Of the Wombat Forest and Macedon Ranges of the Wombat Forest And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Perth Urban Bushland Fungi Field Book
Perth Urban Bushland Fungi Field Book (A Self-Managed Format) Author Neale L. Bougher Format and Electronic Design John R. Weaver Publisher: Perth Urban Bushland Fungi 3rd Edition, 2007 Foundation 1st Edition May 2005 2nd Edition November 2005 3rd Edition February 2007 This book is Copyright. Approval is granted to reproduce this Field Book in whole or in part, for personal and educational purposes only. The Field Book may be downloaded from the Perth Urban Bushland Fungi web site at: http://www.fungiperth.org.au/fieldbook/cat_index.html With the exception of its use for personal and/or educational purposes, electronic storage of data or images from the printed or web site versions of this book and retrieval or transmission in any form from such storage is not permitted. Written permission is required prior to any potential commercial applications or non- personal reproduction or distribution. Enquiries should be made to Perth Urban Bushland Fungi, Western Australian Herbarium, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, Western Australia 6983. Copyright © text: Neale L. Bougher Copyright © photographs: Neale L. Bougher (unless otherwise stated). Copyright © electronic & printed layout & design: John R. Weaver This book may be cited as: Bougher N.L. (2006). Perth Urban Bushland Fungi Field Book. Perth Urban Bushland Fungi, Perth Western Australia. (Online), from: http://www.fungiperth.org.au/fieldbook/cat_index.html (2 February 2007). © Perth Urban Bushland Fungi - Field Book / Last updated 2/02/2007 Page ii Acknowledgements PUBF activities are the result of a core team comprising Neale Bougher (Mycologist), John Weaver (Formatting and Electronic Presentation and Data Management), Roz Hart (Community Education Officer) and Sarah de Bueger (Project Officer, 2006) with past assistance from Jac Keelan-Wake (Administrative Support 2004-2005). -
Fungi of North East Victoria Online
Agarics Agarics Agarics Agarics Fungi of North East Victoria An Identication and Conservation Guide North East Victoria encompasses an area of almost 20,000 km2, bounded by the Murray River to the north and east, the Great Dividing Range to the south and Fungi the Warby Ranges to the west. From box ironbark woodlands and heathy dry forests, open plains and wetlands, alpine herb elds, montane grasslands and of North East Victoria tall ash forests, to your local park or backyard, fungi are found throughout the region. Every fungus species contributes to the functioning, health and An Identification and Conservation Guide resilience of these ecosystems. Identifying Fungi This guide represents 96 species from hundreds, possibly thousands that grow in the diverse habitats of North East Victoria. It includes some of the more conspicuous and distinctive species that can be recognised in the eld, using features visible to the Agaricus xanthodermus* Armillaria luteobubalina* Coprinellus disseminatus Cortinarius austroalbidus Cortinarius sublargus Galerina patagonica gp* Hypholoma fasciculare Lepista nuda* Mycena albidofusca Mycena nargan* Protostropharia semiglobata Russula clelandii gp. yellow stainer Australian honey fungus fairy bonnet Australian white webcap funeral bell sulphur tuft blewit* white-crowned mycena Nargan’s bonnet dung roundhead naked eye or with a x10 magnier. LAMELLAE M LAMELLAE M ■ LAMELLAE S ■ LAMELLAE S, P ■ LAMELLAE S ■ LAMELLAE M ■ ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ LAMELLAE S ■ When identifying a fungus, try and nd specimens of the same species at dierent growth stages, so you can observe the developmental changes that can occur. Also note the variation in colour and shape that can result from exposure to varying weather conditions. -
[Censored by Critic]
Official press statement, from a university spokeswoman, regarding the Critic magazines that went missing. [CENSORED BY CRITIC] AfterUniversity Proctor Dave Scott received information yesterday that copies of this week’s Critic magazine were requested to be removed from the Hospital and Dunedin Public Library foyers, the Campus Watch team on duty last night (Monday) removed the rest of the magazines from stands around the University. The assumption was made that, copies of the magazine also needed to be removed from other public areas, and hence the Proctor made this decision. This was an assumption, rightly or wrongly, that this action needed to be taken as the University is also a public place, where non-students regularly pass through. The Proctor understood that the reason copies of this week’s issue had been removed from public places, was that the cover was objectionable to many people including children who potentially might be exposed to it. Today, issues of the magazine, which campus watch staff said numbered around 500 in total, could not be recovered from a skip on campus, and this is regrettable. “I intend to talk to the Critic staff member tomorrow, and explain what has happened and why,” says Mr Scott. The Campus Watch staff who spoke to the Critic Editor today, they were initially unaware of. yesterday’s removal of the magazines. The University has no official view on the content of this week’s magazine. However, the University is aware that University staff members, and members of the public, have expressed an opinion that the cover of this issue was degrading to women. -
Preliminary Classification of Leotiomycetes
Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades. -
Phylogenetic Assignment of the Fungicolous Hypoxylon Invadens (Ascomycota, Xylariales) and Investigation of Its Secondary Metabolites
microorganisms Article Phylogenetic Assignment of the Fungicolous Hypoxylon invadens (Ascomycota, Xylariales) and Investigation of its Secondary Metabolites Kevin Becker 1,2 , Christopher Lambert 1,2,3 , Jörg Wieschhaus 1 and Marc Stadler 1,2,* 1 Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; [email protected] (K.B.); [email protected] (C.L.); [email protected] (J.W.) 2 German Centre for Infection Research Association (DZIF), Partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany 3 Department for Molecular Cell Biology, Helmholtz Centre for Infection Research GmbH (HZI) Inhoffenstraße 7, 38124 Braunschweig, Germany * Correspondence: [email protected]; Tel.: +49-531-6181-4240; Fax: +49-531-6181-9499 Received: 23 July 2020; Accepted: 8 September 2020; Published: 11 September 2020 Abstract: The ascomycete Hypoxylon invadens was described in 2014 as a fungicolous species growing on a member of its own genus, H. fragiforme, which is considered a rare lifestyle in the Hypoxylaceae. This renders H. invadens an interesting target in our efforts to find new bioactive secondary metabolites from members of the Xylariales. So far, only volatile organic compounds have been reported from H. invadens, but no investigation of non-volatile compounds had been conducted. Furthermore, a phylogenetic assignment following recent trends in fungal taxonomy via a multiple sequence alignment seemed practical. A culture of H. invadens was thus subjected to submerged cultivation to investigate the produced secondary metabolites, followed by isolation via preparative chromatography and subsequent structure elucidation by means of nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). -
Bioluminescence in Mushroom and Its Application Potentials
Nigerian Journal of Science and Environment, Vol. 14 (1) (2016) BIOLUMINESCENCE IN MUSHROOM AND ITS APPLICATION POTENTIALS Ilondu, E. M.* and Okiti, A. A. Department of Botany, Faculty of Science, Delta State University, Abraka, Nigeria. *Corresponding author. E-mail: [email protected]. Tel: 2348036758249. ABSTRACT Bioluminescence is a biological process through which light is produced and emitted by a living organism resulting from a chemical reaction within the body of the organism. The mechanism behind this phenomenon is an oxygen-dependent reaction involving substrates generally termed luciferin, which is catalyzed by one or more of an assortment of unrelated enzyme called luciferases. The history of bioluminescence in fungi can be traced far back to 382 B.C. when it was first noted by Aristotle in his early writings. It is the nature of bioluminescent mushrooms to emit a greenish light at certain stages in their life cycle and this light has a maximum wavelength range of 520-530 nm. Luminescence in mushroom has been hypothesized to attract invertebrates that aids in spore dispersal and testing for pollutants (ions of mercury) in water supply. The metabolites from luminescent mushrooms are effectively bioactive in anti-moulds, anti-bacteria, anti-virus, especially in inhibiting the growth of cancer cell and very useful in areas of biology, biotechnology and medicine as luminescent markers for developing new luminescent microanalysis methods. Luminescent mushroom is a novel area of research in the world which is beneficial to mankind especially with regards to environmental pollution monitoring and biomedical applications. Bioluminescence in fungi is a beautiful phenomenon to observe which should be of interest to Scientists of all endeavors. -
Kings Park and Botanic Garden Fungi
_________________________________________________________________________ KINGS PARK FUNGI [Version 1.1] A VISUAL GUIDE TO SPECIES RECORDED IN SURVEYS 2009 – 2012 Neale L. Bougher Department of Parks and Wildlife, Western Australian Herbarium [email protected] This Visual Guide is a work-in-progress. It may be printed for own use but is not to be distributed or copied (except to your personal computer devices) without consent from the author, nor scientifically referenced. _________________________________________________________________________ © N.L. Bougher (2015) Kings Park Fungi [Version 1.1] Page 1 of 88 KINGS PARK FUNGI [Version 1.1] A VISUAL GUIDE TO SPECIES RECORDED IN SURVEYS 2009 – 2012 Note from the Author - Neale L. Bougher, June 2015 I would welcome any comments, corrections, images etc… as this Visual Guide is a Acknowledgements work-in-progress primarily compiled to assist and encourage (a) myself and other To all of the 35 people (mainly volunteers) participants of ongoing fungi surveys at Kings Park, (b) preparation of my intended who have participated in survey days at book - Fungi of Kings Park and Bold Park, and (c) expansion of the 2009 edition of my Kings Park since 2009 and have helped to book - Fungi of the Perth Region and Beyond (available at www.fungiperth.org.au). describe and identify the fungi. Many of the 261 fungi in this Visual Guide are poorly studied and therefore tentatively identified or unidentified. In subsequent versions I expect that some names will change, To the Botanic Gardens and Parks Authority merge with other names, or become redundant as more collections are studied. and Staff for logistically and financially I have not yet included any fungi or vouchers recorded from Kings Park before 2009. -
Resurrection and Emendation of the Hypoxylaceae, Recognised from a Multigene Phylogeny of the Xylariales
Mycol Progress DOI 10.1007/s11557-017-1311-3 ORIGINAL ARTICLE Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales Lucile Wendt1,2 & Esteban Benjamin Sir3 & Eric Kuhnert1,2 & Simone Heitkämper1,2 & Christopher Lambert1,2 & Adriana I. Hladki3 & Andrea I. Romero4,5 & J. Jennifer Luangsa-ard6 & Prasert Srikitikulchai6 & Derek Peršoh7 & Marc Stadler1,2 Received: 21 February 2017 /Revised: 12 April 2017 /Accepted: 19 April 2017 # The Author(s) 2017. This article is an open access publication Abstract A multigene phylogeny was constructed, including polymerase II (RPB2), and beta-tubulin (TUB2). Specimens a significant number of representative species of the main were selected based on more than a decade of intensive mor- lineages in the Xylariaceae and four DNA loci the internal phological and chemotaxonomic work, and cautious taxon transcribed spacer region (ITS), the large subunit (LSU) of sampling was performed to cover the major lineages of the the nuclear rDNA, the second largest subunit of the RNA Xylariaceae; however, with emphasis on hypoxyloid species. The comprehensive phylogenetic analysis revealed a clear-cut This article is part of the “Special Issue on ascomycete systematics in segregation of the Xylariaceae into several major clades, honor of Richard P. Korf who died in August 2016”. which was well in accordance with previously established morphological and chemotaxonomic concepts. One of these The present paper is dedicated to Prof. Jack D. Rogers, on the occasion of his fortcoming 80th birthday. clades contained Annulohypoxylon, Hypoxylon, Daldinia,and other related genera that have stromatal pigments and a Section Editor: Teresa Iturriaga and Marc Stadler nodulisporium-like anamorph. -
Joint BFG / HBFG Foray and Display 27-Oct-2013
Joint BFG / HBFG Foray and Display 27-Oct-2013 Species (incl. recorded name if English name(s) Substrate Association Any firsts? Coll. Id. Conf Notes . Basidiomycota Amanita betulae Soil Birch First county record SH3 SK Amanita muscaria Fly Agaric Soil Birch PC DJSPC Amanita excelsa var. spissa Grey Spotted Amanita Soil Deciduous DJS . recorded as Amanita spissa Ampulloclitocybe clavipes Club Foot (*) Litter Deciduous PC DJSPC . Armillaria gallica Bulbous Honey Fungus on roots Deciduous DJS Auricularia auricula-judae Jelly Ear Fallen branch Elder DJS Bjerkandera adusta Smoky Bracket Fallen branch Deciduous SK SK Boletus badius Bay Bolete Soil Deciduous PC DJSPC Boletus cisalpinus Soil Deciduous SK SK Boletus luridiformis Scarletina Bolete Soil Deciduous DJS Boletus pruinatus Matt Bolete Soil Deciduous SK SK Calocera cornea Small Stagshorn Fallen branch Deciduous DJS Clavariadelphus pistillaris Giant Club Soil Beech First county record SK SK Clavulina cinerea Grey Coral Soil Deciduous PC DJSPC Clavulina coralloides Crested Coral Soil Deciduous DJS Clavulinopsis helvola Yellow Club Grassy path edge PC PC Clitocybe gibba Common Funnel Litter Deciduous PC DJSPC Clitocybe nebularis Clouded Funnel Litter Deciduous DJS Clitocybe phaeophthalma Chicken Run Funnel Litter Deciduous DJS Clitocybe rivulosa Fool's Funnel Litter Deciduous PC DJSPC Collybia butyracea Butter Cap Litter Deciduous PC DJSPC Collybia confluens Clustered Toughshank Litter Deciduous DJS Collybia dryophila Russet Toughshank Litter Deciduous DJS Collybia fusipes Spindle Toughshank -
Lane Cove Bushland Park
LANE COVE BUSHLAND PARK by Ray and Elma Kearney The first Australian Fungal Heritage site In November, 2000, the first fungal heritage site for Australia, located at Lane Cove Bushland Park (LCBP), was listed on the Register of the National Estate, under the Australian Heritage Commission Act, 1975. Ray and Elma Kearney, members of and on behalf of the Sydney Fungal Studies Group Inc. (SFSGI) prepared the application submitted for the listing for Lane Cove Council (the owner and manager of LCBP). The submission was based primarily upon the total number of species of Hygrocybe found there, known unofficially to exceed 25, easily ranking the site as one of heritage value. Previously, in January 1999, two applications under the New South Wales Threatened Species Conservation Act, 1995 were submitted by Ray and Elma Kearney, on behalf of the SFSGI to the Scientific Committee established under the Act. The Determination resulted in the Hygrocybe Community at LCBP being legislated as an Endangered Ecological Community. A Final Determination is currently being considered on the second application that seeks to list at least six holotypes of Hygrocybe as Rare Native Species. Lane Cove Bushland Park (LCBP) LCBP is a site in the middle of a high-density residential area about 4 km from the Sydney G.P.O. Centred about a tributary of Gore Creek, the warm temperate gallery forest has an assemblage of at least 25 species of the family Hygrophoraceae (Fungi, Basidiomycota, Agaricales, Hygrophoraceae). The species in the community were formally identified and classified by Dr A. M. Young (1999). The following species have been recorded in the community : Hygrocybe anomala var. -
Habitat Specificity of Selected Grassland Fungi in Norway John Bjarne Jordal1, Marianne Evju2, Geir Gaarder3 1Biolog J.B
Habitat specificity of selected grassland fungi in Norway John Bjarne Jordal1, Marianne Evju2, Geir Gaarder3 1Biolog J.B. Jordal, Auragata 3, NO-6600 Sunndalsøra 2Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349 Oslo 3Miljøfaglig Utredning, Gunnars veg 10, NO-6610 Tingvoll Corresponding author: er undersøkt når det gjelder habitatspesifisitet. [email protected] 70 taksa (53%) har mindre enn 10% av sine funn i skog, mens 23 (17%) har mer enn 20% Norsk tittel: Habitatspesifisitet hos utvalgte av funnene i skog. De som har høyest frekvens beitemarkssopp i Norge i skog i Norge er for det meste også vanligst i skog i Sverige. Jordal JB, Evju M, Gaarder G, 2016. Habitat specificity of selected grassland fungi in ABSTRACT Norway. Agarica 2016, vol. 37: 5-32. 132 taxa of fungi regularly found in semi- natural grasslands from the genera Camaro- KEY WORDS phyllopsis, Clavaria, Clavulinopsis, Dermo- Grassland fungi, seminatural grasslands, loma, Entoloma, Geoglossum, Hygrocybe, forests, other habitats, Norway Microglossum, Porpoloma, Ramariopsis and Trichoglossum were selected. Their habitat NØKKELORD specificity was investigated based on 39818 Beitemarkssopp, seminaturlige enger, skog, records from Norway. Approximately 80% of andre habitater, Norge the records were from seminatural grasslands, ca. 10% from other open habitats like parks, SAMMENDRAG gardens and road verges, rich fens, coastal 132 taksa av sopp med regelmessig fore- heaths, open rocks with shallow soil, waterfall komst i seminaturlig eng av slektene Camaro- meadows, scree meadows and alpine habitats, phyllopsis, Clavaria, Clavulinopsis, Dermo- while 13% were found in different forest loma, Entoloma, Geoglossum, Hygrocybe, types (some records had more than one Microglossum, Porpoloma, Ramariopsis og habitat type, the sum therefore exceeds 100%). -
The Mycological Society of San Francisco • Dec. 2015, Vol. 67:04
The Mycological Society of San Francisco • Dec. 2015, vol. 67:04 Table of Contents Mushroom of the Month by K. Litchfield 1 Mushroom of the Month: Quick Start Forays Amanita muscaria by P. Koski 1 The Santa Mushroom, Fly Agaric President Post by B. Wenck-Reilly 2 Hospitality / Holiday Dinner 2015 4 Ken Litchfield Culinary Corner by H. Lunan 5 Brain Chemistry by B. Sommer 6 This month’s mushroom profile is one of my favorites, De- Mendo 2015 Camp by C. Haney 7 cember’s Santa mushroom. While prevalent at other times MycoMendoMondo by W. So 9 of the year in other places with more extensive rainy sea- Announcements / Events 10 sons, in the SF bay area the height of its season is the holi- 2015 Fungus Fair poster & program 11 days. One of the most elegant, beautiful, and recognizable Fungal Jumble & Gadget Obs by W. So 14 mushrooms in the world, the Santa mushroom is not only Cultivation Quarters by K. Litchfield 15 cosmopolitan and common, it is rich in lore and stately in Mushroom Sightings by P. Pelous 16 demeanor, yet cuddly and not lugubrious, just like Santa Calendar 17 himself. Decked in cheery cherry red and decoupaged with puffs of fluffy white, the Santa’s cap jingles atop its ivory bearded veil leading down the long white chimney stipe to URBAN PARK QUICK START FORAYS the skirty cummerbund constricting the top of the bulbous November 14 Quick Start Foray Report jolly belly. by Paul Koski One of the many There was hope for finding lots of fungi after fruits of the roots a couple of rainy days in the week before the foray but of the pine, the after some preliminary scouting in Golden Gate Park, Santa’s red and not many mushrooms were showing up.