New Catalysts for Base-Catalysed Hydroamination Reactions of Olefins

Total Page:16

File Type:pdf, Size:1020Kb

New Catalysts for Base-Catalysed Hydroamination Reactions of Olefins New Catalysts for Base-Catalysed Hydroamination Reactions of Olefins Den Naturwissenschaftlichen Fakultäten der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades vorgelegt von Patricia Horrillo Martínez aus Tudela de Navarra, Spanien Als Dissertation genehmigt von den Naturwissenschaftlichen Fakultäten der Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 18.07.2008 Vorsitzender der Promotionskommission: Prof. Dr. E. Bänsch Erstberichterstatter: Assist. Prof. Dr. K. C. Hultzsch Zweitberichterstatter: Prof. Dr. H. Gröger a mis Padres y Achim Die vorliegende Arbeit wurde am Institut für Organische Chemie der Friedrich-Alexander- Universität Erlangen-Nürnberg in der Zeit von Oktober 2003 bis September 2007 unter Anleitung von Priv. Doz. Dr. Kai C. Hultzsch angefertigt. Ich danke Dr. Kai C. Hultzsch für den wissenschaftlichen Anstoß, das stetige Interesse an dieser Arbeit sowie die wertvolle Hilfe bei der Erstellung dieses Manuskripts. Auch danke ich Prof. John A. Gladysz für die Möglichkeit in seiner Gruppe promovieren zu können und für die interessante Diskussionen. Den Angestellten des Organischen Instituts möchte ich für Ihre Hilfe danken: Dr. Frank Hampel und Wolfgang Donaubauer (Röntgenstrukturanalyse), Wilfried Schätzke, Christian Placht und besonderes Prof. Walter Bauer (NMR –Spektroskopie), Wolfgang Donaubauer und Margarete Dziallach (mindestens tausend mal haben Sie Massenspektren für mich gemessen), Eva Hergenröder (Elementaranalyse), Hannelore Oschmann und Robert Panzer (Chemikalien), Stefan Fronius und Bahram Saberi (Glasbläserei), Erwin Schreier und Eberhard Ruprecht (Mechanische Werkstatt), Reinhard Wolff und Holger Wohlfahrt (ehemaliger und neuer Hausmeister). Mein besonderer Dank geht auch an Dr. Frank Hampel, Christiane Brandl-Rittel und Pamela Engerer für die freundliche Hilfe mit administrativen Dingen. Ich danke meinen Laborkollegen Inka, Boyan, Alexander und vor allem Denis für die nette Atmosphäre und die gute Zusammenarbeit. Dem gesamten Arbeitskreis Gladysz (ehemalige und gegenwärtige Mitarbeiter) danke ich für die wunderbaren Jahre in Erlangen. Ihr werdet für immer in meinem Herzen bleiben. Ich danke auch den Fußballspielern des Instituts: Der Dienstag war immer etwas Besonderes. Mein herzlicher Dank gilt meinen Freunden in Deutschland (Patri 1, Verona, Laura, Elena, Yolanda, Sergio, Saul, Jose P., Ana, Carolina, Anne-So, Patrick) und in Spanien (Eva und Pere, Sonia, Chloe, Roser und Joan, Salut, Maria, Isabel, Anna, Adrià, Jose A.) für die moralische Unterstützung. Ganz besonders danke ich meinen Eltern, meiner Schwester und Achim für ihre bedingungslose Unterstützung. Zusammenfassung Die vorliegende Arbeit umfasst die Synthese von neuartigen, Prolin-modifizierten, chiralen Binaphthyl-Komplexen ausgewählter Hauptgruppen- (Li, Mg, Zn) und Seltenerdmetallen (Y, La), sowie deren Anwendung in der intramolekularen Hydroaminierung von Aminoalkenen, Aminodialkenen und Aminoalkinen. Hydroaminierungen von Vinylaromaten mit primären und sekundären Aminen wurden unter Verwendung geringer Katalysatorbeladungen von [(TMEDA) Li{N(SiMe3)2}] (29) bis hinab zu 2 mol% untersucht. Bei 120 °C laufen diese Reaktionen, ohne Zusatz von Lösungsmitteln, zügig und selektiv zu den anti-Markovnikov Produkten ab und ermöglichen deren Isolierung in 23-96% Ausbeute. Im Falle elektronenarmer p-Chlorstyrole oder sekundärer, zyklischer Amine, wie zum Beispiel Pyrrolidin, Piperidin oder Morpholin, kann bereits bei 25 °C langsame Hydroaminierungsaktivität festgestellt werden. Primäre Amine jedoch können einer nachfolgenden, zweiten Hydroaminierung unterliegen und somit auch zu tertiären Aminen führen. Unter Verwendung eines Amin- Überschusses war es hierbei möglich die Selektivität bezüglich des mono-hydroaminierten Produkts gegenüber dem tertiären Amin zu erhöhen. Des Weiteren wurde die intermolekulare Hydroaminierung von Vinylaromaten mit zahlreichen primären und sekundären Aminen in Anwesenheit einfacher Lithium- und Kaliumamide untersucht. Im Vergleich zu [Li{N(SiMe3)2}], konnte für [K{N(SiMe3)2}] eine höhere katalytische Aktivität bei verringerter Selektivität festgestellt werden, die sich in der Bildung unerwünschter Nebenprodukte durch α-C-H-Aktivierung äußerte. 2mol%[Li{N(SiMe3)2}] 2mol%Additiv R' Ar N Ar + HN R'R'' Ar R'' + N 25-120 °C Ar R'' R' = H Die durchgeführten Studien zur Reaktionskinetik, sowie deren theoretische Berechnung stehen im Einklang mit dem postulierten basen-katalysierten Reaktionsmechanismus. Die Reaktion primärer Amine durchläuft zwei aufeinander folgende Additions-schritte, wobei der erste signifikant schneller ablaufen muss. Der anfängliche Hydroaminierungsschritt verläuft kinetisch nach erster Ordnung bezüglich der Konzentration von Styrol und Benzylamin, jedoch nach unerwarteter nullter Ordnung bezüglich der Katalysatorkonzentration. Vorläufige Versuche deuten an, dass [(TMEDA)Li(NHCH2Ph)] eine deutlich höhere katalytische Aktivität aufweist, wodurch eine Reaktionsführung bei Raumtemperatur ermöglich wird. Die Reaktion verläuft in diesem System nach einer Kinetik erster Ordnung in Bezug auf die Konzentration an Styrol, Benzylamin und Katalysator. Die ermittelte Kinetik erster Ordnung bezüglich der Katalysatorkonzentration unterstützt den angenommenen Katalysezyklus der Lithium- Benzylamid-katalysierten Umsetzung. Die L-Prolin modifizierten, axial-chiralen Tetramin-Verbindungen (S,S,S)-DABN(MeProlin)2 ((S,S,S)-40) und (R,S,S)-DABN(MeProlin)2 ((R,S,S)-41) konnten in moderaten bis guten Ausbeuten (44-88%) hergestellt werden. Nachfolgende Lithiierung in Hexan führt zu den diastereomeren Di-Lithium Salzen [Li2{(S,S,S)-DABN (MeProline)2}]2 ((S,S,S)-47) und [Li2{(R,S,S)-DABN(MeProline)2}] ((R,S,S)-49), wobei ersteres auch durch Röntgenstrukturanalyse nachgewiesen werden konnte. Durch Modifikation des Ligandgerüstes sind auch die Komplexverbindungen [Li2{(R)-DABN (SitBuMe2)2}(THF)2] ((R)-50), Lithium (S)-1-Methyl-2-[N-1-naphthylamino)methyl]- pyrrolidin ((S)-51) und Di-lithium-(N,N-DiMeProlin)-2,2’-diamino-4,4’-di-tert-butyl- biphenyl ((S,S)-52) in 70%, 86% beziehungsweise 57% Ausbeute zugänglich. Eine Variation des Zentralmetalls führt zur Isolierung der bimetallischen Magnesium und Zink Komplexe [Mg2{(S,S,S)-DABN(MeProlin)2}{Bu}2] ((S,S,S)-53), [Mg2{(R,S,S)-DABN (MeProlin)2}{Bu}2] ((R,S,S)-54), [Zn2{(S,S,S)-DABN(MeProlin)2}{Et}2] ((S,S,S)-55) und [Zn2{(R,S,S)-DABN(MeProlin)2}{Et}2] ((R,S,S)-56) in 62-76% Ausbeute. N N Me Me NH NH NH Me NH Me N N (S,S,S)-40 (R,S,S)-41 Mit dem Lithium-Komplex (S,S,S)-47 wurde das erste Beispiel eines Lithium- Katalysators für die asymmetrische Hydroaminierung/Zyklisierung von Aminoalkenen gefunden. Für einige Aminoalkene zeigt dieser Katalysator vergleichbare Aktivitäten mit jenen, die für die Lanthanoid-basierten Systeme und die Katalysatoren mit Übergangsmetallen der vierten Gruppe gefunden wurden, wobei die Lithium-basierte viii Verbindung Enantioselektivitäten von bis zu 85% ee in der Zyklisierung von C-(1-Allyl- cyclohexyl)-methylamin (S4) erzielen konnte. Eine niedrigere Reaktivität und Selektivität der Katalysatoren (R)-50, (S)-51 und (S,S)-52 weist darauf hin, dass sowohl die chirale Diaminobinaphthyleinheit, als auch die L-Prolin-Gruppen entscheidenden Einfluss auf die Leistungsfähigkeit des Katalysators ausüben. H N 4mol%(S,S,S)-47 NH2 toluol-d8, 9h,0°C S4 P4 91% (84% ee) Weiterhin erwiesen sich die Magnesium und Zink Komplexe (S,S,S)-53, (R,S,S)-54, (S,S,S)-55, und (R,S,S)-56 als aktive Katalysatoren in der intramolekularen Hydroaminierung/Zyklisierung. Im Speziellen zeigte der Magnesium Komplex (S,S,S)-53 eine ausgesprochen hohe katalytische Aktivität für die Zyklisierungsreaktion von 2,2-Diphenyl-1-aminopent-4-en (S3), wobei im Allgemeinen niedrige Enantioselektivitäten (0-29% ee) beobachtet wurden. Kinetische Untersuchungen zur (S,S,S)-47-katalysierten Hydroaminierung/ Zyklisierung von S4 legten eine Abhängigkeit nach erster Ordnung bezüglich der Substrat- und Katalysatorkonzentration offen. Die Aktivierungsparameter für den tief- und hochliegenden Übergangszustand zu den Pyrrolidin-Produkten (S)-P4 und (R)-P4 wurde ermittelt (ΔH(S)≠ = 54(4) kJ mol-1, ΔS(S)≠ = -129(14) J K-1 mol-1 und ΔH(R)≠ = 65(5) kJ mol-1, ΔS(S)≠ = -109(17) J K-1 mol-1). Mit β-substituierten Aminoalkenen konnte die kinetische Racematspaltung unter Verwendung von (S,S,S)-47 durchgeführt werden, was im Falle der α-substituierten Analoga nur in sterisch stark abgeschirmten Systemen gelang. Die Lanthanoid Komplexe [Ln{(S,S,S)-DABN(MeProlin)2}{N(SiMe3)2}] [Ln = Y ((S,S,S)-79), La ((S,S,S)-80)] wurden in situ im NMR-Maßstab hergestellt und im Hinblick auf ihre katalytische Aktivität in Hydroaminierungs/Zyklisierungs-Reaktionen untersucht. Weiterhin wurden die kationischen Zirconium Komplexe (S,S,S)-81 und (R,S,S)-82, welche sich von den entsprechenden L-Prolin derivatisierten Diaminobinaphthyl-Liganden ableiten, in 85% beziehungsweise 99% Ausbeute synthetisiert. Die neutralen Komplexe der vierten Gruppe [M{(R)-DABN(py)2}(NMe2)2] ix (M = Ti ((R)-83), Zr ((R)-85)) konnten erhalten und NMR-spektroskopisch charakterisiert werden. Die Lanthanoid Komplexe (S,S,S)-79 und (S,S,S)-80 erwiesen sich als aktive Katalysatoren für eine Ringschlussreaktion des 2,2-Dimethyl-pent-4-enylamins (S1), wobei jedoch geringe Selektivitäten in Kauf genommen werden müssen (maximal 11% ee). Beide Katalysatoren ermöglichen auch die Umsetzung anderer Substrate zu den analogen Produkten. Um hohe Umsatzraten zu beobachten, werden hierfür allerdings lange Reaktionszeiten und in einigen
Recommended publications
  • 83230251.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. provided by DSpace@MIT Article pubs.acs.org/JACS Mechanistic Studies Lead to Dramatically Improved Reaction Conditions for the Cu-Catalyzed Asymmetric Hydroamination of Olefins Jeffrey S. Bandar,† Michael T. Pirnot,† and Stephen L. Buchwald* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States *S Supporting Information ABSTRACT: Enantioselective copper(I) hydride (CuH)- catalyzed hydroamination has undergone significant develop- ment over the past several years. To gain a general understanding of the factors governing these reactions, kinetic and spectroscopic studies were performed on the CuH- catalyzed hydroamination of styrene. Reaction profile analysis, rate order assessment, and Hammett studies indicate that the turnover-limiting step is regeneration of the CuH catalyst by reaction with a silane, with a phosphine-ligated copper(I) benzoate as the catalyst resting state. Spectroscopic, electrospray ionization mass spectrometry, and nonlinear effect studies are consistent with a monomeric active catalyst. With this insight, targeted reagent optimization led to the development of an optimized protocol with an operationally simple setup (ligated copper(II) precatalyst, open to air) and short reaction times (<30 min). This improved protocol is amenable to a diverse range of alkene and alkyne substrate classes. ■ INTRODUCTION Scheme 1. Proposed Catalytic Cycle for CuH-Catalyzed Due to their importance and ubiquity, significant efforts have Hydroamination of Styrene been made toward the construction of enantioenriched amines.1 Hydroamination, the formal addition of a nitrogen and hydrogen atom across a carbon−carbon π-bond, represents a particularly attractive and direct method for appending amino groups onto a molecule.
    [Show full text]
  • Catalytic Organic Transformations Mediated by Actinide Complexes
    Inorganics 2015, 3, 392-428; doi:10.3390/inorganics3040392 OPEN ACCESS inorganics ISSN 2304-6740 www.mdpi.com/journal/inorganics Review Catalytic Organic Transformations Mediated by Actinide Complexes Isabell S. R. Karmel, Rami J. Batrice and Moris S. Eisen * Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Technion City, Haifa 32000, Israel; E-Mails: [email protected] (I.S.R.K.); [email protected] (R.J.B.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +972-4-829-2680. Academic Editors: Stephen Mansell and Steve Liddle Received: 16 September 2015 / Accepted: 9 October 2015 / Published: 30 October 2015 Abstract: This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field. Keywords: organoactinides; actinide coordination complexes; homogeneous catalysis; hydroelementations; polymerization of olefins; ROP; activation of heterocumulenes 1. Introduction The beginning of modern organoactinide chemistry is often attributed to the synthesis of 8 uranocene, [(η -C8H8)2U] in 1968, as the analogous compound to ferrocene and other transition metal metallocenes [1,2].
    [Show full text]
  • Enantioselective, Stereodivergent Hydroazidation and Hydroamination of Allenes Catalyzed by Acyclic Diaminocarbene (ADC) Gold(I) Complexes Dimitri A
    Angewandte Communications Chemie International Edition:DOI:10.1002/anie.201601550 Gold Catalysis German Edition:DOI:10.1002/ange.201601550 Enantioselective, Stereodivergent Hydroazidation and Hydroamination of Allenes Catalyzed by Acyclic Diaminocarbene (ADC) Gold(I) Complexes Dimitri A. Khrakovsky+,Chuanzhou Tao+,Miles W. Johnson, RichardT.Thornbury, Sophia L. Shevick, and F. Dean Toste* Abstract: The gold-catalyzed enantioselective hydroazidation and hydroamination reactions of allenes are presented herein. ADC gold(I) catalysts derived from BINAM were critical for achieving high levels of enantioselectivity in both transforma- tions.The sense of enantioinduction is reversed for the two different nucleophiles,allowing access to both enantiomers of the corresponding allylic amines using the same catalyst enantiomer. Allylic amines are an important functional motif in synthetic organic chemistry and they have been utilized in the synthesis of numerous biologically active compounds.[1] Closely related Scheme 1. Enantioselective conjugateazidations and hydroazidations. allylic azides are valuable precursors for allylic amines,aswell as for amino acids[2] and amine-containing natural products.[3] Allylic azides have typically been prepared via substitution reactions from the corresponding allylic halides,(homo)- Table 1: Assessment of chiral gold(I) catalysts. allylic alcohols,and their derivatives.[4] More recently,Pd- catalyzed C Hactivation,[5] and Au-catalyzed hydroazidation À of allenes[6] have been employed. While reports of the synthesis
    [Show full text]
  • Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes
    Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Pirnot, Michael T., Yi-Ming Wang, and Stephen L. Buchwald. “Copper Hydride Catalyzed Hydroamination of Alkenes and Alkynes.” Angewandte Chemie International Edition 55.1 (2016): 48–57. As Published http://dx.doi.org/10.1002/anie.201507594 Publisher Wiley Blackwell Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/110464 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ HHS Public Access Author manuscript Author Manuscript Author ManuscriptAngew Chem Author Manuscript Int Ed Engl Author Manuscript . Author manuscript; available in PMC 2016 March 08. Published in final edited form as: Angew Chem Int Ed Engl. 2016 January 4; 55(1): 48–57. doi:10.1002/anie.201507594. Copper Hydride-Catalyzed Hydroamination of Alkenes and Alkynes Dr. Michael T. Pirnot†, Dr. Yi-Ming Wang†, and Prof. Dr. Stephen L. Buchwald Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 (USA) Stephen L. Buchwald: [email protected] Abstract Over the past few years, CuH-catalyzed hydroamination has been discovered and developed as a robust and conceptually novel approach for the synthesis of enantioenriched secondary and tertiary amines. The success in this area of research was made possible through the large body of precedent in copper(I) hydride catalysis and the well-explored use of hydroxylamine esters as electrophilic amine sources in related copper-catalyzed processes.
    [Show full text]
  • Platinum-Based Catalysts for the Hydroamination of Olefins with Sulfonamides and Weakly Basic Anilines Dmitry Karshtedt,†,‡ Alexis T
    Published on Web 08/20/2005 Platinum-Based Catalysts for the Hydroamination of Olefins with Sulfonamides and Weakly Basic Anilines Dmitry Karshtedt,†,‡ Alexis T. Bell,*,‡,§ and T. Don Tilley*,†,‡ Contribution from the Departments of Chemistry and Chemical Engineering, UniVersity of California, Berkeley, Berkeley, California 94720, and Chemical Sciences DiVision, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 Received May 2, 2005; E-mail: [email protected] Abstract: Electrophilic Pt(II) complexes catalyze efficient hydroaminations of olefins by sulfonamides and weakly basic anilines. Catalysts include the structurally characterized complex (COD)Pt(OTf)2 (1) and the known dimer [PtCl2(C2H4)]2, activated by AgBF4. Experiments with substituted anilines establish an empirical pKa cutoff (conjugate acid pKa < 1) for the participation of nitrogen-containing substrates in this catalysis. Arylsulfonamides (conjugate acid pKa ≈ -6) with various para substituents hydroaminate olefins such as cyclohexene in yields greater than 95% at 90 °C. Hydroamination of propylene by p-toluenesulfonamide proceeds with Markovnikov selectivity, suggesting a mechanism that involves olefin activation at Pt. With norbornene and p-toluenesulfonamide as the substrates and 1 as the catalyst, intermediate [(COD)Pt- 19 195 (norbornene)2][OTf]2 (3) was identified and characterized by F and Pt NMR spectroscopies and mass spectrometry. Kinetic studies provide the empirical rate law, rate ) kobs[Pt][sulfonamide], and are consistent
    [Show full text]
  • Dalton Transactions Accepted Manuscript
    Dalton Transactions Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/dalton Page 1 of 13 PleaseDalton do not Transactions adjust margins Dalton Transactions PERSPECTIVE Rare-Earth Metal πππ-Complexes of Reduced Arenes, Alkenes, and Alkynes: Bonding, Electronic Structure, and Comparison with Received 00th January 20xx, Accepted 00th January 20xx Actinides and Other Electropositive Metals a,b a,c DOI: 10.1039/x0xx00000x Wenliang Huang, and Paula L. Diaconescu www.rsc.org/ Rare-earth metal complexes of reduced π ligands are reviewed with an emphasis on their electronic structure and bonding interactions. This perspective discusses reduced carbocyclic and acyclic π ligands; in certain categories, when no example of a rare-earth metal complex is available, a closely related actinide analogue is discussed.
    [Show full text]
  • Hydroamination Feb 2011
    Catalytic Asymmetric Hydroaminations (And Hydroalkoxylations, But Mostly Hydroaminations) Anna Allen MacMillan Group Meeting February 16, 2011 Hydroamination (and Hydroalkoxylation): An Outline Brief Introduction to Hydroaminations Rare Earth Metal-Catalyzed Asymmetric Hydroaminations Intramolecular reactions Intermolecular reactions Group 4 Metal-Catalyzed Asymmetric Hydroaminations Cationic metal catalysts Neutral metal catalysts Late Transition Metal-Catalyzed Asymmetric Hydroaminations Iridium-catalyzed reactions Palladium-catalyzed reactions Gold-catalyzed reactions Rhodium-catalyzed reactions Base-Catalyzed Asymmetric Hydroaminations Brønsted Acid-Catalyzed Asymmetric Hydroaminations Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795. Aillaud, I.; Collin, J.; Hannedouche, J.; Schulz, E. Dalton Trans. 2007, 5105. Hultzsch, K. C. Adv. Synth. Catal. 2005, 347, 367. Hydroamination Reactions ! Amines are a valuable and commercially important class of compounds used for bulk chemicals specialty chemicals and pharmaceuticals synthesis of amines: OH NH2 O NH2 R R R R R R R R Br NH2 NO2 NH2 R R R R R R R R ! Most classical methods require refined starting materials and generate unwanted byproducts hydroamination reaction: NR2 R R2N H R R R H direct addition of an amine across a carbon-carbon multiple bond ! Hydroaminations are 100% atom economical and use simple and inexpensive starting materials Hydroamination Reactions hydroamination reaction: direct addition of an amine across a carbon-carbon multiple bond NR2 NR2 R R2N H R R R R2N H R R R R H H alkylamine vinylamine H H H H N N R R R NH2 R NH2 Why are hydroamination reactions not used more? Challenges: thermodynamically feasible (slightly exothermal) but entropically negative high reaction barrier repulsion between the nitrogen lone pair and the olefin/alkyne !-system regioselectivity (markovnikov vs.
    [Show full text]
  • Sharanappa Nembenna
    Sharanappa Nembenna ____________________________________________________________ β−Diketiminate Ligand Supported Group 2 Metal Hydroxide, Halide, Oxygen Bridged Heterobimetallic and Heterotrimetallic Complexes: Synthesis and X-ray Structural Studies Göttingen 2007 β−Diketiminate Ligand Supported Group 2 Metal Hydroxide, Halide, Oxygen Bridged Heterobimetallic and Heterotrimetallic Complexes: Synthesis and X-ray Structural Studies Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen Vorgelegt von Sharanappa Nembenna Aus Kallur (INDIA) Göttingen 2007 D 7 Referent: Prof. Dr. Dr. h. c. mult. Herbert W. Roesky Korreferent: Prof. Dr. Dietmar Stalke Tag der mündlichen Prüfung: 30.10.2007 Dedicated to my mother Channabasamma and My eldest brother late Mallikarjungouda Acknowledgement The work described in this doctoral thesis has been carried out under the guidance and supervision of Prof. Dr. Dr. h. c. mult. Herbert W. Roesky at the Institut für Anorganische Chemie der Georg-August-Universität in Göttingen between April 2004 and September 2007. My grateful thanks to Prof. Dr. Dr. h. c. mult. Herbert W. Roesky for his constant advice, guidance, motivation, suggestions, and discussions throughout this work. I would like to thank him for his personal attention and the freedom I enjoyed during my stay in Göttingen. I would like to thank Prof. G. M. Sheldrick, Prof. D. Stalke, Prof. J. Magull, Dr. M. Noltemeyer, Mr. H. Ott, Ms. A. Hofmeister, Mr. A. Pal, and Mr. H.-G. Schmidt for their kind help in X-ray crystallographic studies. I thank Dr. R. B. Oswald for the theoretical studies. And also I thank Dr. P.-J. Wilbrandt, Mr. M. Hahn, Ms. U.
    [Show full text]
  • John F. Hartwig Henry Rapoport Professor of Chemistry
    John F. Hartwig Henry Rapoport Professor of Chemistry Department of Chemistry, University of California Berkeley 718 Latimer Hall MC# 1460, Berkeley, CA 94720-1460 Email: [email protected] http://www.cchem.berkeley.edu/jfhgrp/ Personal Born August 7, 1964 in Elmhurst, IL Employment 2011-present University of California, Berkeley Henry Rapoport Professor of Chemistry. 2011-present Lawrence Berkeley National Laboratory, Berkeley Senior Faculty Scientist. 2006-2011 University of Illinois Urbana-Champaign Kenneth L. Reinhart Jr. Professor of Chemistry. 2004-2006 Yale University, New Haven, CT Irénée DuPont Professor of Chemistry. 1998-2004 Yale University, New Haven, CT Professor of Chemistry. 1996-1998 Yale University, New Haven, CT Associate Professor of Chemistry. 1992-1996 Yale University, New Haven, CT Assistant Professor of Chemistry. Appointment commenced July 1, 1992. 1990-1992 Massachusetts Institute of Technology, Cambridge, MA American Cancer Society Postdoctoral Associate. 1986-1989 University of California, Berkeley, CA Graduate Student Instructor. Taught organic chemistry to undergraduate students and inorganic chemistry to graduate students. 1985 Monsanto Japan Ltd., Kawachi, Japan Worked among an all-Japanese staff for three months on an agricultural and surface science research project. 1984 General Electric Research and Development, Schenectady, NY Synthesis of novel monomers, ionomers and polymer blends. Education 1990-1992 Massachusetts Institute of Technology, Cambridge, MA Postdoctoral Advisor: Prof. Stephen J. Lippard Studied the Pt-DNA adducts formed by an orally active platinum antitumor drug and the ability of these adducts to block DNA replication and bind cellular proteins. Designed, synthesized, and analyzed a platinum antitumor drug possessing a fluorescent ligand for in vivo monitoring. 1986-1990 University of California, Berkeley, CA Ph.D., Chemistry.
    [Show full text]
  • Gold(I)-Catalyzed Enantioselective Hydroamination of Unactivated Alkenes
    Gold(I)-Catalyzed Enantioselective Hydroamination of Unactivated Alkenes by Seong Du Lee Department of Chemistry Duke University Date:_______________________ Approved: ___________________________ Ross A. Widenhoefer, Supervisor ___________________________ Jiyong Hong ___________________________ Katherine J. Franz ___________________________ Qiu Wang Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the Graduate School of Duke University 2012 i v ABSTRACT Gold(I)-Catalyzed Enantioselective Hydroamination of Unactivated Alkenes by Seong Du Lee Department of Chemistry Duke University Date:_______________________ Approved: ___________________________ Ross A. Widenhoefer, Supervisor ___________________________ Jiyong Hong ___________________________ Katherine J. Franz ___________________________ Qiu Wang An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the Graduate School of Duke University 2012 i v Copyright by Seong Du Lee 2012 Abstract Numerous methodologies for efficient formation of carbon-nitrogen bonds have been developed over the decades due to the widespread importance of nitrogen containing compounds in pharmaceuticals and bulk commercial chemicals. Among many methods, hydroamination, in particular, has attracted considerable attention owing to its high atom economy and use of simple C-C substrates. As a result, numerous methods for hydroamination have been reported which employ a range of metal catalysts. However, the hydroamination of unactivated alkenes remains an unsolved challenge owing to the low reactivity of the C=C double bond. The recent development of gold(I) as an effective π-activation catalyst prompted us to develop efficient gold (I)-catalyzed methods for enatioselective intra- and intermolecular hydroamination of unactivated alkenes.
    [Show full text]
  • Catalytic Intermolecular Hydroamination of Vinyl Ethers Hydroaminationnirmal of Vinyl Ethers K
    LETTER 3135 Catalytic Intermolecular Hydroamination of Vinyl Ethers HydroaminationNirmal of Vinyl Ethers K. Pahadi,* Jon A. Tunge* Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045-7582, USA Fax +1(785)8645396; E-mail: [email protected] Received 30 July 2009 the concentration of vinyl ether to 1.6 M (4 equiv) slightly Abstract: This manuscript details the development of a palladium- catalyzed hydroamination of vinyl ethers. It is proposed that palla- lowers the yield (entry 5), while using just 2 equivalents dium catalyzes the hydroamination via Brønsted base catalysis, considerably lowered the yield of aminol (entry 6) and in- where palladium is protonated by the relatively acidic sulfonamide creased the time necessary for reaction completion. More- to generate a palladium hydride as well as the active anionic sul- over, substantial quantities of enamine 4a were formed. fonamide nucleophile. Thus, this process is distinct from known Further lowering the concentration of 2 to 0.5 M dramati- palladium-catalyzed hydroaminations of styrene derivatives that cally decreased the yield of 3, and only a trace amount of utilize less acidic amines. enamine 4 was observed. Dioxane, MeCN, DCE, and Key words: hydroamination, vinyl ether, palladium, sulfonamide THF were also tested as potential solvents; only dioxane provided any product. However, when 1,4-dioxane was used as solvent, a 1:1 mixture of 3a and 4a was obtained Transition-metal-catalyzed intermolecular hydroamina- Table 1 a tion of alkenes has attracted a great attention in recent Conditions for Hydroamination years.1 Much research in this line has centered on the in- PG OBu tramolecular hydroamination of simple alkyl-substituted N 2,3 Ph a-olefins.
    [Show full text]
  • Lanthanide Chalcogenolate Complexes: Syntheses, Structures
    中国科技论文在线 http://www.paper.edu.cn Coordination Chemistry Reviews 250 (2006) 2059–2092 Review Lanthanide chalcogenolate complexes: Syntheses, structures and applications in organic chemistry Hong-Xi Li a, Yan-Jun Zhu a, Mei-Ling Cheng a, Zhi-Gang Ren a, Jian-Ping Lang a,b,∗, Qi Shen a a Key Laboratory of Organic Synthesis of Jiangsu Province, School of Chemistry and Engineering, Suzhou University, Suzhou 215123, Jiangsu, PR China b State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, Jiangsu, PR China Received 18 October 2005; accepted 9 February 2006 Available online 23 February 2006 Contents 1. Introduction ........................................................................................................... 2060 2. Methods of preparation ................................................................................................. 2060 2.1. Protonolysis reaction ............................................................................................. 2060 2.2. Salt metathesis reaction........................................................................................... 2062 2.3. Oxidation–reduction reaction ..................................................................................... 2063 2.3.1. Oxidation reaction of divalent lanthanocene complexes ...................................................... 2063 2.3.2. Reaction of elemental lanthanide and REER ................................................................ 2065 2.3.3. Reaction of Ln/M amalgam with REER and trans-metallation
    [Show full text]