any number of dimensions from a discussion of spin groups, followed by the specific cases of U(1), SU(2), and SL(2, C) spinors. The physical observables in Schr¨odinger-Pauli theory and Dirac theory are found, and the relationship between Dirac, Lorentz, Weyl, and Majorana spinors is made explicit. The use of a real geometric algebra, as opposed to one defined over the complex numbers, provides a simpler construction and advantages of conceptual and theoretical clarity not available in other approaches. I. INTRODUCTION Spinors are used in a wide range of fields, from the quantum physics of fermions and general relativity, to fairly abstract areas of algebra and geometry. Independent of the particular application, the defining characteristic of spinors is their behavior under rotations: for a given angle θ that a vector or tensorial object rotates, a spinor rotates by θ/2, and hence takes two full rotations to return to its original configuration. The spin groups, which are universal coverings of the rotation groups, govern this behavior, and are frequently defined in the language of geometric (Clifford) algebras [1, 2].
    [Show full text]
  • The Proffered Pen: Saint-Simonianism and the Public Sphere
    THE PROFFERED PEN: SAINT-SIMONIANISM AND THE PUBLIC SPHERE IN 19TH CENTURY FRANCE by MICHAEL BRICK A THESIS Presented to the Department of History and the Graduate School at the University of Oregon in partial fulfillment of the requirements for the degree of Master of Arts March 2011 THESIS APPROVAL PAGE Student: Michael Brick Title: The Proffered Pen: Saint-Simonianism and the Public Sphere in 19th Century France This thesis has been accepted and approved in partial fulfillment of the requirements for the Master of Arts degree in the Department of History by: Dr. George Sheridan Chair Dr. David Luebke Member Dr. Daniel Pope Member and Richard Linton Vice President for Research and Graduate Studies/Dean of the Graduate School Original approval signatures are on file with the University of Oregon Graduate School Degree awarded March 2011 ii © 2011 Michael Brick iii THESIS ABSTRACT Michael Brick Master of Arts Department of History March 2011 Title: The Proffered Pen: Saint-Simonianism and the Public Sphere in 19th Century France Approved: ________________________________________________ Dr. David Luebke The French ―utopian socialist‖ movement known as Saint-Simonianism has long been recognized for its influence among 19th century engineers. An examination of the early Saint-Simonian journal, Le Producteur, however, reveals the articulation of an appeal to contemporary men of letters. A survey of the life and career of Hippolyte Carnot, a prominent Saint-Simonian man of letters, confirms and illustrates the nature of this appeal as it developed alongside Saint-Simonian ideology. Central to this appeal was the Saint-Simonians‘ attributing to the ―artist‖ the role of moral educator.
    [Show full text]
  • 1 Euclidean Geometry
    Dr. Anna Felikson, Durham University Geometry, 26.02.2015 Outline 1 Euclidean geometry 1.1 Isometry group of Euclidean plane, Isom(E2). A distance on a space X is a function d : X × X ! R,(A; B) 7! d(A; B) for A; B 2 X satisfying 1. d(A; B) ≥ 0 (d(A; B) = 0 , A = B); 2. d(A; B) = d(B; A); 3. d(A; C) ≤ d(A; B) + d(B; C) (triangle inequality). We will use two models of Euclidean plane: p 2 2 a Cartesian plane: f(x; y) j x; y 2 Rg with the distance d(A1;A2) = (x1 − x2) + (y1 − y2) ; a Gaussian plane: fz j z 2 Cg, with the distance d(u; v) = ju − vj. Definition 1.1. A Euclidean isometry is a distance-preserving transformation of E2, i.e. a map f : E2 ! E2 satisfying d(f(A); f(B)) = d(A; B). Corollary 1.2. (a) Every isometry of E2 is a one-to-one map. (b) The composition of any two isometries is an isometry. (c) Isometries of E2 form a group (denoted Isom(E2)). Example 1.3: Translation, rotation, reflection in a line are isometries. Theorem 1.4. Let ABC and A0B0C0 be two congruent triangles. Then there exists a unique isometry sending A to A0, B to B0 and C to C0. Corollary 1.5. Every isometry of E2 is a composition of at most 3 reflections. (In particular, the group Isom(E2) is generated by reflections). Remark: the way to write an isometry as a composition of reflection is not unique.
    [Show full text]
  • Université Du Québec À Montréal Edwin B. Wilson Aux Origines De L
    UNIVERSITÉ DU QUÉBEC À MONTRÉAL EDWIN B. WILSON AUX ORIGINES DE L’ÉCONOMIE MATHÉMATIQUE DE PAUL SAMUELSON: ESSAIS SUR L’HISTOIRE ENTREMÊLÉE DE LA SCIENCE ÉCONOMIQUE, DES MATHÉMATIQUES ET DES STATISTIQUES AUX ÉTATS-UNIS, 1900-1940 THÈSE PRÉSENTÉE COMME EXIGENCE PARTIELLE DU DOCTORAT EN ÉCONOMIQUE PAR CARVAJALINO FLOREZ JUAN GUILLERMO DÉCEMBRE 2016 UNIVERSITÉ DU QUÉBEC À MONTRÉAL EDWIN B. WILSON AT THE ORIGIN OF PAUL SAMUELSON'S MATHEMATICAL ECONOMICS: ESSAYS ON THE INTERWOVEN HISTORY OF ECONOMICS, MATHEMATICS AND STATISTICS IN THE U.S., 1900-1940 THESIS PRESENTED AS PARTIAL REQUIREMENT OF DOCTOR OF PHILOSPHY IN ECONOMIC BY CARVAJALINO FLOREZ JUAN GUILLERMO DECEMBER 2016 ACKNOWLEDGMENTS For the financial aid that made possible this project, I am thankful to the Université du Québec À Montréal (UQAM), the Fonds de Recherche du Québec Société et Culture (FRQSC), the Social Science and Humanities Research Council of Canada (SSHRCC) as well as the Centre Interuniversitaire de Recherche sur la Science et la Technologie (CIRST). I am also grateful to archivists for access to various collections and papers at the Harvard University Archives (Edwin Bidwell Wilson), David M. Rubenstein Rare Book & Manuscript Library, Duke University (Paul A. Samuelson and Lloyd Metzler), Library of Congress, Washington, D.C. (John von Neumann and Oswald Veblen) and Yale University Library (James Tobin). I received encouraging and intellectual support from many. I particularly express my gratitude to the HOPE Center, at Duke University, where I spent the last semester of my Ph.D. and where the last chapter of this thesis was written. In particular, I thank Roy Weintraub for all his personal support, for significantly engaging with my work and for his valuable research advice.
    [Show full text]
  • Hyperbolic Geometry on a Hyperboloid, the American Mathematical Monthly, 100:5, 442-455, DOI: 10.1080/00029890.1993.11990430
    William F. Reynolds (1993) Hyperbolic Geometry on a Hyperboloid, The American Mathematical Monthly, 100:5, 442-455, DOI: 10.1080/00029890.1993.11990430. (c) 1993 The American Mathematical Monthly 1985 Mathematics Subject Classification 51 M 10 HYPERBOLIC GEOMETRY ON A HYPERBOLOID William F. Reynolds Department of Mathematics, Tufts University, Medford, MA 02155 E-mail: [email protected] 1. Introduction. Hardly anyone would maintain that it is better to begin to learn geography from flat maps than from a globe. But almost all introductions to hyperbolic non-Euclidean geometry, except [6], present plane models, such as the projective and conformal disk models, without even mentioning that there exists a model that has the same relation to plane models that a globe has to flat maps. This model, which is on one sheet of a hyperboloid of two sheets in Minkowski 3-space and which I shall call H2, is over a hundred years old; Killing and Poincar´eboth described it in the 1880's (see Section 14). It is used by differential geometers [29, p. 4] and physicists (see [21, pp. 724-725] and [23, p. 113]). Nevertheless it is not nearly so well known as it should be, probably because, like a globe, it requires three dimensions. The main advantages of this model are its naturalness and its symmetry. Being embeddable (distance function and all) in flat space-time, it is close to our picture of physical reality, and all its points are treated alike in this embedding. Once the strangeness of the Minkowski metric is accepted, it has the familiar geometry of a sphere in Euclidean 3-space E3 as a guide to definitions and arguments.
    [Show full text]
  • Hyperbolic Geometry
    Flavors of Geometry MSRI Publications Volume 31,1997 Hyperbolic Geometry JAMES W. CANNON, WILLIAM J. FLOYD, RICHARD KENYON, AND WALTER R. PARRY Contents 1. Introduction 59 2. The Origins of Hyperbolic Geometry 60 3. Why Call it Hyperbolic Geometry? 63 4. Understanding the One-Dimensional Case 65 5. Generalizing to Higher Dimensions 67 6. Rudiments of Riemannian Geometry 68 7. Five Models of Hyperbolic Space 69 8. Stereographic Projection 72 9. Geodesics 77 10. Isometries and Distances in the Hyperboloid Model 80 11. The Space at Infinity 84 12. The Geometric Classification of Isometries 84 13. Curious Facts about Hyperbolic Space 86 14. The Sixth Model 95 15. Why Study Hyperbolic Geometry? 98 16. When Does a Manifold Have a Hyperbolic Structure? 103 17. How to Get Analytic Coordinates at Infinity? 106 References 108 Index 110 1. Introduction Hyperbolic geometry was created in the first half of the nineteenth century in the midst of attempts to understand Euclid’s axiomatic basis for geometry. It is one type of non-Euclidean geometry, that is, a geometry that discards one of Euclid’s axioms. Einstein and Minkowski found in non-Euclidean geometry a This work was supported in part by The Geometry Center, University of Minnesota, an STC funded by NSF, DOE, and Minnesota Technology, Inc., by the Mathematical Sciences Research Institute, and by NSF research grants. 59 60 J. W. CANNON, W. J. FLOYD, R. KENYON, AND W. R. PARRY geometric basis for the understanding of physical time and space. In the early part of the twentieth century every serious student of mathematics and physics studied non-Euclidean geometry.
    [Show full text]
  • The Genesis of Geometric Algebra: a Personal Retrospective
    Adv. Appl. Clifford Algebras 27 (2017), 351–379 c 2016 The Author(s). This article is published with open access at Springerlink.com 0188-7009/010351-29 published online April 11, 2016 Advances in DOI 10.1007/s00006-016-0664-z Applied Clifford Algebras The Genesis of Geometric Algebra: A Personal Retrospective David Hestenes* Abstract. Even today mathematicians typically typecast Clifford Al- gebra as the “algebra of a quadratic form,” with no awareness of its grander role in unifying geometry and algebra as envisaged by Clifford himself when he named it Geometric Algebra. It has been my privilege to pick up where Clifford left off—to serve, so to speak, as principal architect of Geometric Algebra and Calculus as a comprehensive math- ematical language for physics, engineering and computer science. This is an account of my personal journey in discovering, revitalizing and ex- tending Geometric Algebra, with emphasis on the origin and influence of my book Space-Time Algebra. I discuss guiding ideas, significant re- sults and where they came from—with recollection of important events and people along the way. Lastly, I offer some lessons learned about life and science. 1. Salutations I am delighted and honored to join so many old friends and new faces in celebrating the 50th anniversary of my book Space-Time Algebra (STA). That book launched my career as a theoretical physicist and the journey that brought us here today. Let me use this opportunity to recall some highlights of my personal journey and offer my take on lessons to be learned. The first lesson follows: 2.
    [Show full text]
  • The Relativistic Transactional Interpretation and Spacetime Emergence
    The Relativistic Transactional Interpretation and Spacetime Emergence R. E. Kastner* 3/10/2021 “The flow of time is a real becoming in which potentiality is transformed into actuality.” -Hans Reichenbach1 This paper is an excerpt from Chapter 8 of the forthcoming second edition of my book, The Transactional Interpretation of Quantum Mechanics: A Relativistic Treatment, Cambridge University Press. Abstract. We consider the manner in which the spacetime manifold emerges from a quantum substratum through the transactional process, in which spacetime events and their connections are established. In this account, there is no background spacetime as is generally assumed in physical theorizing. Instead, the usual notion of a background spacetime is replaced by the quantum substratum, comprising quantum systems with nonvanishing rest mass. Rest mass corresponds to internal periodicities that function as internal clocks defining proper times, and in turn, inertial frames that are not themselves aspects of the spacetime manifold, but are pre- spacetime reference structures. Specific processes in the quantum substratum serve to distinguish absolute from relative motion. 1. Introduction and Background The Transactional Interpretation of quantum mechanics has been extended into the relativistic domain by the present author. That model is now known as the Relativistic Transactional Interpretation (RTI) (e.g., Kastner 2015, 2018, 2019, 2021; Kastner and Cramer, 2018). RTI is based on the direct-action theory of fields in its relativistic quantum form,
    [Show full text]
  • Fqxi 4Dave Last1-3-9-Kor Ende
    ! Revising Space Time Geometry: A Proposal for a New Romance in Many Dimensions Renate Quehenberger* Quantum Cinema - a digital Vision (PEEK) Department of Mediatheory at the University of Applied Arts, Vienna August 25, 2012 Abstract The ontological positioning of our existence, deeply connected with the hierarchy problem concerning the dimensions of space and time, is one of the major problems for our understanding of the “ultimate” nature of reality. The resulting problem is that mathematical concepts that need so-called “extra-dimensions” have been widely disregarded owing to a lack of physical interpretation. This article reviews conventions, imaginations and assumptions about the non-imaginative by starting at the origins of the of 4D and 5D space-time concepts and proposing a new geometrical approach via a hyper- Euclidian path for a mentally accessible vision of continuous AND discrete complex space configuration in dimensions up to higher order. e-mail address: [email protected] 1 RCZ Quehenberger “Time and Space... It is not nature which imposes them upon us, it is we who impose them upon nature because we find them convenient.” [Henri Poincaré, 1905] Introduction The general physicists’ assertion is that we are living in a three-dimensional world with one time- dimension and cosmic space is curved in the fourth dimension is based on a relativistic world view that has gained general acceptance. In fact this is a post-Copernicanian world view which does not pay attention to the consequences of Max Planck’s revolution and the development in quantum physics of the past 100 years.
    [Show full text]
  • Reforming the Mathematical Language of Physics
    Oersted Medal Lecture 2002: Reforming the Mathematical Language of Physics David Hestenes Department of Physics and Astronomy Arizona State University, Tempe, Arizona 85287-1504 The connection between physics teaching and research at its deepest level can be illuminated by Physics Education Research (PER). For students and scientists alike, what they know and learn about physics is profoundly shaped by the conceptual tools at their command. Physicists employ a miscellaneous assortment of mathematical tools in ways that contribute to a fragmenta- tion of knowledge. We can do better! Research on the design and use of mathematical systems provides a guide for designing a unified mathemati- cal language for the whole of physics that facilitates learning and enhances physical insight. This has produced a comprehensive language called Geo- metric Algebra, which I introduce with emphasis on how it simplifies and integrates classical and quantum physics. Introducing research-based re- form into a conservative physics curriculum is a challenge for the emerging PER community. Join the fun! I. Introduction The relation between teaching and research has been a perennial theme in academia as well as the Oersted Lectures, with no apparent progress on re- solving the issues. Physics Education Research (PER) puts the whole matter into new light, for PER makes teaching itself a subject of research. This shifts attention to the relation of education research to scientific research as the central issue. To many, the research domain of PER is exclusively pedagogical. Course content is taken as given, so the research problem is how to teach it most effec- tively. This approach to PER has produced valuable insights and useful results.
    [Show full text]