Protection and Control System Using Open Network Architecture for Power Systems 106 Protection and Control System Using Open Network Architecture for Power Systems

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Protection and Control System Using Open Network Architecture for Power Systems 106 Protection and Control System Using Open Network Architecture for Power Systems Takashi Kobayashi OVERVIEW: Paralleling the rapid penetration of the Internet and corporate Takahiro Oomori intranets, protection and control system for power systems have been quick to exploit these technologies to make the remote control and monitoring of Eiji Ogawa power systems more convenient. By leveraging these networking technologies Yasuo Sato to achieve a new level of openness, Hitachi, Ltd. has now succeeded in developing a protection and control system that features an IEC (International Electrotechnical Commission)-compliant network protocol: a standardized interface in the area of protection and control systems for power systems. In addition, a compact protection and control unit was developed that incorporates Web server functionality and has the ability to be controlled and monitored over general-purpose browser software, and we are now evaluating the unit for use with various applications. Finally, efforts are also underway to develop a maintenance support navigation system that supports operations and maintenance work using an intelligent (ubiquitous) controller. INTRODUCTION perspective, it has generally been assumed that THE systems that protect and control power systems protection and control systems will be constructed demand the high reliability and functionality. At the using different manufacturers’ equipment, so they have same time, relentless pressure to hold down costs of protection and control systems has accompanied the Control center deregulation of the power industry, so our efforts have Substation focused on achieving more compact, lower cost Communication protocol SCADA systems that provide equivalent or better performance Control center and reliability than previous systems. And finally there (supervisory) level • IEC 60870-5-101 is a strong demand to leverage IT and communication • IEC 61850 Substation technologies in the adoption of open networks, and to • DNP 3.0 adopt remote control capabilities to streamline and Bay level raise the efficiency of operations and maintenance. • IEC 60870-5-103 • IEC 60870-5-104 SCS This article will highlight some of Hitachi’s recent • IEC 61850 initiatives to address these needs. We will describe the • DNP 3.0 • Field bus features of a protection and control system for power (PROFIBUS*, etc.) systems intended for domestic and overseas markets, and a maintenance work support system that was developed to boost the efficiency of operations and maintenance work. Control unit Protection unit TREND TO INCORPORATE IT IN DNP 3.0: Distributed Network Protocol 3.0 PROTECTION AND CONTROL SYSTEMS SCADA: supervisory control and data acquisition SCS: substation control system A diverse range of protection and control systems * PROFIBUS is a registered trademark of Profibus Nutzer Organization. for power systems have been proposed that attempt to leverage and make good use of all the recent advances Fig. 1—Main Communication Protocols for Protection and Control Systems. involving the Internet, corporate intranets, wireless Protection and control equipment provided by different communications, and other ITs (information manufacturers employ an open network protocol to achieve 1) technologies) . interoperability and interconnect with the control center via an Looking at the power industry from a global SCS. Hitachi Review Vol. 52 (2003), No. 2 107 employed standardized interfaces such as the IEC new digital PCUs has been substantially reduced 60870-5-101/103 communication protocols based on (compared to previous Hitachi’s models). RS-232C and RS-485 and standardized field buses (3) Hitachi’s new series of digital PCUs are extensible such as represented by PROFIBUS. Fig. 1 shows the and can be flexibly adapted to various protection and main network protocols that are currently available control applications (functions can be readily added for protection and control systems. via the system bus). Against this backdrop, headway has been made in (4) Clock can be precisely synchronized (1 ms recent years in IEC TC57 toward standardized resolution) using a GPS (global positioning system). communication protocols that can be applied from the (5) Hitachi’s new digital PCUs are user-friendly and process and bay levels to the station level, and systems have user configurable I/Os. employing high-speed general communications technologies based on Ethernet* are now emerging as Network Technologies the mainstream approach2). The PCU was designed and built for interconnection over a network based on TCP/IP. More specifically, PROTECTION AND CONTROL UNIT FOR the unit supports the IEC 60870-5-101 protocol that OPEN NETWORKS is widely used in legacy power plant protection and Hardware Configuration control systems for communication between SCSs, and Addressing this new reality, Hitachi developed new the IEC 60870-5-104 that is based on TCP/IP series of digital PCUs (protection and control units) (Ethernet). Fig. 3 shows a typical architecture of the that can be flexibly adapted to Ethernet-based open open network protection and control system. In networks (see Fig. 2). The key features of the PCUs addition, a Web server function in the PCUs is made are summarized as follows: possible by the general-purpose high-speed Ethernet (1) Communication with SCS (substation control connectivity, and a remote analysis of disturbance system) is supported by the industry standard record and monitoring functions are achieved by communications protocol IEC 60870-5-104 (which is delivering saved data as a file transfer from the PCUs based on the TCP/IP: Transmission Control Protocol/ to an SCS. Internet Protocol). This ensures full connectivity between different manufacturers’ equipment. APPLICATION OF IT TO A MAINTENANCE (2) Protection and control functions have been LAN combined in one unit, so the overall size of Hitachi’s Implementation of New Digital Relay Unit as Series One objective in applying IT to digital protection * Ethernet is a trademark of Xerox Corp. in the U.S. and control systems is to enable remote control and Auxiliary Protection and control processing, SCS VT/CT network processing FROM GPS GPS SRAM interface receiver Input VT A-D Ethernet converter CPU interface Intranet CT Analog System bus Input filter controller Fig. 2—Hardware Configuration of Analog bus System bus Open Network-enabled Protection and Control Unit. Communications with SCS are Binary System bus Input supported by implementing an open interface input network protocol based on an VT: voltage transformer Binary Output Ethernet interface. A system bus CT: current transformer output interface supporting easy extension FROM: flash read-only memory SRAM: static random access memory HI Digital I/O of I/O (input and output) is also HI: human interface provided. Protection and Control System Using Open Network Architecture for Power Systems 108 Control center Substation GPS SCADA Station computer Fig. 3—Overview of Open Network-based Protection and Gateway • IEC 60870-5-101 (RS485/232C) Control System. HMI AB • DNP 3.0 (RS-485, Ethernet) Station level E/O E/O Remote control and monitoring can be Bay level • IEC 60870-5-104 (Ethernet) easily implemented E/O Optical E/O by deploying an fiber Ethernet-based IEC A B A B communication protocol between bay level in substation and PCU PCU PCU PCU E/O: electrical-optical converter HMI: human-machine interface SCADA system in control center. HI HI for remote Portable HI access Intranet GPS receiver GPS Network CPU (Web server) Real-time Disturbance data Binary I/O Oscillogram output CPU (COMTRADE) Fig. 4—System Configuration of New Digital Relay Unit. I/O bus Dual processors for real-time System bus protection/control processing and networking are implemented on a Communication Auxiliary Analog single printed circuit board. This VT/CT input for line protection ensures real-time processing E/O performance and flexible accommodation of remote COMTRADE: common format for transient data exchange monitoring, control, and analysis over network applications. monitoring capabilities by employing an operations/ was to develop a system that maintained compatibility maintenance LAN (local area network). By with a previous model yet was implemented much implementing remote control and monitoring using more compactly and supported interconnection over ordinary PC browser software over a network general networks. Fig. 4 shows the system configura- connection, data can be accessed anytime, from tion. anywhere, and over the same user interface. This The key features of the network-ready digital relay approach should also support simple operability while unit are summarized as follows: maintaining high-speed responsiveness. (1) Standard module To meet these needs, we have developed a new By standardizing hardware and software and network-ready digital relay unit. Building on Hitachi’s configuring them in a standard-module library, these previous model, the concept behind the new relay unit resources can be commonly used for various applica- Hitachi Review Vol. 52 (2003), No. 2 109 tions. It is also compatible with the current module (6) Supports international standard format for that has an excellent performance record. disturbance data (2) Reduced size and weight The digital relay unit supports data format in By consolidating the functions needed by the compliance with IEC standards, thus permitting to protection relay, the hardware
Recommended publications
  • International Standard IEC 60870-6-802 Has Been Prepared by IEC Technical Committee 57: Power System Control and Associated Communications

    International Standard IEC 60870-6-802 Has Been Prepared by IEC Technical Committee 57: Power System Control and Associated Communications

    INTERNATIONAL IEC STANDARD 60870-6-802 Second edition 2002-04 Telecontrol equipment and systems – Part 6-802: Telecontrol protocols compatible with ISO standards and ITU-T recommendations – TASE.2 Object models Matériels et systèmes de téléconduite – Partie 6-802: Protocoles de téléconduite compatibles avec les normes ISO et les recommandations de l'UIT-T – Modèles d'objets TASE.2 This is a free 10 page sample. Access the full version online. Reference number IEC 60870-6-802:2002(E) Publication numbering As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1. Consolidated editions The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2. Further information on IEC publications The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following: • IEC Web Site (www.iec.ch) • Catalogue of IEC publications The on-line catalogue on the IEC web site (www.iec.ch/catlg-e.htm) enables you to search by a variety of criteria including text searches, technical committees and date of publication.
  • Smart Reconfiguration of Distribution Grids Using Agent-Based Technology

    Smart Reconfiguration of Distribution Grids Using Agent-Based Technology

    FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Smart Reconfiguration of Distribution Grids using Agent-based Technology Matheus Macedo Lopes Dissertation conducted under the Master’s in Electrical and Computers Engineering Program - Major Energy Supervisor: Prof. Vladimiro Miranda , Ph.D. Co-Supervisor: Prof. Diego Issicaba , Ph.D. July 28, 2016 © Matheus Macedo Lopes, 2016 Resumo As manobras de isolamento para reconfiguração em redes de distribuição de média tensão são tradicionalmente manuais ou dependem de decisões tomadas pelos operadores de rede. A abor- dagem proposta assume uma arquitetura onde os agentes interagem em um ambiente de rede de distribuição simulado a partir do estabelecimento de metas projetadas seguindo o paradigma de orientação mulit-agente. A aplicação é implementada de tal forma que agentes AgentSpeak in- teragem entre eles através de uma comunicação baseada em ato de fala/comunicação, bem como com um ambiente desenvolvido em linguagem JAVA. Neste contexto, esta tese propõe a modelagem e verificação de soluções baseadas em agentes para apoiar as operações de reconfiguração em redes de distribuição em nível de média tensão. A metodologia foi utilizada para apoiar as actividades dos operadores de redes de distribuição por meio de planos de restabelecimento de energia para ajudar em casos de falhas permanentes. As abordagens empregadas para arquitetura de agentes para a reconfiguração foram baseadas em modelo hierárquico e uma abordagem totalmente descentralizada. A capabilidade dos agentes foram desenvolvidas prevendo as possiveis aplicações do sistema de distribuição com foco em procedimentos de gestão des interrupções de service. As abordagens foram testadas em um ali- mentador teste trifásico do IEEE de 123 nós.
  • Add Ons for Simatic PCS 7

    Add Ons for Simatic PCS 7

    © Siemens AG 2015 Add-ons for the SIMATIC PCS 7 Process Control System SIMATIC PCS 7 Catalog Edition ST PCS 7 AO 2015 Answers for industry. Umschlag_STPCS7AO_2015_xx.indd 3 20.08.2015 10:51:57 © Siemens AG 2015 Related catalogs SIMATIC ST PCS 7 SITRAIN ITC SIMATIC PCS 7 Training for Industry Process Control System System components Only available in German E86060-K4678-A111-C1-7600 E86060-K6850-A101-C4 SIMATIC ST PCS 7 T Products for Automation and Drives CA 01 SIMATIC PCS 7 Interactive Catalog, DVD Process Control System Technology components E86060-K4678-A141-A2-7600 E86060-D4001-A510-D4-7600 SIMATIC ST 70 Industry Mall Products for Information and Ordering Platform Totally Integrated Automation in the Internet: E86060-K4670-A101-B5-7600 www.siemens.com/industrymall SIMATIC HMI / ST 80/ST PC PC-based Automation Human Machine Interface Systems PC-based Automation E86060-K4680-A101-C2-7600 Industrial Communication IK PI SIMATIC NET E86060-K6710-A101-B8-7600 Process Automation FI 01 Field Instruments for Process Automation PDF (E86060-K6201-A101-B9-7600) Process Automation AP 01 Process Analytical Instruments PDF (E86060-K3501-A101-B2-7600) Weighing Technology WT 10 Products for Weighing Technology E86060-K6410-A101-A4-7600 © Siemens AG 2015 Add-ons for the SIMATIC PCS 7 Process Control System SIMATIC PCS 7 Information and management systems 1 Advanced Process Control 2 Operator control and monitoring 3 Libraries/blocks/tools 4 Catalog ST PCS 7 AO · 2015 Supersedes: Distributed I/O on PROFIBUS 5 Catalog ST PCS 7 AO · 2013 Refer to the Industry Mall for current updates of this catalog: Diagnostics www.siemens.com/industrymall 6 and as PDF at the following address: www.siemens.com/stpcs7ao The products contained in this catalog can also be found in the Interactive Catalog CA 01.
  • Common Industrial Protocol) Over Ethernet

    Common Industrial Protocol) Over Ethernet

    © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public BRKIOT-2112 Securing the Internet of Things Philippe Roggeband, Manager GSSO EMEAR Business Development Cisco Spark Questions? Use Cisco Spark to communicate with the speaker after the session How 1. Find this session in the Cisco Live Mobile App 2. Click “Join the Discussion” 3. Install Spark or go directly to the space 4. Enter messages/questions in the space cs.co/ciscolivebot#BRKIOT-2112 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public The IoT pillars While these pillars represent disparate technology, purposes, and challenges, what they all share are the vulnerabilities that IoT devices introduce. Information Technology Operations Technology Consumer Technology It’s not just about the “things” BRKIOT-2112 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 6 BRKIOT-2112 © 2018 Cisco and/or its affiliates. All rights reserved. Cisco Public 7 Agenda • Challenges and Constraints • Specific threats and Protection mechanisms • Cisco best practices and solutions • Q&A • Conclusion Agenda • Challenges and Constraints • Specific threats and Protection mechanisms • Cisco best practices and solutions • Q&A • Conclusion Consumer IoT Characteristics Consumer objects Challenges and constraints • These devices are highly constrained in terms of • Physical size, Inexpensive • CPU power, Memory, Bandwidth • Autonomous operation in the field • Power consumption is critical • If it is battery powered then energy efficiency is paramount, batteries might have to last for years • Some level of remote management is required • Value often linked to a Cloud platform or Service BRKIOT-2112 © 2018 Cisco and/or its affiliates. All rights reserved.
  • PM180 IEC 60870-5-104 Port: 1

    PM180 IEC 60870-5-104 Port: 1

    expertmeter™ High Performance Analyzer PM180 IEC60870-5-101/104 Communications Protocol Reference Guide BG0593 Rev. A1 Every effort has been made to ensure that the material herein is complete and accurate. However, the manufacturer is not responsible for any mistakes in printing or faulty instructions contained in this book. Notification of any errors or misprints will be received with appreciation. For further information regarding a particular installation, operation or maintenance of equipment, contact the manufacturer or your local representative or distributor. REVISION HISTORY A1 March 2015 Release 2 Table of Contents 1 General .................................................................................................................. 7 2 Protocol Implementation ..................................................................................... 8 2.1 Configuring IEC 60870-5 .......................................................................................... 8 2.2 Communicating via IEC 60870-5 Ports .................................................................... 8 2.3 Device Addressing .................................................................................................... 8 2.4 Information Object Addressing and Mapping .......................................................... 9 2.5 Interrogation ............................................................................................................ 9 2.6 Cyclic Data Transmission .........................................................................................
  • Vulnerability and Impact Analysis of the IEC 61850 GOOSE Protocol in the Smart Grid

    Vulnerability and Impact Analysis of the IEC 61850 GOOSE Protocol in the Smart Grid

    sensors Article Vulnerability and Impact Analysis of the IEC 61850 GOOSE Protocol in the Smart Grid Haftu Tasew Reda 1 , Biplob Ray 2 , Pejman Peidaee 3 , Adnan Anwar 4 , Abdun Mahmood 1 , Akhtar Kalam 3 and Nahina Islam 2,* 1 Department of Computer Science and IT, La Trobe University, Plenty Rd., Bundoora 3086, Australia; [email protected] (H.T.R.); [email protected] (A.M.) 2 Centre for Intelligent Systems (CIS), School of Engineering and Technology, CQUniversity, Rockhampton 4700, Australia; [email protected] 3 Department of Electrical and Electronics Engineering, Victoria University, Ballarat Rd., Footscray 3011, Australia; [email protected] (P.P.); [email protected] (A.K.) 4 School of IT, Deakin University, 75 Pigdons Rd, Waurn Ponds 3216, Australia; [email protected] * Correspondence: [email protected] Abstract: IEC 61850 is one of the most prominent communication standards adopted by the smart grid community due to its high scalability, multi-vendor interoperability, and support for several input/output devices. Generic Object-Oriented Substation Events (GOOSE), which is a widely used communication protocol defined in IEC 61850, provides reliable and fast transmission of events for the electrical substation system. This paper investigates the security vulnerabilities of this protocol and analyzes the potential impact on the smart grid by rigorously analyzing the security of the GOOSE protocol using an automated process and identifying vulnerabilities in the context of smart grid communication. The vulnerabilities are tested using a real-time simulation and industry standard Citation: Reda, H.T.; Ray, B.; Peidaee, hardware-in-the-loop emulation.
  • SG-Gateway™ with I/O Interface

    SG-Gateway™ with I/O Interface

    SG-gateway™ with I/O interface Anybus SG-gateways make the Smart Grid possible. They have two main application areas. Firstly, to enable remote control and management of electrical equipment in power grids. Secondly, to enable communication between I/O devices and energy protocols (IEC61850 and IEC60870-5-104). In-short Smart Grid gateways for remote control EXAMPLE: MODBUS TO IEC60870-5-104 EXAMPLE: MODBUS TO IEC61850 and management of electrical systems. Scada Scada Protocols IEC61850 client/server, IEC60870-5-104 IEC60870-5-104 IEC61850 client/server, Modbus RTU master/slave and Modbus TCP client/server. SG-gateway SG-gateway Interfaces Int 1. IEC 104 server Int 1. IEC 61850 server Int 2. Modbus master 3G modem, Ethernet, serial (RS232/ Int 2. Modbus master RS485/RS422), 4 digital inputs, 4 digital outputs. Modbus Modbus Web editor Embedded webserver supporting the following functions among others: • Binary – AND, OR, XOR • Bits & Bytes – Extract, Pack, Put, Pit, Unpack Features and Benefits Device description • Messages – Send, Receive • Easy way to transport I/O data from the field to SCADA The SG-gateway is a remote terminal • Numerical – Counter, Compare systems unit for the energy market with four • Special – Enable/disable, OpenVPN • Several communication protocols are supported (IEC61850 digital inputs and four digital outputs • Storage and edge detection – RS client/server, IEC60870-5-104 client/server, Modbus TCP for monitoring and controlling the Flipflop, Trigger client/server, Modbus RTU master/slave) connected devices. • Timing – TON, TOFF, TP, Timer • Transmission over 3G or Ethernet Additionally the SG-gateway includes • Connecting serial devices over RS232/RS485/RS422 an optional 3G modem, an Ethernet • 4 digital inputs interface and a serial port.
  • Gerenciador De Ativos De Proteção Em Subestações Baseado Na Iec 61850

    Gerenciador De Ativos De Proteção Em Subestações Baseado Na Iec 61850

    UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE TELECOMUNICAÇÕES MARCO ANTONIO ABI-RAMIA JUNIOR GERENCIADOR DE ATIVOS DE PROTEÇÃO EM SUBESTAÇÕES BASEADO NA IEC 61850 NITERÓI, RJ 2017 ii MARCO ANTONIO ABI-RAMIA JUNIOR MATRÍCULA: M054.216.008 GERENCIADOR DE ATIVOS DE PROTEÇÃO EM SUBESTAÇÕES BASEADO NA IEC 61850 Dissertação de Mestrado apresentada ao Programa de Pós Graduação em Engenharia Elétrica e Telecomunicações da Universidade Federal Fluminense, como requisito parcial para obtenção do Grau de Mestre em Engenharia Elétrica e de Telecomunicações. Orientadora: Prof. Natália Castro Fernandes, D.Sc. Coorientador: Prof. Márcio Zamboti Fortes, Dr. Niterói, RJ 2017 iii iv MARCO ANTONIO ABI-RAMIA JUNIOR GERENCIADOR DE ATIVOS DE PROTEÇÃO EM SUBESTAÇÕES BASEADO NA IEC 61850 Dissertação de Mestrado apresentada ao Programa de Pós Graduação em Engenharia Elétrica e Telecomunicações da Universidade Federal Fluminense, como requisito parcial para obtenção do Grau de Mestre em Engenharia Elétrica e de Telecomunicações. Aprovado em 20/12/2017. v Este trabalho é dedicado aos meus queridos pais, Marco Antonio Abi-Ramia e Helena Maria Baptista Pereira Abi-Ramia, que muito se esforçaram para me possibilitar boas oportunidades de estudos, e que sempre me apoiaram e incentivaram nas realizações de meus projetos, mesmo os mais inusitados. vi AGRADECIMENTOS A Deus, que está ao meu lado em todo os momentos de minha vida, me dando conforto, alento, coragem e força. À Ana Maria Dore Bastos Abi-Ramia, minha esposa companheira, que nos momentos de sufoco sempre me lembrou de que sou capaz de ultrapassar os obstáculos. Obrigado pelo carinho, a paciência e por sua capacidade de me acalmar na correria da vida entre as obrigações do trabalho, estudo, família e lar.
  • Sensors 2012, 12, 10259-10291; Doi:10.3390/S120810259 OPEN ACCESS Sensors ISSN 1424-8220 Article Funblocks

    Sensors 2012, 12, 10259-10291; Doi:10.3390/S120810259 OPEN ACCESS Sensors ISSN 1424-8220 Article Funblocks

    Sensors 2012, 12, 10259-10291; doi:10.3390/s120810259 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article FunBlocks. A Modular Framework for AmI System Development Rafael Baquero 1,*, José Rodríguez 1, Sonia Mendoza 1, Dominique Decouchant 2,3 and Alfredo Piero Mateos Papis 2 1 Department of Computer Science, CINVESTAV-IPN, Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Del. Gustavo A. Madero, DF 07360, Mexico; E-Mails: [email protected] (J.R.); [email protected] (S.M.) 2 Department of Information Technologies, UAM Cuajimalpa, Av. Constituyentes 1000 Lomas Altas, Del. Miguel Hidalgo, DF 11950, Mexico; E-Mails: [email protected] (D.D.); [email protected] (A.P.M.P.) 3 Centre National de la Recherche Scientifique, Laboratoire LIG, 681 Rue de la Passerelle, 38400 St Martin d’Hères, France * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +5255-5747-3800 (ext. 3758); Fax: +5255-5747-3757. Received: 6 June 2012; in revised form: 12 July 2012 / Accepted: 27 July 2012 / Published: 30 July 2012 Abstract: The last decade has seen explosive growth in the technologies required to implement Ambient Intelligence (AmI) systems. Technologies such as facial and speech recognition, home networks, household cleaning robots, to name a few, have become commonplace. However, due to the multidisciplinary nature of AmI systems and the distinct requirements of different user groups, integrating these developments into full-scale systems is not an easy task. In this paper we propose FunBlocks, a minimalist modular framework for the development of AmI systems based on the function module abstraction used in the IEC 61499 standard for distributed control systems.
  • Here Is the Hardware/System Configuration for 7028-6E4 Sn# 10-A313C Also AIX 6.1 and Software Support Required

    Here Is the Hardware/System Configuration for 7028-6E4 Sn# 10-A313C Also AIX 6.1 and Software Support Required

    Here is the hardware/system configuration for 7028-6E4 sn# 10-A313C Also AIX 6.1 and software support required.. ========== list general configuration with vital program data (lscfg -v) INSTALLED RESOURCE LIST WITH VPD The following resources are installed on your machine. Model Architecture: chrp Model Implementation: Multiple Processor, PCI bus sys0 System Object sysplanar0 System Planar L2cache0 L2 Cache mem0 Memory pci2 U0.1-P1 PCI Bus Hardware Location Code......U0.1-P1 pci11 U0.1-P2 PCI Bus Hardware Location Code......U0.1-P2 pci12 U0.1-P2 PCI Bus Hardware Location Code......U0.1-P2 ent1 U0.1-P1/E1 10/100 Mbps Ethernet PCI Adapter II (1410ff01) 10/100 Mbps Ethernet PCI Adapter II: Network Address.............0002554F3B2E ROM Level.(alterable).......SCU015 Product Specific.(Z0).......A5204205 Hardware Location Code......U0.1-P1/E1 pci13 U0.1-P2 PCI Bus Hardware Location Code......U0.1-P2 pci1 U0.1-P1 PCI Bus Hardware Location Code......U0.1-P1 pci7 U0.1-P2 PCI Bus Hardware Location Code......U0.1-P2 pci8 U0.1-P2 PCI Bus Hardware Location Code......U0.1-P2 scsi2 U0.1-P2/Z3 Wide/Fast-20 SCSI I/O Controller Hardware Location Code......U0.1-P2/Z3 rmt1 U0.1-P2/Z3-A0 LVD SCSI 8mm Tape Drive (60000 MB) Manufacturer................EXABYTE Machine Type and Model......Mammoth2 Device Specific.(Z1)........07wR Serial Number...............20516338 Load ID.....................A1700295 Part Number.................19P0692 FRU Number..................19P0708 EC Level....................H27309 Device Specific.(Z0)........0180020283000030 Device Specific.(Z3).......
  • Remote Control with the IEC 60870-5 Standard Protocol

    Remote Control with the IEC 60870-5 Standard Protocol

    Remote control with the IEC 60870-5 standard protocol Remote control requires devices from different manufacturers to communicate with each other and exchange data. Data traffic is defined by the standardized remote control protocol IEC 60870-5-101 for transmission via serial interfaces and modem and by IEC 60870-5-104 for TCP/IP-networks. The FP Web-Server supports both methods of data transmission, making it possible to integrate our programmable logic controllers (PLCs) into remote stations (RTU) or as a gateway between various network structures/protocols and manufactur- ers. As an RTU (Remote Terminal Unit), the PLC can be easily configured using a Web-based user interface, without requiring programming skills. In addition to the typical station parameters such as link address, AS- DU (Application Service Data Unit), etc., using a drop-down menu you can assign each digital or analog I/O the desired IEC data type, IOA (Information Object Address) as well as the parameters required by each data type. Moreover, the Web-based user interface offers an exhaustive diagnostic page to help commission your project. The IEC-Communicator combines the advantages of a PLC with safe data transmission with the standardized remote control protocol for connecting main stations and process control systems. The FP Web-Server has a serial port for data exchange and modem transfer (IEC 60870-5-101), as well as an External port for TTCP/IP connections (IEC 60870-5- 104). With the help of the GPRS terminal, the FP Web- Server can also communicate via GPRS. The multi-functional Ethernet unit supports many typical network services such as e-mail, time synchronization, HTML display, Modbus-TCP, SNMP and FTP together with IEC 60870 communication.
  • Simulation of Industrial Control System Field Devices for Cyber Security

    Simulation of Industrial Control System Field Devices for Cyber Security

    DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2017 SIMULATION OF INDUSTRIAL CONTROL SYSTEM FIELD DEVICES FOR CYBER SECURITY DOROTHEA ANDERSSON KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING TRITA EE 2017:001 www.kth.se SIMULATION OF INDUSTRIAL CONTROL SYSTEM FIELD DEVICES FOR CYBER SECURITY Dorothea Andersson A Master Thesis written in collaboration with Department of Information Security and IT Architecture Swedish Defense Research Agency Linköping, Sweden Department of Electric Power and Energy Systems KTH - Royal Institute of Technology Stockholm, Sweden December, 2016 Abstract Industrial Control Systems (ICS) are an integral part of modern society, not least when it comes to controlling and protecting critical infrastructure such as power grids and water supply. There is a need to test these systems for vulnerabilities, but it is often difficult if not impossible to do so in operational real time systems since they have been shown to be sensitive even to disturbances caused by benign diagnostic tools. This thesis explores how ICS field devices can be simulated in order to fool potential antagonists, and how they can be used in virtualized ICS for cyber security research. 8 different field devices were simulated using the honeypot daemon Honeyd, and a generally applicable simulation methodology was developed. It was also explored how these simulations can be further developed in order to function like real field devices in virtualized environments. Keywords ICS field device simulation. Test beds. CRATE. Honeyd. Nmap. Wireshark. QTester104. IEC 60870-5-104. Sammanfattning Industriella informations- och styrsystem utgör en viktig del av vårt moderna samhälle, inte minst när det gäller kontroll och skydd av kritisk infrastruktur som elnät och vattenförsörjning.