Social Polymorphism and Dispersal in Formica Ants

Total Page:16

File Type:pdf, Size:1020Kb

Social Polymorphism and Dispersal in Formica Ants Faculty of Biological and Environmental Sciences SANJA HAKALA University of Helsinki Social polymorphism and SOCIAL POLYMORPHISM AND DISPERSAL IN SOCIAL POLYMORPHISM dispersal in Formica ants SANJA MARIA HAKALA FORMICA ANTS 2020 ISBN 978-951-51-5972-4 Social polymorphism and dispersal in Formica ants SANJA MARIA HAKALA Organismal and evolutionary biology research programme Faculty of Biological and Environmental Sciences University of Helsinki Tvärminne Zoological Station University of Helsinki ACADEMIC DISSERTATION To be presented for public examination with the permission of the Faculty of Biological and Environmental Sciences of the University of Helsinki in Metsätalo room 2 (Unioninkatu 40), on June 9th at 12.00 o’clock noon. HELSINKI 2020 SUPERVISORS: Dr. docent Heikki Helanterä Ecology and genetics research unit University of Oulu Dr. docent Perttu Seppä Organismal and evolutionary biology research programme University of Helsinki REVIEWERS: Prof Heike Feldhaar Faculty for Biology, Chemistry, and Earth Sciences University of Bayreuth Dr. docent Kristjan Niitepõld University of Helsinki / Heureka, the Finnish Science Centre OPPONENT: Prof Mark Brown Department of Biological Sciences Royal Holloway, University of London CUSTOS: Prof Liselotte Sundström Organismal and evolutionary biology research programme University of Helsinki MEMBERS OF THESIS ADVISORY COMMITTEE: Dr. docent Marjo Saastamoinen Organismal and evolutionary biology research programme University of Helsinki Dr. docent Riitta Savolainen Organismal and evolutionary biology research programme University of Helsinki Summary © Sanja Hakala, CC BY 4.0 Chapters I, II and IV © The authors and the publishers, CC BY 4.0 Chapter III © The authors Cover illustration © I. Hakala, O. Hakala, S. Hakala, Other illustrations © J. Beresford, C. Elgert, I. Hakala, K. Kyrö, S. Sinisalo, A. Tilquin, M. Tiusanen Layout Sanja Hakala, Sami Ojanen ISBN 978-951-51-5972-4 (Print) ISBN 978-951-51-5973-1 (PDF) http://ethesis.helsinki.fi Painosalama oy, Turku 2020 Kuule istuta vielä se omenapuu vaikka tuli jo tukkaasi nuolee vaikka huomenna saaste jo laskeutuu vaikka huomenna aurinko kuolee Juice Leskinen (1981) CONTENTS / SISÄLLYS ABSTRACT 6 TIIVISTELMÄ 7 SUMMARY 8 1 INTRODUCTION .................................................................................................................................. 8 2 AIMS OF THE THESIS ......................................................................................................................12 3 METHODS ...........................................................................................................................................13 4 MAIN RESULTS AND DISCUSSION ..............................................................................................18 5 CONCLUSIONS AND FUTURE DIRECTIONS ..............................................................................23 6 ACKNOWLEDGEMENTS ..................................................................................................................25 7 REFERENCES ......................................................................................................................................28 CHAPTER I * 35 CHAPTER II * 59 CHAPTER III * 85 CHAPTER IV * 119 * Jokainen kappale alkaa suomenkielisellä tiivistelmällä. Every chapter begins with a Finnish translation of its abstract. LIST OF ORIGINAL PUBLICATIONS The thesis is based on the following articles, which are referred to in the text by their Roman numerals: I Hakala, S., Seppä, P., Helanterä, H. “Evolution of dispersal in ants (Hymenoptera: Formicidae): a review on the dispersal strategies of sessile superorganisms”, Myrmecological News 2019, 29: 35-55. II Hakala, S., Seppä, P., Heikkilä, M., Punttila, P., Sorvari, J., Helanterä, H. “Genetic analysis reveals Finnish Formica fennica populations do not form a separate genetic entity from F. exsecta”, PeerJ 2018, 6:e6013. III Hakala, S., Belevich, I., Jokitalo, E., Seppä, P., Helanterä, H. ”Social polymorphism in Formica ants is a result of dispersal behavior rather than dispersal morphology”, manuscript. IV Hakala, S.*, Ittonen, M.*, Seppä, P., Helanterä, H. “Limited dispersal and unexpected aggression in a native supercolonial ant”, Ecology and Evolution 2020, 00:1–15. * These authors contributed equally to the manuscript Authors' contribution in each chapter of this thesis: I II III IV Original idea SH HH, PS SH, HH SH, MI, HH, PS Design SH HH, PS, SH SH, HH, PS, EJ SH, MI, HH, PS Data Collection - HH, PS, JS, PP SH MI Analyses - SH, PP, JS, MH SH, IB SH, MI Manuscript preparation SH, HH, PS SH, HH, PS, PP, MH, JS SH, HH, PS, IB, EJ SH, MI, HH, PS EJ=Eija Jokitalo, HH=Heikki Helanterä, IB=Ilya Belevich, JS=Jouni Sorvari, MH=Maria Heikkilä, MI=Mats Ittonen, PP=Pekka Punttila, PS=Perttu Seppä, SH=Sanja Hakala In addition to the authors listed here, Heini Ali-Kovero, Hanne Henrikson, Leena Laaksonen, Mervi Lindman and Arja Strandell provided invaluable technical assistance with the samples in projects II, III and IV. © MIKKO TIUSANEN ABSTRACT ABSTRACT There are intricate links between the evolution by their morphology or resources the individuals get of sociality and the spatial population structures from their natal colonies. The traits of all species and created by dispersal. In ants, the evolution of the both sexes indicate good flight ability, with overall male most complex societies, supercolonies, is strongly bias and large variation both among and within species. connected to limited dispersal. The supercolonies The increased philopatry in supercolonial species and consist of hundreds of interconnected nests where populations is more a behavior change: the queens are thousands of queens and their workers cooperate over philopatric even though the society provides them large areas. Supercolonies arise from simpler family resources for dispersal. However, I observed a small units when large proportions of daughter queens are decrease of male flight muscle ratio in supercolonial philopatric and stay in their natal colony as additional species, which indicates strong coevolution of the reproducing queens instead of dispersing by wing. This sexes. allows the colonies to grow quickly and colonize large areas, but also increases social conflicts due to very In order to better understand the outcomes of low local relatedness in these societies. limited dispersal in supercolonial Formica, I analyzed the behavioral and genetic structure of a dense In this thesis I inspect the evolution and maintenance supercolonial population of Formica pressilabris. The of ant supercolonies, by focusing on dispersal traits and population is genetically viscous at a small spatial the consequences of dispersal in socially polymorphic scale, but still not genetically structured by location Formica ants. Formica have both simple family-based on a larger spatial scale. This indicates that although monodomous colonies and complex supercolonies, dispersal is limited within the population, a large and some species have also intraspecific variation. To enough proportion of individuals do disperse to keep lay a sound theoretical background for my work, I the local populations connected. Interestingly, when began by synthesizing current knowledge of dispersal analyzing worker behavior among the polydomous evolution in ants. In my literature review I showed nests, the observed aggression pattern indicates that how eco-evolutionary feedbacks link the evolution they are not a single cooperative unit – but also not of ant dispersal strategies and social organization, clearly separate colonies. The sensitive behavioral and pinpointed the most relevant future research assay developed for this study shows that workers directions. Next, to be able to inspect some of the allow a proportion of individuals from outside nests hypotheses formulated in the review, I clarified the to enter their own nest material, but are slightly more species identification of one of my intended study aggressive towards individuals from further away. This species, Formica fennica with molecular methods, and indicates the population is only partially cooperative concluded that the populations I studied should be over the whole nest aggregation, and shows that the treated as conspecific to Formica exsecta. inner structures of supercolonies should be analyzed in more detail. I analyzed the individual dispersal traits of six socially variable species of Formica ants to assess whether This thesis sheds light on ants’ dispersal ability and dispersal ability varies between monodomous and behavior, and demonstrates the crucial role of dispersal supercolonial societies in accordance to the observed in the evolution of their different social structures. My behavioral difference. According to my results the results also raise new questions about possible conflicts dispersal behavior of these species is likely not restricted over dispersal in ant societies. 6 TIIVISTELMÄ TIIVISTELMÄ Sosiaalisuuden evoluutio linkittyy vahvasti siihen, kuinka Jokaisen tutkimani lajin ominaisuudet viittaavat siihen, eliöt hajaantuvat elinympäristöönsä levittäytymisen että sekä koiraat että kuningattaret osaavat lentää hyvin. seurauksena. Muurahaisten monimutkaisimpien yhteis- Koirailla on parempi lentokyky kuin kuningattarilla, ja kuntien, superkolonioiden, evoluutio on yhteydessä sekä lajien välillä että lajien sisällä yksilöiden välillä rajoittuneeseen levittäytymiseen. Superkoloniat on suurta vaihtelua. Se, että superkoloniaalisten koostuvat
Recommended publications
  • Optimal Foraging and the Information Theory of Gambling 2 Roland J
    bioRxiv preprint doi: https://doi.org/10.1101/497198; this version posted June 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Optimal foraging and the information theory of gambling 2 Roland J. Baddeley1, Nigel R. Franks2, Edmund R. Hunt2,3 3 1School of Experimental Psychology, University of Bristol, 12a Priory Road, Bristol, BS8 1TU, UK 4 2School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, 5 UK 6 3School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, Merchant 7 Venturers Building, 75 Woodland Road, Bristol, BS8 1UB, UK 8 ORCIDS: RJB, 0000-0002-7431-6580; NRF, 0000-0001-8139-9604; ERH, 0000-0002-9647-124X 9 Authors for correspondence: email: [email protected], [email protected] 10 Abstract 11 At a macroscopic level, part of the ant colony life-cycle is simple: a colony collects resources; these 12 resources are converted into more ants, and these ants in turn collect more resources. Because 13 more ants collect more resources, this is a multiplicative process, and the expected logarithm of the 14 amount of resources determines how successful the colony will be in the long run. Over 60 years 15 ago, Kelly showed, using information theoretic techniques, that the rate of growth of resources for 16 such a situation is optimised by a strategy of betting in proportion to the probability of payoff. Thus, 17 in the case of ants the fraction of the colony foraging at a given location should be proportional to 18 the probability that resources will be found there, a result widely applied in the mathematics of 19 gambling.
    [Show full text]
  • Asymmetric Ommatidia Count and Behavioural Lateralization in the Ant Temnothorax Albipennis
    Hunt, E. R. , Dornan, C., Sendova-Franks, A. B., & Franks, N. R. (2018). Asymmetric ommatidia count and behavioural lateralization in the ant Temnothorax albipennis. Scientific Reports, 8(1), [5825]. https://doi.org/10.1038/s41598-018-23652-4, https://doi.org/10.1038/s41598-018-23652-4 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1038/s41598-018-23652-4 10.1038/s41598-018-23652-4 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Nature at https://doi.org/10.1038/s41598-018-23652-4 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ www.nature.com/scientificreports OPEN Asymmetric ommatidia count and behavioural lateralization in the ant Temnothorax albipennis Received: 19 January 2018 Edmund R. Hunt 1, Ciara Dornan1, Ana B. Sendova-Franks 2 & Nigel R. Franks 1 Accepted: 15 March 2018 Workers of the house-hunting ant Temnothorax albipennis rely on visual edge following and landmark Published: xx xx xxxx recognition to navigate their rocky environment, and they also exhibit a leftward turning bias when exploring unknown nest sites. We used electron microscopy to count the number of ommatidia composing the compound eyes of workers, males and queens, to make an approximate assessment of their relative sampling resolution; and to establish whether there is an asymmetry in the number of ommatidia composing the workers’ eyes, which might provide an observable, mechanistic explanation for the turning bias.
    [Show full text]
  • The Bayesian Superorganism III: Externalised Memories Facilitate Distributed 2 Sampling 3 Edmund R
    bioRxiv preprint doi: https://doi.org/10.1101/504241; this version posted December 21, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The Bayesian Superorganism III: externalised memories facilitate distributed 2 sampling 3 Edmund R. Hunt1, Nigel R. Franks1, Roland J. Baddeley2 4 1School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, 5 BS8 1TQ, UK 6 2School of Experimental Psychology, University of Bristol, 12a Priory Road, Bristol, BS8 1TU, UK 7 ORCIDS: ERH, 0000-0002-9647-124X; NRF, 0000-0001-8139-9604; RJB, 0000-0002-7431-6580 8 Authors for correspondence: email: [email protected], [email protected] 9 10 Abstract 11 A key challenge for any animal is to avoid wasting time by searching for resources in places it has 12 already found to be unprofitable. This challenge is particularly strong when the organism is a central 13 place forager – returning to a nest between foraging bouts – because it is destined repeatedly to 14 cover much the same ground. Furthermore, this problem will reach its zenith if many individuals 15 forage from the same central place, as in social insects. Foraging performance may be greatly 16 enhanced by coordinating movement trajectories such that each ant visits separate parts of the 17 surrounding (unknown) space. In this third of three papers, we find experimental evidence for an 18 externalised spatial memory in Temnothorax albipennis ants: chemical markers (either pheromones 19 or other cues such as cuticular hydrocarbon footprints) that are used by nestmates to mark explored 20 space.
    [Show full text]
  • Ants 06175.Pdf Download
    FAUNA ENTOMOLOGICA SCANDINAVICA VolumeS 1979 The Formicidae (Hymenoptera) of Fennoscandia and Denmark by C. A. Collingwood co SCANDINAVIAN SCIENCE PRESS LTD. KJampenborg . Denmark 450053 Contents Introduction 9 Diagnosis and morphology 1 1 Bionomics and ecology 17 Distribution and faunistics 19 Nomenclature and systematics 25 Collecting, preserving and keeping 28 Key to subfamilies of Formicidae 28 Subfamily Ponerinae Lepeletier 29 Genus Hypoponera Santschi 30 Genus Ponera Latreille 32 Subfamily Dolichoderinae Forel 32 Genus Iridomyrmex Mayr 33 Genus Tapinoma Forster 34 Subfamily Myrmicinae Lepeletier 36 Genus Myrmica Latreille 40 Genus Sifotinia Emery 58 Genus Stenamma Westwood 60 Genus Pheidole Westwood 61 Genus Monomorium Mayr 62 Genus Diplorhoptnan Mayr 64 Genus Crematogaster Lund 66 Genus Myrmecina Curtis 67 Genus Leptothorax Mayr 68 Genus Fonnicoxentu Mayr 77 Genus Harpagoxema Forel 78 Genus Anergates Forel 79 Genus Strongylognathus Mayr 80 Genus Tetramorium Mayr 82 Subfamily Formicinae Lepeletier 85 Genus Camponotus Mayr 86 Genus Lasius Fabricius 92 Genus Paratrechina Motschulsky 108 Genus Plagiolepis Mayr ,. 110 Genus Formica Linni Ill Genus Polyergus Latreille 155 Catalogue 157 Literature 166 Index 172 Introduction The only reference work for European Formicidac that includes descriptions of most of the species found in Denmark and Fennoscandia is that of Stitz (1939). Redefinitions of certain species, nomenclature changes, the discovery of a few additional species as well as many new distribution records have inevitably made the systematic part of that work 'out of date. The most recent and valuable work dealing substantially with the same fauna is that of Kutter (1977) which, although restricted formally to the species actually recorded within Switzerland, makes descriptive reference to the very few ad- ditional species that occur in Fennoscandia.
    [Show full text]
  • Report on Pitfall Trapping of Ants at the Biospecies Sites in the Nature Reserve of Orange County, California
    Report on Pitfall Trapping of Ants at the Biospecies Sites in the Nature Reserve of Orange County, California Prepared for: Nature Reserve of Orange County and The Irvine Co. Open Space Reserve, Trish Smith By: Krista H. Pease Robert N. Fisher US Geological Survey San Diego Field Station 5745 Kearny Villa Rd., Suite M San Diego, CA 92123 2001 2 INTRODUCTION: In conjunction with ongoing biospecies richness monitoring at the Nature Reserve of Orange County (NROC), ant sampling began in October 1999. We quantitatively sampled for all ant species in the central and coastal portions of NROC at long-term study sites. Ant pitfall traps (Majer 1978) were used at current reptile and amphibian pitfall trap sites, and samples were collected and analyzed from winter 1999, summer 2000, and winter 2000. Summer 2001 samples were recently retrieved, and are presently being identified. Ants serve many roles on different ecosystem levels, and can serve as sensitive indicators of change for a variety of factors. Data gathered from these samples provide the beginning of three years of baseline data, on which long-term land management plans can be based. MONITORING OBJECTIVES: The California Floristic Province, which includes southern California, is considered one of the 25 global biodiversity hotspots (Myers et al. 2000). The habitat of this region is rapidly changing due to pressure from urban and agricultural development. The Scientific Review Panel of the State of California's Natural Community Conservation Planning Program (NCCP) has identified preserve design parameters as one of the six basic research needs for making informed long term conservation planning decisions.
    [Show full text]
  • Evidence for a Thoracic Crop in the Workers of Some Neotropical Pheidole Species (Formicidae: Myrmicinae)
    Arthropod Structure & Development 59 (2020) 100977 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Evidence for a thoracic crop in the workers of some Neotropical Pheidole species (Formicidae: Myrmicinae) * A. Casadei-Ferreira a, , G. Fischer b, E.P. Economo b a Departamento de Zoologia, Universidade Federal do Parana, Avenida Francisco Heraclito dos Santos, s/n, Centro Politecnico, Curitiba, Mailbox 19020, CEP 81531-980, Brazil b Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan article info abstract Article history: The ability of ant colonies to transport, store, and distribute food resources through trophallaxis is a key Received 28 May 2020 advantage of social life. Nonetheless, how the structure of the digestive system has adapted across the Accepted 21 July 2020 ant phylogeny to facilitate these abilities is still not well understood. The crop and proventriculus, Available online xxx structures in the ant foregut (stomodeum), have received most attention for their roles in trophallaxis. However, potential roles of the esophagus have not been as well studied. Here, we report for the first Keywords: time the presence of an auxiliary thoracic crop in Pheidole aberrans and Pheidole deima using X-ray micro- Ants computed tomography and 3D segmentation. Additionally, we describe morphological modifications Dimorphism Mesosomal crop involving the endo- and exoskeleton that are associated with the presence of the thoracic crop. Our Liquid food results indicate that the presence of a thoracic crop in major workers suggests their potential role as Species group repletes or live food reservoirs, expanding the possibilities of tasks assumed by these individuals in the colony.
    [Show full text]
  • Thievery in Rainforest Fungus-Growing Ants: Interspecific Assault on Culturing Material at Nest Entrance
    Insectes Sociaux (2018) 65:507–510 https://doi.org/10.1007/s00040-018-0632-9 Insectes Sociaux SHORT COMMUNICATION Thievery in rainforest fungus-growing ants: interspecific assault on culturing material at nest entrance M. U. V. Ronque1 · G. H. Migliorini2 · P. S. Oliveira3 Received: 15 March 2018 / Revised: 21 May 2018 / Accepted: 22 May 2018 / Published online: 5 June 2018 © International Union for the Study of Social Insects (IUSSI) 2018 Abstract Cleptobiosis in social insects refers to a relationship in which members of a species rob food resources, or other valuable items, from members of the same or a different species. Here, we report and document in field videos the first case of clepto- biosis in fungus-growing ants (Atta group) from a coastal, Brazilian Atlantic rainforest. Workers of Mycetarotes parallelus roam near the nest and foraging paths of Mycetophylax morschi and attack loaded returning foragers of M. morschi, from which they rob cultivating material for the fungus garden. Typically, a robbing Mycetarotes stops a loaded returning Myce- tophylax, vigorously pulls away the fecal item from the forager’s mandibles, and brings the robbed item to its nearby nest. In our observations, all robbed items consisted of arthropod feces, the most common culturing material used by M. parallelus. Robbing behavior is considered a form of interference action to obtain essential resources needed by ant colonies to cultivate the symbiont fungus. Cleptobiosis between fungus-growing ants may increase colony contamination, affect foraging and intracolonial behavior, as well as associated microbiota, with possible effects on the symbiont fungus. The long-term effects of this unusual behavior, and associated costs and benefits for the species involved, clearly deserve further investigation.
    [Show full text]
  • Comprehensive Phylogeny of Myrmecocystus Honey Ants Highlights Cryptic Diversity and Infers Evolution During Aridification of the American Southwest
    Molecular Phylogenetics and Evolution 155 (2021) 107036 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Comprehensive phylogeny of Myrmecocystus honey ants highlights cryptic diversity and infers evolution during aridification of the American Southwest Tobias van Elst a,b,*, Ti H. Eriksson c,d, Jürgen Gadau a, Robert A. Johnson c, Christian Rabeling c, Jesse E. Taylor c, Marek L. Borowiec c,e,f,* a Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany b Institute of Zoology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany c School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287-1501, USA d Beta Hatch Inc., 200 Titchenal Road, Cashmere, WA 98815, USA e Department of Entomology, Plant Pathology and Nematology, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844-2329, USA f Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, 875 Perimeter Drive, Moscow, ID 83844-2329, USA ARTICLE INFO ABSTRACT Keywords: The New World ant genus Myrmecocystus Wesmael, 1838 (Formicidae: Formicinae: Lasiini) is endemic to arid Cryptic diversity and semi-arid habitats of the western United States and Mexico. Several intriguing life history traits have been Formicidae described for the genus, the best-known of which are replete workers, that store liquified food in their largely Molecular Systematics expanded crops and are colloquially referred to as “honeypots”. Despite their interesting biology and ecological Myrmecocystus importance for arid ecosystems, the evolutionary history of Myrmecocystus ants is largely unknown and the Phylogenomics Ultraconserved elements current taxonomy presents an unsatisfactory systematic framework.
    [Show full text]
  • Division of Labour Promotes the Spread of Information in Colony Emigrations by the Ant Temnothorax Rugatulus
    Division of labour promotes the spread royalsocietypublishing.org/journal/rspb of information in colony emigrations by the ant Temnothorax rugatulus Gabriele Valentini1,2, Naoki Masuda7,8, Zachary Shaffer2, Jake R. Hanson1,3, Research Takao Sasaki9, Sara Imari Walker1,3,4, Theodore P. Pavlic2,3,4,5,6 Cite this article: Valentini G, Masuda N, and Stephen C. Pratt2 Shaffer Z, Hanson JR, Sasaki T, Walker SI, Pavlic 1School of Earth and Space Exploration, 2School of Life Sciences, 3Beyond Center for Fundamental Concepts in TP, Pratt SC. 2020 Division of labour promotes Science, 4ASU–SFI Center for Biosocial Complex Systems, 5School of Computing, Informatics, and Decision the spread of information in colony Systems Engineering, and 6School of Sustainability, Arizona State University, Tempe, AZ 85287, USA emigrations by the ant Temnothorax rugatulus. 7Department of Mathematics, and 8Computational and Data-Enabled Science and Engineering Program, Proc. R. Soc. B 287: 20192950. University at Buffalo, State University of New York, Buffalo, NY 14260, USA 9Odum School of Ecology, University of Georgia, Athens, GA 30602, USA http://dx.doi.org/10.1098/rspb.2019.2950 GV, 0000-0002-8961-3211; TS, 0000-0001-7923-9855; SCP, 0000-0002-1086-4019 The fitness of group-living animals often depends on how well members Received: 19 December 2019 share information needed for collective decision-making. Theoretical studies have shown that collective choices can emerge in a homogeneous group of Accepted: 6 March 2020 individuals following identical rules, but real animals show much evidence for heterogeneity in the degree and nature of their contribution to group decisions. In social insects, for example, the transmission and processing of information is influenced by a well-organized division of labour.
    [Show full text]
  • Worker-Behavior and Behavior-Behavior Interaction
    ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 115-132 doi: 10.25849/myrmecol.news_031:115 14 April 2021 Original Article Worker-behavior and behavior-behavior interaction networks in the trap-jaw ant Odontomachus chelifer (Latreille, 1802) (Hymeno ptera: Formicidae) Felipe Marcel Neves, Marcelo Eduardo Borges & Marcio R. Pie Abstract Division of labor is among the main factors to explain the evolutionary success of social systems, from the origins of multi- cellularity to complex animal societies. The remarkable ecological success of social insects seems to have been largely driven by ergonomic advantages stemming from the behavioral specialization of workers. However, little is known about how individuals and their corresponding behavioral repertoires are related to each other within a division-of-labor context, particularly by viewing such relationships as complex networks. Applications of network theory to the study of social insects are almost exclusively used to analyze behavioral interactions between individuals rather than to the study of relations among individuals and behaviors. Here, we use an approach to the study of the organization of the behavioral repertoire of ant colonies that considers both individual-behavior interactions and behavior-behavior interactions, besides colony time budgets. Our study investigates the organization of division of labor in colonies of the trap-jaw ant Odontomachus chelifer (Latreille, 1802). All the behavioral acts (including inactivity) performed within three queenright colonies of different sizes (n = 7, 30, and 60 workers) were studied under controlled laboratory conditions. Each ant was individually marked and observed by scan sampling in 10 min intervals for 10 h each (n = 5919 behavioral acts).
    [Show full text]
  • Hymenoptera: Formicidae
    NATAL NEST DISTRIBUTION AND PLEOMETROSIS IN THE DESERT LEAF-CUTTER ANT A CROMYRMEX I/ERSICOLOR (PERGANDE) (HYMENOPTERA: FORMICIDAE) BY STEVEN W. RISSING,* ROBERT A. JOHNSON,* AND GREGORY B. POLLOCK** While most ant colonies are started by single queens, colony foundation by groups of queens, pleometrosis, also occurs (Wilson 1971, H6lldobler and Wilson 1977). Several extensively studied, highly pleometrotic species are notably similar with respect to important aspects of colony ontogeny and population dynamics. Myrmecocystus mimicus, Solenopsis invicta and l/'eromessor per- gandei queens found colonies mutualistically without respect to relatedness (Bartz and H6lldobler 1982, Tschinkel and Howard 1983, Pollock and Rissing 1985, Rissing and Pollock 1986). Further, while adult colonies of these species are highly territorial (Htill- dobler 1976a, 1981; Wilson et al. 1971; Went et al. 1972, Wheeler and Rissing 1975), natal colonies are clumped with brood raiding and subsequent worker defection from brood-raided colonies occur- ring (references cited above for M. mimicus and S. invicta, for F. pergandei: Rissing and Pollock, in press). Given such frequently deleterious natal colony interactions, adaptive value of b.abitat selection by founding queens resulting in clumping of natal nests is unclear. Natal nests of M. mimicus are generally clumped in areas devoid of adult nests (Bartz and H6lldobler 1982), yet still occur near such nests (B. H611dobler, pers. comm.), and queens of S. invicta show some preference for microtopographic features (Tschinkel and Howard 1983). Here we present data relating habitat selection and clumping of natal nests of the highly pleometrotic leaf- cutter ant Acromyrmex versicolor (Pergande) directly to survival of founding queens.
    [Show full text]
  • Emigration Speed and the Production of Sexuals in Colonies of the Ant Temnothorax Crassispinus Under High and Low Levels of Disturbance
    Insect. Soc. (2016) 63:127–134 DOI 10.1007/s00040-015-0447-x Insectes Sociaux RESEARCH ARTICLE Emigration speed and the production of sexuals in colonies of the ant Temnothorax crassispinus under high and low levels of disturbance S. Mitrus1 Received: 31 March 2015 / Revised: 21 October 2015 / Accepted: 28 October 2015 / Published online: 19 November 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract A nest relocation is costly for social insects, and Introduction involves hazards. Emigrations were studied in Temnothorax crassispinus ant colonies, which inhabit ephemeral nest The life conditions of animals affect their allocation of sites, and which frequently change their nests. In a labora- available energy in growth, reproduction, and the accumu- tory experiment, ant colonies from one group were forced to lation of reserves, thus affecting their life history parameters change their nest sites 10 times over a ca. 3-month period, (Stearns 1992). Nest site quality is an important factor for whilst colonies from the second group were forced to adopt social insects. It influences such aspects as food availability, this practice twice (on the beginning of May, and in the the occurrence of parasites, predation, reproduction, and second half of July). Colonies of the ant from both the competition with other colonies (Ho¨lldobler and Wilson groups reduced their total emigration duration. However, 1990; Blu¨thgen and Feldhaar 2010; Moyano and Feener the duration of the transport phase remained unchanged. In 2014), which determines life history parameters. the case of colonies with higher level of disturbance, there The changing of a nest site is typical for social insects was no relation between colony growth rate and energy during colony development, and the colonies of some species allocation in sexual individuals, whilst a negative correla- also change their nest site when they discover a superior one tion between these parameters was present in group with (Ho¨lldobler and Wilson 1990; Dornhaus et al.
    [Show full text]