The Birth and Evolution of Surface Science: Child of the Union of Science and Technology

Total Page:16

File Type:pdf, Size:1020Kb

The Birth and Evolution of Surface Science: Child of the Union of Science and Technology The birth and evolution of surface science: Child of the union of science and technology C. B. Duke* Xerox Wilson Center for Research and Technology, 800 Phillips Road, 114-38D, Webster, NY 14580 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected on May 1, 2001. Contributed by C. B. Duke, January 14, 2003 This article is an account of the birth and evolution of surface science Surface science is the child of the union of science and as an interdisciplinary research area. Surface science emanated from technology. Essentially all of the concepts and theoretical tools the confluence of concepts and tools in physics and chemistry with used in the field emanate from condensed-matter physics and technological innovations that made it possible to determine the physical chemistry. Examples include electron scattering and structure and properties of surfaces and interfaces and the dynamics emission for surface characterization, electron tunneling for of chemical reactions at surfaces. The combination in the 1960s and surface imaging, and the use of density functional theory for the 1970s of ultra-high-vacuum (i.e., P < 10؊7 Pascal or 10؊9 Torr) prediction of surface structures and reaction dynamics. The technology with the recognition that electrons in the energy range productive application of these to surface science has been from 50 to 500 eV exhibited inelastic collision mean free paths of the enabled by four waves of rapidly improving experimentation. order of a few angstroms fostered an explosion of activity. The results The first wave came in the 1960s when the combination of Ͻ Ϫ7 were a reformulation of the theory of electron solid scattering, the reliable metal ultra high vacuum (UHV, i.e., P 10 Pascal or Ϫ9 nearly universal use of electron spectroscopies for surface character- 10 Torr) systems and the use of electron spectroscopy for ization, the rise of surface science as an independent interdisciplinary surface characterization gave birth to the field. The second wave research area, and the emergence of the American Vacuum Society began in the 1980s when the rise of semiconductor microelec- (AVS) as a major international scientific society. The rise of microelec- tronics generated electronics of sufficient reliability that multi- tronics in the 1970s and 1980s resulted in huge increases in compu- ple sophisticated experimental probes of surfaces could be used tational power. These increases enabled more complex experiments simultaneously in multiport UHV systems on a routine basis. and the utilization of density functional theory for the quantitative Beginning in the early 1970s it became customary to have a prediction of surface structure and dynamics. Development of scan- variety of sample preparation and analysis experiments in the ning-probe microscopies in the 1990s led to atomic-resolution images same vacuum chamber. Unfortunately, all of the equipment needed for this diversity of measurements rarely was functional of macroscopic surfaces and interfaces as well as videos of atoms at the same time. By the mid-1980s much of this problem had moving about on surfaces during growth and diffusion. Scanning disappeared, and the goal of having many sample preparation probes have since brought solid–liquid interfaces into the realm of and characterization techniques operating simultaneously in the atomic-level surface science, expanding its scope to more complex same vacuum system became a practical reality. This same systems, including fragile biological materials and processes. microelectronics revolution, based on the inexorable doubling of cost͞performance figures of merit of computing power roughly n 1965, although vacuum systems were available for stabilizing every 2 years, transformed theoretical surface science from the Isurfaces for hours, neither the composition nor the structure of use of illustrative simple models into a quantitative predictor of a solid surface could be determined experimentally as may be surface structures and properties. The third wave, initiated by ascertained by inspection of the preeminent surface science text of the invention of the scanning tunneling microscope in 1982 and the day, Semiconductor Surfaces (ref. 1; for an expanded reference its coming to maturity in the 1990s, led to the age of imaging in list, see Supporting References, which is published as supporting surface science. Atomic-resolution images of highly complex information on the PNAS web site, www.pnas.org). By the mid- macroscopic surfaces and videos of the dynamics of their evo- 1980s both the atomic composition and structure could be deter- lution generated by scanning probe microscopies have become mined quantitatively for both clean and adsorbate-covered single routine, thereby revolutionizing our understanding of deposi- crystal surfaces of elements and simple compounds (2). Today, the tion, growth, etching, and chemical reactions at surfaces. The morphology of such surfaces and the dynamics of chemical reac- fourth wave, the application of surface science techniques to tions on them (including growth) are readily observed and pre- examine more complex systems, including liquid–solid interfaces dicted (3). Moreover, the atomic-level characterization of surfaces and fragile biological samples, is only now beginning, although has moved from the realm of ‘‘vacuum’’–solid surfaces to liquid– its consequences may well dwarf those of its predecessors. Each solid interfaces (3). This article is an account of how this remarkable of these four waves is discussed in turn, indicating the interplay transformation, a scientific revolution in the sense of Thomas Kuhn between the attendant scientific advances and their technolog- (4, 5), came to be. It is the story of the birth of surface science as ical enablers to provide insight into the origins of surface science an interdisciplinary area of research and its continuing evolution as an interdisciplinary field of research. caused by the interplay between concepts in condensed-matter The Birth of Surface Science physics and evolving technologies like semiconductor microelec- The first chapter of this story occurred between 1964 and 1973 tronics, vacuum processing, and the construction of ever more because of the confluence of three factors: UHV technology, the flexible and robust scanning probe microscopes. In addition, many availability of single crystal samples, and discoveries in the of the process technologies that are used to fabricate modern physics of electron–solid interactions. For many years the tech- microelectronic and electrooptic devices emanated from semicon- ductor surface science during the decades of the 1970s through 1990s. Thus, this article also is the story of surface science as a Abbreviations: AVS, American Vacuum Society; UHV, ultra high vacuum; LEED, low-energy wellspring of the semiconductor processing innovations that have electron diffraction; STM, scanning tunneling microscope; AFM, atomic force microscopy. created the device hardware of the digital age. *E-mail: [email protected]. 3858–3864 ͉ PNAS ͉ April 1, 2003 ͉ vol. 100 ͉ no. 7 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0730358100 Downloaded by guest on September 30, 2021 Fig. 1. Schematic illustration of an incident electron or position beam of wave vector k ϭ kЌ ϩ k‡, scattered elastically from a single crystal into a state characterized by the wave vector kЈϭkЈ|| ϩ kЈЌ; kЈ‡ ϭ k|| ϩ g(hk); g(hk) ϭ 2␲ ϩ ϭ ϫ ͞ ⅐ ϫ (hb1 kb2), b1 a2 a3 [a1 a2 a3], etc. The magnitude of k is related to the Fig. 2. Attenuation lengths of electrons in solids as a function of their ϭប2 2͞ ប energy E of the incident electrons via E k 2m, in which is Planck’s energy. An early compilation (17) of a variety of experimental data are given constant and m is the mass of the electron. The construction of the reciprocal by the dots. An interpolation formula is shown by the solid line. At the time lattice associated with the single crystal surface also is shown. The vec- that these data were compiled, the attenuation lengths were regarded as tors g(hk) designate the reciprocal-lattice vectors associated with the identical to the inelastic collision mean free paths, although later it was lowest-symmetry Bravais net parallel to the surface. [After Duke (20), with realized (18) that these quantities could differ by roughly 50%. [Adapted from permission.] Seah and Dench (17) with permission.] ENGINEERING nology of producing and measuring low pressures (‘‘vacuum’’) scattering of such electrons via the creation of collective exci- under controlled conditions had been advancing steadily, driven tations of valence electrons was a vital element in their inter- by industries such as vacuum-tube electronics and television (6). actions with solids (12–16). Moreover, as indicated in Fig. 2 (17, By the mid-1960s, it had progressed to the point that apparatus 18) in this low-energy range the inelastic-collision mean free for generating UHV was readily available and could be com- paths for electrons are only a few angstroms, leading to the vastly bined in commercial instrumentation with electron, ion, and important conclusion that electrons being elastically scattered by photon sources, versatile sample manipulators, and detectors for or emitted from the solid must have come from the top few the measurement of scattered electron, photon, and ion beams atomic layers. This combination of readily available technology (7). A UHV environment is essential for surface science exper- for electron scattering and emission experiments in UHV, single imentation because UHV pressures are required for a surface to crystal samples, and the insight that these experiments probe the remain stable for the time required (i.e., hours) to characterize surface rather than the bulk of a solid set off an explosion of its composition and structure. The development of commercial activity beginning in the late 1960s that defined surface science metal UHV vacuum technology was important because before research as we know it today. that time a good glass shop was required to do UHV experi- This explosion had, moreover, institutional and personal as ments.
Recommended publications
  • Surface Diffusion Driven by Surface Energy
    Spring 2004 Evolving Small Structures Z. Suo Lecture 6 Surface Diffusion Driven by Surface Energy Examples Flattening a surface. Spherodizing. Rayleigh instability. Grain boundary grooving. Sintering Self-assembled quantum dots Atomic Flux and Surface Velocity Atoms can arrive to the surface in many ways. Atoms in the vapor can condense to the surface. Or conversely, atoms on the solid surface can evaporate. Atoms can diffuse in the volume of the solid. The body can also change shape by creep. In this lecture, we assume atoms can only move on the surface by diffusion, and all other modes of transport are negligibly slow. This situation happens for crystals at relatively low temperature, in a low vapor pressure environment. Define the atomic flux on a solid surface by numberof atoms J = ()length (time) Note that this flux is a vector tangent to the surface, and has a different dimension from that in the bulk. The flux is a vector field on the solid surface Consider a small element of the surface of the body. Let vn be the velocity of the solid surface, taken to be positive when the surface element gains atoms. The velocity is normal to the solid surface. The velocity is a scalar field on the solid surface. February 21, 2009 1 Spring 2004 Evolving Small Structures Z. Suo The surface element extends when it gains atoms, and recedes when it loses atoms. Let Ω be the volume per atom in the solid. Thus, vn / Ω is the number of atoms gained per unit area and per unit time.
    [Show full text]
  • Single Adatom Adsorption and Diffusion on Fe Surfaces
    Journal of Modern Physics, 2011, 2, 1067-1072 1067 doi:10.4236/jmp.2011.29130 Published Online September 2011 (http://www.SciRP.org/journal/jmp) Single Adatom Adsorption and Diffusion on Fe Surfaces Changqing Wang1*, Dahu Chang2, Chunjuan Tang2, Jianfeng Su2, Yongsheng Zhang2, Yu Jia3 1Department of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang, China 2Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang, China 3School of Physics and Engineering, Key Laboratory of Material Physics of Ministry of Education, Zhengzhou University, Zhengzhou, China E-mail: *[email protected] Received December 25, 2010; revised March 22, 2011; accepted April 8, 2011 Abstract Using Embedded-atom-method (EAM) potential, we have performed in detail molecular dynamics studies on a Fe adatom adsorption and diffusion dynamics on three low miller index surfaces, Fe (110), Fe (001), and Fe (111). Our results present that adatom adsorption energies and diffusion barriers on these surfaces have similar monotonic trend: adsorption energies, Ea(110) < Ea(001) < Ea(111), diffusion barriers, Ed(110) < Ed(001) < Ed(111). On the Fe (110) surface, adatom simple jump is the main diffusion mechanism with relatively low energy barrier; nevertheless, adatoms exchange with surface atoms play a dominant role in surface diffusion on the Fe (001). Keywords: EAM Potential, Molecular Dynamics, Diffusion, Nudged Elastic Band (NEB) Method, Iron, Adsorption 1. Introduction and Monte Carlo (MC) [16,17], it has been investigated intensively [18]. Understanding the processes of nucleation and growth on Iron is a very common metal for application. Abun- a substrate surface is of importance for growing high- dant work has been done on atom diffusion on the Fe quality thin film materials.
    [Show full text]
  • Heterogeneous Electrocatalysis in Porous Cathodes of Solid Oxide Fuel Cells
    Electrochimica Acta 159 (2015) 71–80 Contents lists available at ScienceDirect Electrochimica Acta journa l homepage: www.elsevier.com/locate/electacta Heterogeneous electrocatalysis in porous cathodes of solid oxide fuel cells a b a,c b b b a,d, Y. Fu , S. Poizeau , A. Bertei , C. Qi , A. Mohanram , J.D. Pietras , M.Z. Bazant * a Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA b Saint-Gobain Ceramics and Plastics, Northboro Research and Development Center, Northboro, MA, USA c Department of Civil and Industrial Engineering, University of Pisa, Italy d Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA A R T I C L E I N F O A B S T R A C T Article history: A general physics-based model is developed for heterogeneous electrocatalysis in porous electrodes and Received 3 December 2014 used to predict and interpret the impedance of solid oxide fuel cells. This model describes the coupled Received in revised form 19 January 2015 processes of oxygen gas dissociative adsorption and surface diffusion of the oxygen intermediate to the Accepted 22 January 2015 triple phase boundary, where charge transfer occurs. The model accurately captures the Gerischer-like Available online 24 January 2015 frequency dependence and the oxygen partial pressure dependence of the impedance of symmetric cathode cells. Digital image analysis of the microstructure of the cathode functional layer in four different Keywords: cells directly confirms the predicted connection between geometrical properties and the impedance electrochemical impedance spectroscopy response. As in classical catalysis, the electrocatalytic activity is controlled by an effective Thiele (EIS) modulus, which is the ratio of the surface diffusion length (mean distance from an adsorption site to the Gerischer element porous electrode triple phase boundary) to the surface boundary layer length (square root of surface diffusivity divided by oxygen reduction reaction (ORR) the adsorption rate constant).
    [Show full text]
  • A Study of Surface Diffusion with the Scanning Tunneling Microscope from Fluctuations of the Tunneling Current Manuel Leonardo Pasetes Lozano Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1995 A study of surface diffusion with the scanning tunneling microscope from fluctuations of the tunneling current Manuel Leonardo Pasetes Lozano Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Condensed Matter Physics Commons Recommended Citation Pasetes Lozano, Manuel Leonardo, "A study of surface diffusion with the scanning tunneling microscope from fluctuations of the tunneling current " (1995). Retrospective Theses and Dissertations. 10959. https://lib.dr.iastate.edu/rtd/10959 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscr^t has been reproduced from the nuarofilm master. UMI films tiie text directfy from the original or copy submitted. Hius, some thesis and dissertation copies are in typewriter face, while others may be £rom aiQr type of conq)uter printer. The qnality of this Feprodnction is dependent upon the qoali^ of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margirnt^ and is^oper alignment can adverse^ affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note wiQ indicate the deletion.
    [Show full text]
  • From Real World Catalysis to Surface Science and Back
    FROM REAL WORLD CATALYSIS TO SURFACESCIENCE AND BACK: CAN NANOSCIENCEHELP TO BRIDGEmE GAP? H.-J. FREUND,G~ RUPPRECHTER,M. BAUMER, TH. RISSE, N. ERNST, J. LInUDA Fritz-Haber-Institutder Max-P/anck-Gesel/schaft Faradayweg4-6, D-14195 Ber/in, Germany Abstract We review the possibilities in using model s~tems to explore~eterogeneous catalytic reactions under ultrahigh-vacuumand in-situ conditions. We discuss metal nano particles deposited on thin oxide films allowing to study hydrogenation and dehydrogenationreactions, while applyinga variety of surfacesensitive techniques. A secondclass of systems,where homogeneouscatalysts were heterogenized,has been studiedunder in-situ conditionsusing ESR spectroscopy. Introduction One prominentexample where heterogeneous catalysis affects our daily life is pollution control via exhaustcatalysis in everybody'scar. Figure 1 shows a schematicdiagram with a typical exhaustcatalyst in its housing[1]. The catalystconsists of a monolithic backbonecovered internally with a wash coat made of mainly alumina but also ceria and zirconia, which itself is mesoporousand holds the small metal particles, often platinum or rhodium. An electronmicroscope allows us to take a close look at the morphology of the catalyst at the nanometerscale. In order to be active, the metal particles have to be of a few nanometerin diameterand also the support has to be treated in the right way. To a certainextent the preparationis an art, some call it even "black magic". A full understandingof the microscopic processesoccurring at the surface of the particles or at the interface betweenparticle and support, however, is unfortunatelylacking. We have to realize that catalysis in connectionwith pollution control -the specific example chosenhere -does only utilize a small fraction of the world market for solid catalysts.
    [Show full text]
  • Surface Crystallography
    Modern Methods in Heterogeneous Catalysis Research Surface crystallography Dirk Rosenthal Department of Inorganic Chemistry Fritz-Haber-Institut der MPG Faradayweg 4-6, DE 14195 Berlin Part of the lecture is taken from Wolfgang Rankes LEED-Script Literature: G. Ertl, J. Küppers, Low Energy Electrons and Surface Chemistry, VCH, Weinheim (1985). M. Henzler, W. Göpel, Oberflächenphysik des Festkörpers, Teubner, Stuttgart (1991). M.A. Van Hove, W.H. Weinberg, C.-M. Chan, Low-Energy Electron Diffraction, Experiment, Theory and Surface Structure Determination, Springer Series in Surface Sciences 6, G. Ertl, R. Gomer eds., Springer, Berlin (1986). M. Horn-von Hoegen, Zeitschrift für Kristallographie 214 (1999) 1-75. FHI-Berlin, 21.11..2008 Dirk Rosenthal, Dept. AC, Fritz Haber Institute der MPG, Faradayweg 4-6, 14195 Berlin, Germany Content 1. Bravais lattices 2. Structure examples: Overlayers 3. Method: LEED, low energy electron diffraction 4. LEED principle in one and two dimensions 5. Reciprocal lattice 6. Ewald sphere construction 7. LEED and symmetry: glide lines 8. Astonishing example 9. LEED and defects 10. Comparison with other methods 11. LEED I-V measurement 12. Reality – an example from heterogeneous catalysis Bravais lattices or International Tables for X-Ray Crystallography, N. F. M. Henry and K. Lonsdale, Eds. (The Kynoch Press, Birmingham, 1969) ,chap. 1. Bravais lattices Structure examples: Overlayers Overlayer structures Ertl/Küppers fig. 9.2, p.204 p(2x2) c(2x2) (√3x√3)R30° on square lattice on hex. lattice Superstructure nomenclature Wood: Simplest in most cases Matrix notation (Park and Madden) p or c(n×m)Rϑ° more general unit cell vector lengths m11 m12 b1 = m11 a1 + m12 a2 b1 = n a1 b2 = m a2 m21 m22 b2 = m21 a1 + m22 a2 rotation ϑ p=primitive, c=centered Wood (2×2) [ϑ=0 is omitted] (√3×√3)R30° Matrix 2 0 1 1 0 2 2 -1 Three possible arrangements yielding c(2x2) structures.
    [Show full text]
  • Nanostructure of Biogenic Versus Abiogenic Calcium Carbonate Crystals
    Nanostructure of biogenic versus abiogenic calcium carbonate crystals JAROSŁAW STOLARSKI and MACIEJ MAZUR Stolarski, J. and Mazur, M. 2005. Nanostructure of biogenic versus abiogenic calcium carbonate crystals. Acta Palae− ontologica Polonica 50 (4): 847–865. The mineral phase of the aragonite skeletal fibers of extant scleractinians (Favia, Goniastrea) examined with Atomic Force Microscope (AFM) consists entirely of grains ca. 50–100 nm in diameter separated from each other by spaces of a few nanometers. A similar pattern of nanograin arrangement was observed in basal calcite skeleton of extant calcareous sponges (Petrobiona) and aragonitic extant stylasterid coralla (Adelopora). Aragonite fibers of the fossil scleractinians: Neogene Paracyathus (Korytnica, Poland), Cretaceous Rennensismilia (Gosau, Austria), Trochocyathus (Black Hills, South Dakota, USA), Jurassic Isastraea (Ostromice, Poland), and unidentified Triassic tropiastraeid (Alpe di Specie, It− aly) are also nanogranular, though boundaries between individual grains occasionally are not well resolved. On the other hand, in diagenetically altered coralla (fibrous skeleton beside aragonite bears distinct calcite signals) of the Triassic cor− als from Alakir Cay, Turkey (Pachysolenia), a typical nanogranular pattern is not recognizable. Also aragonite crystals produced synthetically in sterile environment did not exhibit a nanogranular pattern. Unexpectedly, nanograins were rec− ognized in some crystals of sparry calcite regarded as abiotically precipitated. Our findings support the idea that nanogranular organization of calcium carbonate fibers is not, per se, evidence of their biogenic versus abiogenic origin or their aragonitic versus calcitic composition but rather, a feature of CaCO3 formed in an aqueous solution in the presence of organic molecules that control nanograin formation. Consistent orientation of crystalographic axes of polycrystalline skeletal fibers in extant or fossil coralla, suggests that nanograins are monocrystalline and crystallographically ordered (at least after deposition).
    [Show full text]
  • Integration of Surface Science, Nanoscience, and Catalysis*
    Pure Appl. Chem., Vol. 83, No. 1, pp. 243–252, 2011. doi:10.1351/PAC-CON-10-11-04 © 2010 IUPAC, Publication date (Web): 6 December 2010 Integration of surface science, nanoscience, and catalysis* Cun Wen, Yi Liu, and Franklin (Feng) Tao‡ Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA Abstract: This article briefly reviews the development of surface science and its close rele- vance to nanoscience and heterogeneous catalysis. The focus of this article is to highlight the importance of nanoscale surface science for understanding heterogeneous catalysis perform- ing at solid–gas and solid–liquid interfaces. Surface science has built a foundation for the understanding of catalysis based on the studies of well-defined single-crystal catalysts in the past several decades. Studies of catalysis on well-defined nanoparticles (NPs) significantly promoted the understanding of catalytic mechanisms to an unprecedented level in the last decade. To understand reactions performed on catalytic active sites at nano or atomic scales and thus reach the goal of catalysis by design, studies of the surface of nanocatalysts are cru- cial. The challenges in such studies are discussed. Keywords: heterogeneous catalysis; interfaces; nanoparticles; nanoscience; surface science. INTRODUCTION Heterogeneous catalysis is in fact the foundation of industrial production [1–3]. More than one-third of the production processes in all industries involve heterogeneous catalysis in their production chains [4,5]. Particularly, it has been the core technology of the chemical industry, oil refineries, conversion of sustainable energy sources, and environmental remediation for several decades. The application of heterogeneous catalysis to industrial production was realized without under- standing of catalytic mechanisms at the microscopic level several decades ago.
    [Show full text]
  • The Contribution of Surface Analysis and Surface Science to Technology*
    Aust. J. Phys., 1982,35,769-75 The Contribution of Surface Analysis and Surface Science to Technology* C. J. Powell Surface Science Division, National Bureau of Standards, Washington, DC 20234, U.S.A. Abstract Surface science is a rapidly growing field offering many scientific and technological challenges. New experimental and theoretical tools have been developed which can be used to probe, at a fundamental atomic and molecular level, the physics and chemistry of complex processes at solid surfaces. Surface characterization, particularly surface analysis, is now an integral part of many technologies and industries (e.g., catalysis, coatings, corrosion, semiconductor devices, computer, automobile and communications) for many different applications (e.g., failure analysis, quality control, process and device development). Characterization of surface properties and processes is similarly important in many areas of public concern (e.g., energy and environment). The concepts apd techniques found useful for surface characterization are currently being extended to the character­ ization of solid-solid, solid-liquid and solid-gas interfaces. It is therefore expected that there will be significant developments in interface science and additional opportunities for technological applications in the coming decade. 1. Introduction Over the past two decades there has been considerable growth in surface science and in the application of surface-characterization methods, particularly surface analysis, to a wide range of problems of technological interest (Powell 1978). This growth is evident in the large number of local, national and international meetings sponsored by major professional societies and many other groups; the growth is also evident in journal and book publications. The purpose of this paper is to summarize key features of recent developments and to point out the impact of surface science and surface analysis in technological developments and problems.
    [Show full text]
  • Decline of Giant Impacts on Mars by 4.48 Billion Years Ago and an Early Opportunity for Habitability
    ARTICLES https://doi.org/10.1038/s41561-019-0380-0 Decline of giant impacts on Mars by 4.48 billion years ago and an early opportunity for habitability D. E. Moser 1*, G. A. Arcuri1, D. A. Reinhard2, L. F. White 3, J. R. Darling 4, I. R. Barker1, D. J. Larson2, A. J. Irving5, F. M. McCubbin6, K. T. Tait3, J. Roszjar7, A. Wittmann8 and C. Davis1 The timing of the wane in heavy meteorite bombardment of the inner planets is debated. Its timing determines the onset of crustal conditions consistently below the thermal and shock pressure limits for microbiota survival, and so bounds the occur- rence of conditions that allow planets to be habitable. Here we determine this timing for Mars by examining the metamor- phic histories of the oldest known Martian minerals, 4.476–4.429-Gyr-old zircon and baddeleyite grains in meteorites derived from the southern highlands. We use electron microscopy and atom probe tomography to show that none of these grains were exposed to the life-limiting shock pressure of 78 GPa. 97% of the grains exhibit weak-to-no shock metamorphic features and no thermal overprints from shock-induced melting. By contrast, about 80% of the studied grains from bombarded crust on Earth and the Moon show such features. The giant impact proposed to have created Mars’ hemispheric dichotomy must, therefore, have taken place more than 4.48 Gyr ago, with no later cataclysmic bombardments. Considering thermal habitability models, we conclude that portions of Mars’ crust reached habitable pressures and temperatures by 4.2 Gyr ago, the onset of the Martian ‘wet’ period, about 0.5 Gyr earlier than the earliest known record of life on Earth.
    [Show full text]
  • A Study of the Surface Reactions of Hydrocarbons on Tungsten by Field Electron Emission Microscopy Nelson Craig Gardner Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1966 A study of the surface reactions of hydrocarbons on tungsten by field electron emission microscopy Nelson Craig Gardner Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Physical Chemistry Commons Recommended Citation Gardner, Nelson Craig, "A study of the surface reactions of hydrocarbons on tungsten by field electron emission microscopy " (1966). Retrospective Theses and Dissertations. 5365. https://lib.dr.iastate.edu/rtd/5365 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfihned exactly as received ® 7-5587 GARDNER, Nelson Craig, 1937- A STUDY OF THE SURFACE REACTIONS OF HYDRO­ CARBONS ON TUNGSTEN BY FIELD ELECTRON EMIS­ SION MICROSCOPY. Iowa State University of Science and Technology, Ph.D„ 1966 Chemistry, physical University Microfilms, Inc., Ann Arbor, Michigan A STUDY OF THE SURFACE REACTIONS OF HYDROCARBONS ON TUNGSTEN BY FIELD ELECTRON EMISSION MICROSCOPY by Nelson Craig Gardner A Dissertation Submitted to the Graduate Faculty in partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject:
    [Show full text]
  • Biological Surface Science
    Surface Science 500 (2002) 656–677 www.elsevier.com/locate/susc Biological surface science Bengt Kasemo * Department of Applied Physics, Chalmers University of Technology and Go€teborg University, S-41296 G o€teborg, Sweden Received 13 December 2000; accepted for publication 5 July 2001 Abstract Biological surface science (BioSS), as defined here is the broad interdisciplinary area where properties and processes at interfaces between synthetic materials and biological environments are investigated and biofunctional surfaces are fabricated. Six examples are used to introduce and discuss the subject: Medical implants in the human body, biosensors and biochips for diagnostics, tissue engineering, bioelectronics, artificial photosynthesis, and biomimetic materials. They are areas of varying maturity, together constituting a strong driving force for the current rapid development of BioSS. The second driving force is the purely scientific challenges and opportunities to explore the mutual interaction between biological components and surfaces. Model systems range from the unique water structures at solid surfaces and water shells around proteins and biomembranes, via amino and nucleic acids, proteins, DNA, phospholipid membranes, to cells and living tissue at surfaces. At one end of the spectrum the scientific challenge is to map out the structures, bonding, dynamics and ki- netics of biomolecules at surfaces in a similar way as has been done for simple molecules during the past three decades in surface science. At the other end of the complexity spectrum one addresses how biofunctional surfaces participate in and can be designed to constructively participate in the total communication system of cells and tissue. Biofunctional surfaces call for advanced design and preparation in order to match the sophisticated (bio) recognition ability of biological systems.
    [Show full text]