Astudyofgeneticdifferentiationandhybridization amongspecieswithdivergentecologicaland evolutionaryprofiles Thesissubmittedinpartialfulfilmentoftherequirements ofthedegreeDoctorrer.nat.ofthe FacultyofForestandEnvironmentalSciences, AlbertLudwigsUniversität FreiburgimBreisgau,Germany by CharalambosNeophytou FreiburgimBreisgau,Germany 2010

DeanofFaculty: Prof.Dr.JürgenBauhus Supervisor: Prof.Dr.SiegfriedFink SecondReviewer: Assoc.Prof.Dr.FilipposA.Aravanopoulos Dateofthesis’defence:December8,2010

Tableof contents 1.Introduction ...... 1

2.Objectivesandhypotheses...... 3 2.1.Interspecificandgeographicgeneticdifferentiationpatternswithinandbetween Quercus petraea (Matt.)Liebl.and Q. robur L.basedondatafromnaturalstandsgrowing underdrasticallydiverseenvironmentalconditionsandpossessingdifferent evolutionaryhistories...... 3 2.2.Patternsofgeneticdifferentiationandhybridizationbetween Q. alnifolia Poechand Q. coccifera L.intheinsularenvironmentof...... 3 2.2.1.Interspecificandintraspecificgeneticdifferentiationbetween Q. alnifoliaand Q. coccifera :alargescaleandmultipopulationapproach...... 4 2.2.2.Hybridizationdynamicsbetween Q. alnifolia and Q. coccifera :geneticanalysisof adulttreesandprogeniesinamixedstand ...... 4 2.3.Evolutionaryconservationoftheusedmicrosatellitelociandphylogenetic relationshipsamongthestudyspecies ...... 5

3.Literaturereview...... 6 3.1.Phylogenyofthegenus Quercus inEuropeandtheMediterraneanBasin...... 6 3.2.Differentiation,hybridizationandevolutionin...... 7 3.2.1.Theuseofmorphologicaltraits ...... 8 3.2.2.Theuseofmolecularmarkers...... 9 3.3. Q. petraea and Q. robur inEurope:Speciesdistributionandecologicalrequirements...... 10 3.3.1. Quercus petraea (Matt.)Liebl ...... 10 3.3.2. Quercus robur L...... 11 3.3.3.Differentiationandhybridizationbetween Q. petraea and Q. robur ...... 11 3.4. Quercus alnifolia , Q. coccifera and Q. infectoria ssp. veneris inCyprus:Species distributionandecologicalrequirements...... 14 3.4.1. Quercus alnifolia Poech...... 14 3.4.2. L...... 15 3.4.3. ssp. veneris A.Kern ...... 15 3.4.4.Differentiationandhybridizationbetween Q. alnifolia and Q. coccifera ...... 16

4.Accomplishedresearch...... 18 4.1.Detectinginterspecificandgeographicdifferentiationintwointerfertileoak species( Quercus petraea (Matt.)Liebl.and Q. robur L.)usingsmallsetsofmicrosatellite markers(ManuscriptI)...... 18 4.1.1.Methodology...... 18 4.1.2.Resultsanddiscussion...... 18 4.1.3.Conclusion...... 20 4.2.Interfertileoaksinanislandenvironment.I.Contrastingpatternsofnuclearand chloroplastDNAdifferentiationbetween Quercus alnifolia and Q. coccifera inCyprus (ManuscriptII)...... 20 4.2.1.Methodology...... 20 4.2.2.Resultsanddiscussion...... 21 4.2.3.Conclusion...... 21

4.3.Interfertileoaksinanislandenvironment.II.Limitedhybridizationbetween Quercus alnifolia Poechand Q. coccifera L.inamixedstand(ManuscriptIII)...... 22 4.3.1.Methodology...... 22 4.3.2.Resultsanddiscussion...... 22 4.3.3.Conclusion...... 23 4.4.ConservationofnuclearSSRlocirevealshighaffinityof Quercus infectoria ssp. venerisA.Kern()tosectionRobur(ManuscriptIV)...... 23 4.4.1.Methodology...... 23 4.4.2.Resultsanddiscussion...... 24 4.4.3.Conclusion...... 24 4.5.PhylogeneticrelationshipsamongthestudyspeciesbasedonchloroplastDNA haplotypes...... 25 4.5.1.Methodology...... 25 4.5.2.Resultsanddiscussion...... 25 4.5.3.Conclusions...... 26

5.Generaldiscussion...... 28

6.Conclusionsandoutlook...... 34

7.Summary ...... 37

8.Zusammenfassung...... 39

9.Περίληψη...... 42

10.References ...... 45

11.Acknowledgments...... 56

12.Publications ...... 58

1

1.Introduction Oaks ( Quercus L.) constitute one of the most speciesrich genera of the northern hemisphere(Frodin2004).Theyoccupyawidedistributionrangecoveringlargepartsof Europe, North America, the Mediterranean Basin and Asia spreading southwest to ColumbiainSouthAmericaandsoutheasttoIndonesia.Consistingof300500species (Camus 1934, Manos et al. 1999), they are a dominant element in a great variety of ecosystems ranging from Mediterranean sclerophyllous communities to temperate deciduous forests and tropical mountainous communities (Axelrod 1983). Numerousspecies,subspeciesandvarietiespresentamultiplicityofclimatic,edaphicand photoperiodic adaptations. Besides their high taxonomic complexity, oaks are characterized by especially high levels of hybridization. Numerous records of intermediateformsarisefromstudiesofbothfossilizedandlivingspecies(Palmer1948, Stebbins1950,Rushton1993). In Europe, the genus Quercus is widely present and forms large forests in a wide ecologicalspectrum.Twoimportanttaxonomicgroups,thesectionsQuercusandCerris are represented with more than 30 species (Denk and Grimm 2010). The widespread deciduous species Q. petraea and Q. robur (section Quercus) predominate in several landscapes across the continent and play an important economical role as a valuable source of (Aas 2008a, Aas 2008b). A series of other deciduous species occupy diversehabitatswiththeircentresofdiversitymainlybeingthethreemainpeninsulasof the Mediterranean part of Europe (the Iberian, the Italian and the Balkan Peninsulas; Roloff et al. 2008). Evergreen sclerophyllous oaks are a significant element of Mediterranean sclerophyllous communities and are adapted to the particular environmentalconditionsthere(e.g.prolongedsummerdroughtandfire;Mooneyand Dunn 1970). Besides species with large distribution ranges and broad ecological amplitudes, several other oak taxa are geographically restricted and show a high specificityofhabitatliketheendemic Q. alnifolia ,whichisconfinedtotheigneousrock formationsoftheTroodosMountainsinCyprus(Knopf2008). Inthelightofarapidclimatechange,asignificantworldwideshiftofclimaticzonesis expected over the next years. The reaction of tree species consists in three main alternativestrategies:adaptation,migrationorextinction(Savolainenetal.2007,Aitken et al. 2008). Species with wide ecological amplitudes are expected to shift their distributionrangesnorthwards,butalsotooccupyadditionalhabitatswithintheircurrent growing areas, due to retreat of other more demanding species. Species with more restrictedhabitatsmaybemorevulnerabletoextinction.Ontheotherhand,ashiftof theecologicalzonesnorthwardsmayoffernewnichesforthesespecies(Lindneretal. 2010).Giventherapidityofglobalwarming,fastmigratoryresponsesareneededforthe species to cope with climatic changes. A facilitated gene flow of preadapted alleles (assistedmigration)orevenaspeciestransferfromwarmerclimatesmayberequiredin theefforttocopewithenvironmentalchanges(Aitkenetal.2008). The significant role of interbreeding in the evolution of genus Quercus has been increasinglyrecognizedsincethemiddleofthelastcentury(Stebbins1950,Muller1952, Burger 1975, Van Valen 1976). Studies of hybridization in oaks contributed to a reconsiderationofthebiologicalspeciesconcept,whichrequiresreproductiveisolation amongspecies(Mayr1942).Empiricalandscientificobservationsdocumentedinalarge bodyofliteraturesupportthenotionthatinterbreedingamongst Quercus speciesisnotan 2 1.Introduction

occasional phenomenon, but an active evolutionary mechanism proceeding over generationsandleadingtosubstantialexchangesofgeneticvariationbetweendifferent taxonomicalunits(Muller1952,Stebbins1950,Burger1975,VanValen1976,Petitetal. 2004, Curtu et al. 2009). The role of interspecific gene flow as a means of adaptive variationexchangeisafascinatingandchallengingtopicofrecentandcurrentresearch (Petitetal.2004,ScottiSaintagneetal.2004a,MuirandSchlötterer2005,Lexeretal. 2006,Lepaisetal.2009).Overthelastdecades,newtoolsofDNAanalysishavegiven theopportunitytoassessthegeneticimprintsofhybridizationandhaveallowedtestsof severalevolutionaryhypothesesinoaks. In the present study, species differentiation and interspecific gene flow are studied by focusing on oak species with divergent ecological and evolutionary profiles. Firstly, taxonomic and geographic genetic variation among very distinct environments are investigatedintheinterfertile Q. petraea and Q. robur ,twocontinentaloakspecieswitha largedistributionrangeandananalogousecologicalamplitude.Secondly,hybridization and differentiation are examined in the paradigm of Q. alnifolia and Q. coccifera , two MediterraneanoakspeciesgrowingintherestrictiveinsularenvironmentofCyprusand being the only potentially interfertile oaks there. Thirdly, evolutionary conservation of loci and phylogenetic relationships are resolved among the former oak species that representtwodifferentandimportantsectionsof Quercus .Forthispurpose, Quercus infectoria ssp. veneris ,thethirdoakspeciesofCyprus,isadditionallyusedforminga potentialoutgroup.

3

2.Objectivesandhypotheses 2.1. Interspecific and geographic genetic differentiation patterns within and between Quercus petraea (Matt.) Liebl. and Q. robur L. basedondatafromnaturalstandsgrowingunderdrasticallydiverse environmental conditions and possessing different evolutionary histories The first objective of this study is to analyse interspecific and geographic patterns of geneticvariationinawidecontinentalenvironment,inparticularwithinandbetween Q. petraea and Q. robur . Quercus petraea and Q. robur possessabroadgeographicdistribution andecologicalamplitudereflectingaseriesofadaptationstocontrastingenvironments. The present study especially focuses on the less studied Balkan refugial provenances throughananalysisofinterspecificandgeographicpatternsofgeneticvariationwithin and between Q. petraea and Q. robur by using a multilocus approach. Insofar evidence suggests that only a restricted proportion of the genome accounts for interspecific differentiationbetweenthetwospecies,whichhasbeenattributedtodirectionalselection affecting a limited number of genes and hitchhiked regions. On the other hand, gene flowhasbeensuggestedtoplayahomogenizingroleintherestofthegenome(Bodénès etal.1997,Petitetal.2004,ScottiSaintagneetal.2004a).Forstudyingbothfactorsof differentiation–thetaxonomicandthegeographic–interspecificpopulationpairsfrom different environments along a large scale ecological gradient are included. It is hypothesizedthatlociaccountingforspeciesdifferentiationhaveaconsistentgeographic pattern due to directional selection acting for maintenance of species identity. On the contrary, variation at the remaining loci is governed by the homogenizing effect of interspecificgeneflowandbylocalselection.Genomiclociwhichvarystronglyamong regions, but show low interspecific differentiation at the local scale may indicate adaptations to the regional conditions, which are shared between the species due to ‘adaptive introgression’. Moreover, selectively neutral loci are expected to be less differentiatedbothattheinterspecificandinterregionallevel.Geneticvariationamong regionsandbetweenspecieswastestedagainstthe‘null’hypothesisofabsenceofgenetic differentiationeitheratthetaxonomicorthegeographicallevel. 2.2.Patternsofgeneticdifferentiationandhybridizationbetween Q. alnifolia Poech and Q. coccifera L. in the insular environment of Cyprus Thesecondobjectiveofthestudyistheanalysisofgeneticdifferentiation,hybridization andintrogressioninarestrictedinsularenvironment,inparticularbetween Q. alnifolia and Q. coccifera . Being phylogenetically related and forming both sympatric and pure populationsinCyprus, Q. alnifolia and Q. coccifera presentanidealparadigmforthestudy of differentiation in the presence of hybridization and potential introgression in a restricted insular environment. Potential hybridization between these species and the thirdoakspeciesofCyprus, Q. infectoria ssp. veneris ,hasneverbeenreportedandmaynot be expected as the latter species shows an affinity to another section (Meikle 1977, SchironeandSpada2001). 4 2.Objectivesandhypotheses

Twoapproachesarefollowedforthisobjective.First,geneticdifferentiationwithinand between species is assessed in a large scale, using both pure and mixed populations. Second,interspecificgeneflowinafinescaleisstudiedwithinamixedstandbyusing adulttreesandtheiroffspring.

2.2.1. Interspecific and intraspecific genetic differentiation between Q. alnifolia and Q.coccifera :alargescaleandmultipopulationapproach Afundamentalevolutionaryquestionregardingsympatricandpotentiallyinterbreeding species is whether the species are genetically distinct and whether interspecific differentiation varies among mixed and pure populations. In order to address this question,geneticvariationisinvestigatedinpureandsympatricpopulationscoveringa largepartofthespecies’distributionareainCyprus.Inthepresenceofhybridizationit canbeexpectedthatgeneticvariationbetweenspeciesislowerinsympatryandahigher proportion of introgressed individuals occurs there. Furthermore, hybridization in contactzonesisexpectedtoresultinanincreasedintraspecificdifferentiationbetween pureandsympatricpopulations.Inthepresentstudy,geneticvariationamongregions and between species is tested against the ‘null’ hypothesis of absence of genetic differentiation either at the taxonomic or the geographical level. For testing these hypotheses,markersfrombothnuclearandchloroplastgenomesareused.Ontheone hand,duetoafastdecayoflinkagedisequilibrium,nucleargenomesreflectcurrentor recent hybridizationevents (Asmussen et al. 1987). Moreover, due to an anemochoric pollendispersalmodeinoaks,formationof spatialgeneticstructuresatnuclearDNA lociisprevented(Kremeretal.2002).Ontheotherhand,chloroplastgenomesgenerally evolve slowly and lack recombination, thus better reflecting historic events of introgression(Wolfeetal.1987).Beingmaternallyinherited,theypossessabarochoric dispersalmodeinoaks,whichlimitstheextentofgeneflowandleadstotheformation ofspatialgeneticstructures(Petitetal.1993,DumolinLapègueetal.1997,Olaldeetal. 2002).

2.2.2. Hybridization dynamics between Q. alnifolia and Q. coccifera : geneticanalysisofadulttreesandprogeniesinamixedstand Inordertoelucidatetheextentofactivehybridizationbetween Q. alnifolia and Q. coccifera insympatry,focusisputonamixedstand.Firstly,anestimationofgeneticintrogression among adults is aimed, based on phenotypic traits ( morphology), nuclear and chloroplast DNA markers. Secondly, the degree and possible directionality of interspecificgeneflowareexaminedbyanalyzingprogenies(acorns)fromselectedadult maternal trees representing both parental species and intermediates. In particular, by removingthematernalcontributiontoeachoffspring,ageneticcharacterizationofmale gametic contributions (pollen clouds) to each maternal tree is sought. In the lack of interspecific gene flow and assuming panmixia within species, it is hypothesized that thereisnovariationamongpollencloudscomparingmaternaltreesofthesamespecies. Alternatively, interspecific gene flow is expected to decrease genetic differentiation between pollenclouds belonging to interspecific pairs of maternal trees. Furthermore, interbreedingisexpectedtoincreasegeneticvariationamongmaternaltreesatthewithin species level. Finally, based on multilocus genotypes, an individual characterization of

2.Objectivesandhypotheses 5

male(pollen)gameticcontributiontoeachoffspringisaimed.Byassigningpollendonors tospecies,interspecificgeneflowcanbequantifiedwithinprogeniesandwithinspecies. Apossibleasymmetrybetweenspeciesmayrevealhybridizationdirectionality. 2.3. Evolutionary conservation of the used microsatellite loci and phylogeneticrelationshipsamongthestudyspecies Thethirdobjectiveofthestudyistheestablishmentofphylogeneticrelationshipsamong the study species. For this purpose, the third oak species growing on Cyprus is additionallyconsidered.Aphylogeneticdistinctnessofthisspeciesincomparisontothe sclerophyllous Q. alnifolia and Q. coccifera has been indicated by earlier studies, mostly based on morphological descriptions (Camus 1934, Meikle 1977). Additionally, a classification of this species to section Quercus along with Q. petraea and Q. robur has beensuggested(SchironeandSpada2001).However,nomolecularevidencehasbeen provided.Firstly,acomparisonofamplificationpatterns,variabilityandsequencedataof nuclear loci among species is aimed in this study. In general, locus conservation and amplificationofhomologoussequenceshavebeenshowntocorrelatewithphylogenetic affinity in oaks (Steinkellner et al. 1997). Secondly, using chloroplast DNA markers, a studyofphylogeneticrelationshipsamongallthestudyspeciesissought.Duetolinkage equilibrium and slow evolution, chloroplast DNA has been widely used to infer phylogenetic relationships in angiosperms (Wolfe et al. 1987, Demesure et al. 1996, DumolinLapègueetal.1997,Heuertzetal.2006).Anassignmentof Q. alnifolia and Q. coccifera ononehandand Q. infectoria ssp. veneris ontheother,todifferentsectionswould stronglyprecludeanyinterspecificgeneflow,sinceeffectivereproductivebarriersresult in a lack of natural hybrids arising from intersectional crosses (Cottam et al. 1982, Rushton1993,Manosetal.1999).Inaddition,acomparisonofthelatterspeciesto Q. petraea and Q. robur wouldprovideevidenceaboutitsmembershiptosectionQuercus.

6

3.Literaturereview 3.1. Phylogeny of the genus Quercus in Europe and the MediterraneanBasin Accordingtothemostrecentclassificationsbasedonmorphologicalandmoleculardata, the genus Quercus is subdivided into four main sections: Cerris with a Eurasian distribution, Lobatae (red oaks) and Protobalanus with a New World distribution and Quercus sensustricto(whiteoaks)withawidespreaddistributioninNorthAmericaand Europe (Manos et al. 1999). In contrast to previous studies based on morphology (Camus1934,Nixon1993),moleculardatasupportmonophylyandanearlyseparation ofthestrictlyEurasiansectionCerrisfromtheothersections,whichisinagreementwith aninitialvicarianceeventbetweenEoceneandOligocene(ManosandStanford2001). Regardingtheotherthreesections,aNewWorldoriginandamorerecentspeciationis supported(Manosetal.1999,ManosandStanford2001).Amongthem,onlyQuercusis representedinbothNorthAmericaandEurasia,suggestingalinkbetweentheOldand theNewWorldpriortobreakupofthegeographiccorridorsbetweenthetwogeographic regions (Manos et al. 1999). Migration through this land bridge was possible only for deciduous oaks which were adapted to prolonged winter darkness in high latitudes (TiffneyandManchester2001). Two main phylogenetic clades, section Cerris and section Quercus are present in the westernEurasianregion,includingthewholeMediterraneanBasin.ThesectionCerrisis currently represented by 15 species (Denk and Grimm 2010). Phylogenetic affinities amongthemembersofthesectionCerrisareconfirmedbyvariouscladisticstudiesbased onmolecularmarkers.Amainfindingofmolecularstudiesfromthelastdecadeisthe division of the section into two well separated entities; the ‘Ilex’ group, including all evergreen Mediterranean species except Q. suber , and the ‘Cerris’ group, including the remainingoaksofsectionCerris(Manosetal.1999,DenkandGrimm2010).Oaksof group ‘Ilex’ ( Quercus ilex , Q. coccifera , Q. aucheri and Q. alnifolia ) are predominantly distributed around the Mediterranean Basin, being elements of sclerophyllous broadleaved communities. Oaks of group ‘Cerris’ are also spread mainly in Mediterraneancountries( , Q. trojana and Q. libani ),whereas Quercus cerris is the only species of the section that enters into areas of Central Europe with sub continentalclimate.Yet,itistheonlydeciduousspeciesofthisphylogeneticgroup. ThesectionQuercus(whiteoaks)isrepresentedbyca.18deciduousorsemideciduous species in western Eurasia with their diversity bulk lying in the southern part of the region. Among them, several species like Q. faginea , Q. infectoria and Q. vulcanica are regionallydistributedacrossthenorthernMediterraneancountries. Quercus pubescens and Q. frainetto can tolerate continental conditions and reach the interior of the European continent where they grow on the driest and warmest sites. Only two species of this section occupy large areas of Central Europe, Q. petraea and Q. robur , which are less adapted to summer dry Mediterranean climate. In general, phylogenetic subdivision within the section is difficult, since a great part of molecular differentiation is shared amongspecies.BothrDNAandcpDNAdiversityiswidelysharedwithinthesectionnot onlyamongEuropeanspecies,butalsoamongtheirAmericancounterpartsindicatinga recentspeciation(ManosandStanford2001,DenkandGrimm2010). 3.Literaturereview 7

Previous subdivision within the white oaks (formerly called ‘subgenus Quercus’) into sectionslikeRobur,Prinusetc.(Krussmann1978,Nixon1993)isnotsupportedbymore recent molecular evidence (Manos et al. 1999, Manos and Stanford 2001, Denk and Grimm2010).Accordingtothesameearliertaxonomicclassifications,sectionCerriswas alsoplacedwithinthe‘subgenusQuercus’.Giventhatthishierarchyisnotsupportedby genetics,theterms‘sectionQuercus’and‘sectionCerris’(followingDenkandGrimm (2010))areusedinthepresentmanuscript. 3.2.Differentiation,hybridizationandevolutioninoaks. Oaksarewellknownfortheirabilitytointerbreedinnature.Intermediateformsarewell documentedbothinfossilizedandlivingspeciessuggestingthathybridizationhasbeen widespread for several millions of years (Palmer 1948, Stebbins 1950, Rushton 1993). Despitehybridization,speciestendtokeeptheirmorphological,ecologicalandgenetic identitiesalthoughinmostcaseshybridformsareasfertileastheirparents(Burger1975, Miretal.2009,Lepaisetal.2009).Theexampleof Quercus hastriggeredseveraldebates amongtaxonomistsandhasledtoachallengeofclassicalspeciesconcepts,whichrequire reproductiveisolationasaprerequisiteforspeciation(Mayr1942).Increasingevidence supportsthathybridizationinoaksisnotanoccasionalphenomenon,butanimportant evolutionary mechanism that allows exchange of adaptive variation between different taxonomicalunits(Muller1952,VanValen1976,Petitetal.2004). Hybridizationratesamongspeciesgroupsdependonseveralprezygoticandpostzygotic reproductive barriers. Reproductive barriers are generally stronger among phylogeneticallydistantspecies,duetoseveralphysiologicalincompatibilities(e.g.pollen pistilinteractions;Boavidaetal.2001).Nonaturalhybridsbetweenoakspeciesbelonging to different sections have been reported (Rushton 1993), although some artificial crossings were successful (e.g. Q. ilex x Q. robur ; Schnitzler et al. 2004). Flowering phenology sets an important prezygotic barrier to hybridization or may result in a directionality of interspecific gene flow (Muller 1952, Van Valen 1976, Belahbib et al. 2001,Varelaetal.2008). Ecological barriers among interfertile oak species may also limit hybridization. Intermediateformsaremostlyobservedinrestrictedzoneswherethehabitatsoftwoor more species overlap (Muller 1952, Rushton 1993). Out of these intermediate zones natural selection favours the parental species. Directional selection can lead to the re emergenceoftheparentalspeciesafterafewgenerationsofbackcrossings(Petitetal. 2004).However,giventhatthisselectionappearstoaffectalimitedportionofspecies’ genomes, species are able to exchange substantial amounts of genetic information through these hybridization zones (Bodénès et al. 1997, Lexer et al. 2006, Scotti Saintagneetal.2004a).Basedonsuchobservations,VanValen(1976)definedspeciesas an ‘adaptive zone minimally different from that of any other lineage in its range and which evolves separately from all lineages outside its range’. Van Valen (1976) additionallysupportsthatincompletereproductiveisolationpermitsbetterevolutionary adaptationbyallowingtheexchangeofmutuallybeneficialgenes. Various methods have been used to provide evidence about hybridization including controlled crosses, pollen viability studies, karyotype analyses, analysis of macro and

8 3.Literaturereview

micromorphologicaltraitsandofmolecularmarkers(Rushton1993).The majorityof naturalhybridizationstudiesarebasedonmorphometrictraitsandmolecularmarkers. Anoverviewofbothmethodsisgiveninthenextchapters.

3.2.1.Theuseofmorphologicaltraits Morphologicalcharactershadbeenthemaintoolfortaxonomicclassificationwithinthe genusQuercus fromtheintroductionofthemoderntaxonomybyLinnaeusinthe18 th centuryuntiltherecentpreambleofmoleculargenetics.Variousdiscriminantcharacters have been proposed for characterization of different taxonomic units. Several dichotomouskeysbasedonflower,andleafmorphologyhavebeendevelopedin ordertodescribespeciesandsectionswithinthegenus(DeCandolle1864,Camus1934, Schwarz 1936). With the introduction of scanning electronic microscopy (SEM), new insights into discriminative characters between species have been achieved. Foliar thrichomes and stomata shape, size and density have been used for species discrimination(BussottiandGrossoni1997,Aas1998). In order to elucidate species differentiation and hybridization at the population and individual level, several quantitative methods based on morphological traits have been proposed. One of the earliest approaches was the construction of hybrid indices involvingalimitednumberofsuchtraits.Forpresentationofthedata,abivariatescatter diagram, based on two of the assessed morphometric characters, was used (Rushton 1993). This provided a quantitative estimation of natural hybridization. However, the interpretationoftheresultsofthismethodmaybeproblematic,sinceitisbasedonan arbitraryselectionofdiscriminantcharactersanditreliesupontheappropriatenessofthe usedcharacters(Rushton1993).Thepotentialofanalysesbasedonmorphologicaltraits has been increased with the introduction and development of multivariate analyses. Several different approaches have been used in oaks including principal component analysis (PCA), discriminant function analysis, cluster analysis and canonical variate analysis(Rushton1993,Jensen2003).Theresultsofthesemethodsarepresentedeither numerically or graphically in terms of linear combinations of a set of original morphometric variables (Rohlf and Marcus 1993). The simultaneous observation of several morphometric variables allows a much more objective approach and a much moresensiblebiologicalexplanationoftheresults(Rushton1993).Leafmorphologyhas been the most important discriminator for these analyses. The use of multivariate analysesinoakshasbeenwideandhasprovidednewinsightsaboutdifferentiationand hybridization. For instance, hypotheses about the extent and directionality of genetic introgressionhavebeenraisedbasedonthesemethods(Jensenetal.1993,Curtuetal. 2007). Although the use of morphometric traits has been valuable for taxonomists, a straightforward explanation of the results in a genetic context has been problematic. Highphenotypicvariationwithintaxonomicunitsmakesthespeciesboundariesfuzzy and may lead to wrong detection of hybridization. Ecological and microclimatic adaptation,aswellasphenotypicplasticity,arecommoninoaksandincreaseintraspecific variation significantly (Valladares et al. 2002, Bruschi et al. 2003). Recent studies combiningmorphometricandgeneticanalysesusinginterfertileoaksinsympatrycould not always confirm that morphological intermediacy was due to introgressive hybridization.Morphologicalintermediatesdidnotnecessarilymatchgeneticallyadmixed

3.Literaturereview 9

formsand,onthecontrary,geneticallyadmixedindividualspossessedpurephenotypes (Curtuetal.2007,Viscosietal.2009). Moreover,theestablishmentofphylogeneticrelationshipsbyusingonlymorphological traitshasbeenchallengedandisnotsupportedbymorerecentresultsfromanalysesof molecular markers. Putative morphological homoplasies maylead to falseconclusions. Forinstance,phenotypicallysimilarlobedmighthavedevelopedindependentlyin different sections of oaks (Jensen 2003). Similarly, sclerophylly might have been maintained as an atavistic character in the phylogenetically remote oaks of the MediterraneanBasin,whilethedeciduouscharacterinthesectionsQuercusandCerris shouldhavedevelopedindependently(SchironeandSpada2001).Theestablishmentof molecular methods and especially the development of numerous hypervariable DNA markershavegivennewopportunitiesfordealingwiththeseproblems.

3.2.2.Theuseofmolecularmarkers Theintroductionofelectrophoresisbasedanalysesofproteinshasbeenacrossroadsin thehistoryofpopulationgenetics.Aftertheirfirstappearanceinthisresearchareaduring thesixties(LewontinandHubby1966),isoenzymesandalloenzymeshadbeengradually established as the marker of choice in plant population genetics (e.g. Gottlieb 1977). Later,andespeciallyafterthediscoveryofpolymerasechainreaction(PCR;Mullisand Faloona 1987), numerous nuclear and organellar DNA markers have been made available. In contrast to phenotypic traits, molecular markers are completely penetrant and offer the opportunity of a random sampling of the genome, thus allowing an unbiasedestimationofpopulationgeneticdiversity(HubbyandLewontin1966).Their use for the study of population genetics in oakshas been widespread. Among others, marker assisted studies have been carried out to describe phylogeny, genetic diversity, differentiation, hybridization, spatial genetic structures, gene flow and parentage relationships. Thefirstisoenzymestudiesinoaksappearedinthelateeightiesandmostlydealtwith diversity within and between populations and taxonomic units. A common finding of theseearlystudieswasalowinterspecificdifferentiationbetweenrelatedspecies,partly attributed to recent speciation, and a high variation within populations (Manos and Fairbrothers1987,MüllerStarcketal.1993).Intheirstudywith Q. rubra and Q. ilicifolia (section Lobatae), Jensen et al. (1993) concluded that isoenzymes resolved the two species worse than morphological traits (multivariate analysis of leaf morphometric traits). Isoenzymes havebeen used to investigatephylogenetic relationships within the genusQuercus .Forinstance,inananalysisof18oakspeciesfromeasternNorthAmerica, GuttmanandWeigt(1989)coulddifferentiatewellbetweenthesectionQuercusandthe section Lobatae, while intraspecific variation within sections was low. In addition, isoenzyme analyses provided the first molecular evidence about mating systems and hybridizationdirectionalityinnaturalstandsof Q. petraea and Q. robur inEurope(Bacilieri etal.1993,1996).However,duetothelowpolymorphismlevelsandthelimitednumber of analyzed loci, use of isoenzymes decreased significantly since PCR based methods allowedadirectanalysisofDNAloci. The development of DNA markers has significantly increased the opportunities of populationgeneticanalysisinoaks.Theirhighervariabilityallowedabetterresolutionin studies of genetic variation. One of the most significant observations made based on

10 3.Literaturereview

DNAisthecontrastingdifferentiationpatternofnuclearvs.chloroplastgenomes.While species mostly represent distinct entities in terms of molecular variance, chloroplast DNAhaplotypesaresharedbetweenrelatedspecies.Inanearlystudy,Whittemoreand Schaal(1991)examinedgeneticdifferentiationamongfivemorphologicallydistinctred oaks(sectionLobatae)ofeasternNorthAmericabasedonrDNAITS(ribosomalDNA InternalTranscribedSpacers),anuclearDNAmarker,andcpDNARFLPs(Restriction Fragment Length Polymorphisms). They concluded that nuclear genomes ‘may be exchangedlessfreelythanchloroplastones’.Similarpatternshavebeendescribedamong severalgroupsofrelatedoakspecies(KremerandPetit1993).Amoredetailedreview basedoncasestudiesin Q. robur and Q. petraea isgiveninthefollowingchapter. 3.3. Q.petraea and Q.robur inEurope:Speciesdistributionand ecologicalrequirements. Quercus petraea and Q. robur arethemainrepresentativesofthegenusQuercus incentral Europe.BothofthemformextensiveforestsinareasstretchingfromtheMediterranean BasintotheScandinavianPeninsulaandfromPortugaltothewesternpartofRussia. PhylogeneticallytheyarecloselyrelatedandbothbelongtothesectionQuercus.Inspite of their different ecological requirements, they often occur in sympatry and natural hybridizationbetweenthemhasbeenwidelyreported.Avastamountofscientificworks hasdealtwithdifferentiationandhybridizationbetweenthem. Both Quercus petraea and Q. robur have been multifunctional tree species with a high economical, ecological, esthetical and cultural significance. Not only have they been valuable for their hard and durable wood, but their acorns have been used in animal husbandry,theirhasbeenusedfor,whilemedicamentshavebeenextracted fromtheirleaves,andbark.Nowadays,theyaremostlydemandedfortheirwood, whichisusedforconstructionpurposes,furniture,shipbuildingandformakingwine barrels (Aas 2008a). Moreover, they playa significant ecological role, since oak stands show an increased biodiversity in comparison to other forest tree species of central Europe,likebeech,andfir(Ellenberg1996).

3.3.1.Quercuspetraea (Matt.)Liebl Quercus petraea isalargedeciduoustreeupto40m.Itismorphologicallyverysimilarto Q. robur from which it can be distinguished by its long leaf petioles and its stalkless acorns(Aas2008a).Itsmaindistributionrangeischaracterizedbyatemperateclimate withanoceanictosubMediterraneaninfluence.Itgrowsonshallowtomoderatelydeep, dry to moist, well drained soils on various types of geological substrate. It is light demanding,butcantoleratemediumshadinginyoungage.Manyforestsof Q. petraea in centralEuropehistoricallygrewunderstronganthropogenousinfluence.Coppicinghas beenpracticedformanycenturiesresultinginadominanceQ. petraea insiteswherethe European beech ( Fagus sylvatica ) would be more competitive under natural conditions. However,duringthelast200years,manyoakrichstandshavebeenturnedintoconifer stands, thus leading to losses of the range of Q. petraea (Aas 2008a).A decline in oak forests(both Q. petraea and Q. robur )hasbeenobservedduringthe20 th century,which wasattributedtoaninteractionofabiotic(e.g.frostanddrought)andbioticfactors(e.g. fungalinfectionsandbrowsingbyrowdeerThomasetal.2002).

3.Literaturereview 11

Infutureforestry, Quercus petraea isexpectedtoplayanimportantrolenotonlyduetoits economical significance, but also due to its adaptability to drought. An increased frequency of exceptionally dry summers is expected to give Q. petraea a competitive advantage in comparison to other deciduous forest tree species of Central Europe (Leuzinger et al. 2005). Thus, under scenarios of global warming, detailed ecological, physiological, silvicultural and genetic studies extended to its whole distribution range and covering its whole ecological spectrum are a prerequisite for its rational use in CentralEuropeanforestsofthefuture.

3.3.2. Quercusrobur L. Quercus robur isalargedeciduoustreeupto40m.Incontrastto Q. petraea ,itsleavesare nearlysessileorwithveryshortpetioles,whileitsacornsarepedunculate(Aas2008a).Its distributionrangecoversmuchthesameareaasthatof Q. petraea .However,comparedto Q. petraea , Q. robur can tolerate more pronounced continental climates and is thus extendedfurthereastintoEuropeanRussia(Ellenberg1996).Inaddition,itshabitatlies mostlyonnutrientrich,acidicsoilswhereitcantoleratewaterlogging.Additionally,itcan befoundonverydryhighlycalcareousoracidicsites.Inlessextremesitesitisreplaced bymoreshadeintolerantspecieslike Q. petraea and Fagus sylvatica .Itssilviculturalhistory andhistoricalusesaresimilartoQ. petraea .Asanecologicallyampleforesttreespecies withaspecialeconomicalimportance,Q. robur ,as Q. petraea ,isofparticularinterestfor futureforestry,giventheongoingglobalwarming.

3.3.3.Differentiationandhybridizationbetween Q.petraea and Q.robur The habitats of Q. petraea and Q. robur are delimited by their different ecological requirements.Themainlimitingfactoriswaterdrainage,whichisaprerequisiteforthe establishment of Q. petraea . Quercus robur can cope well with waterlogging and thus dominatesinperiodicallyfloodedareas,beingnotcompetentenoughoutsidetheseareas (Aas2008a).Inintermediatehabitatsthetwospeciescoexistinsympatricstandswhere hybridizationtakesplace(Bacilierietal.1995).Thefirstdocumentationofhybridforms datesbacktothebeginningof19 th century(Gardiner1970).Sincethen,alargebodyof scientificresearchhasdealtwithdifferentiationandhybridizationbetween Q. petraea and Q. robur rendering them to model species for studying interspecific gene flow in an evolutionarycontext. Initially,studiesofnaturalhybridizationweremostlybasedonmorphologicaldata.Due toahighmorphologicalsimilaritybetweenthetwospecies,aclearseparationbetween them and their hybrids based on simple observations has not been easy and led to a controversyabouttheintensityandextensityofnaturalhybridization.Severalauthorities stated that ‘free’ and ‘wide’ introgression between the two species exists (review in Gardiner1970).Thisopinionwassupportedbythefirstcytologicalobservationswhich revealednokaryotypicdifferencesbetween Q. petraea and Q. robur (Hoeg1929).Thefirst attemptstoquantifyintrogressionbetweenthemweremadebycarryingstatisticanalyses in natural populations mainly based on leaf morphometric data. Large scale studies carried out in Ireland, Scotland, Sweden and Yugoslavia which supported increasing introgressionintheNorth(KrahlUrban1951,Cousens1962,Cousens1963,Cousens 1965).Sincethelateseventies,moreadvancedmultivariatemethodshavebeenusedfor thestudyofintrogressionbetweenthetwospecies(Rushton1979).Multivariateanalyses

12 3.Literaturereview

of morphological traits are still used today as an ‘easy to use’ tool for discriminating between Q. petraea , Q. robur andtheirhybrids(Kremeretal.2002). The introduction of molecular markers has opened new perspectives in the study of differentiationandhybridizationbetween Q. petraea and Q. robur sincetheearlynineties. Kremeretal.(1991)revealedforfirsttimethehighdegreeofcpDNAsharingversusa speciesspecificnuclearvariationbetween Q. petraea and Q. robur .Thesefirstresultsgave the motivation for large scale multipopulation phylogeographic studies. In the species complex of Q. petraea , Q. pubescens and Q. robur , it was shown that chlorotypes are regionallydistributedanddonotcorrelatewithspecies(Petitetal.1993,Petitetal.1997, Olaldeetal.2002).TheseresultssupportthatcpDNAgeographicdistributionreflects thepostglacialrecolonizationofCentralEurope,whereassubsequentinterspecificgene flowhasledtoanexchangeofchlorotypesamongspecies.Strongevidencetowardsthis viewwasprovidedbyalargescalestudyincluding2600populationsofeightoakspecies belonging to the section across Europe Quercus (Petit et al. 2002). First, unique chlorotypesandhighercpDNAdiversitywereobservedinrefugialareas,showingthat the sources of the Quartenary migration were located there. Only a fraction of these chlorotypes was observed in nonrefugial areas. Second, a longitudinal gradient of cpDNAlineagesinCentralEuropereflectsthenorthwardrecolonizationroutesfromthe threemainrefugia,theIberian,theItalianandtheBalkanPeninsulas. Ontheotherhand,nucleargeneticvariationmostlyfollowsaspeciesspecificpattern. The first evidence of this interspecific differentiation arose from isoenzyme studies. However, low variability and the lack of diagnostic loci restricted the discriminative powerofthesemarkers.Nevertheless,althoughallelefrequencydifferencesbetweenthe species were small, these were significant at a fraction of loci (Kremer et al. 1991, Bacilieri et al. 1995) and constant over large geographic areas (Zanetto et al. 1994, Gömöryetal.2001),supportingthatspeciesmaintaintheirgeneticidentitiesthroughout theirdistributionrange.TheintroductionofhypervariablenuclearDNAmarkersandthe developmentofcomputationallyintensiveassignmentmethodsledtoabetterresolving power of molecular methods. High and statistically significant genetic differentiation between Q. petraea and Q. robur acrosstheirdistributionrangewasrevealedbyanalyses basedonmultilocusstudieswithSSRmarkers(Streiffetal.1998,Muiretal.2000,Muir and Schlötterer 2005). However, these results were again based on allele frequency differencesamongthestudiedpopulations.Nodiagnosticlocibetweenthetwospecies (i.e. uniquely amplified in one of two species) were found. Moreover, a considerable amountofgeneticvariationwassharedbetweenthetwospecies(ScottiSaintagneetal. 2004a).Bothcommonancestryandinterspecificgeneflowhavebeendiscussedasthe reasonsforthispattern(MuirandSchlötterer2005,Lexeretal.2006). Genetic analyses including adult trees and progenies in mixed stands provided direct evidence about levels ofinterspecific gene flow between Q. petraea and Q. robur under naturalconditions.Thishasbeenprovedeitherbyanalyzingallelefrequenciesinpollen clouds(Bacilierietal.1993,1996),orbasedonparentalassignmentsofprogenies(Streiff etal.1999,Curtuetal.2009).Atthelevelofadulttrees,moleculardatasupportedthe presenceofalimitednumberofgeneticallyintermediateindividualsinsympatry(Curtuet al.2007,Gugerlietal.2007,2008)agreeingwithpreviousstudiesbasedonmorphology. Adirectionalityoftheinterspecificgeneflowhasbeenalsoshownwith Q. robur being moreoftenpollinatedby Q. petraea thanthereciprocal(Bacilierietal.1993,1996,Curtu etal.2009,Jensenetal.2009).Thisisinagreementwithdifferentialsuccessofcontrolled crossesbetweenthetwospecies,showingthatpollinationof Q. robur mothertreeswith

3.Literaturereview 13

pollenfrom Q. petraea byfarwasmoresuccessfulthantheopposite(Aas1988,Rushton 1977).Ithasalsobeenrevealedthattherateanddirectionofinterspecificpollenflowcan vary depending on the spatial distribution of the potential father trees. For instance, Streiffetal.(1999)foundanexcessof Q. robur pollendonorsinaprogenyarrayofa Q. petraea mothertree,whichwasattributedtothedominanceof Q. robur adultssurrounding thistree.Inamorerecentstudy,Lepaisetal.(2009)stresstheimpactofspeciesrelative abundance on hybridization rate and introgression directionality. In addition, paternity assignmentrevealedincreasedinterspecificcrossingsinnorthernlatitudes(Jensenetal. 2009) agreeing with earlier morphological studies which supported more extensive introgressionthere(Olsson1975,Rushton1979). The abundant molecular data significantly improved the stand of knowledge about differentiationandhybridizationbetween Q. petraea and Q. robur .Theyhavealsoprovided ‘feedforthought’inthediscussionsabouttheunderlyingevolutionarymechanisms.A focalpointofthesediscussionshasbeentheroleofnaturalselectioninthemaintenance of the genetic identities of the two species. An important outcome of the molecular studiesisthatthetaxonomiccomponentofdifferentiationisnotequallyexpressedacross the genome. A limited proportion of loci accounts for interspecific differentiation (Bodénèsetal.1997,Kremeretal.2002,ScottiSaintagneetal.2004a,Curtuetal.2007). In a model based analysis, ScottiSaintagne et al. (2004a) compared genome wide differentiationbetween Q. petraea and Q. robur at389lociagainsttheneutralexpectation– correspondinglackofnaturalselection–andfoundonly12%ofoutlierloci.Theseloci, inspiteofbeingperseneutral,mightbehitchhikedrepresentinggenomeregionswhere divergentselectionaccountsforspeciesdifferentiation.Onthecontrary,therestofthe genome might be permeable and thus subjected to homogenizing gene flow. This hypothesisagreeswithmodernspeciesconceptspointingthegeneasthemainunitof speciationandassumingporousgenomes(Wu2001,Nosiletal.2007,LexerandWidmer 2008). Lessisknownaboutgeneticvariationatgenomeareasof Q. petraea and Q. robur whichdo notdisplaythetracesofdivergentselection.Inthesegenomicregions,geneflowmay resultinanexchangeofneutralormutuallybeneficialgeneticvariantsinwhathasbeen named ‘adaptive introgression’ (Lexer and Widmer 2008). This phenomenon has been alreadyobservedinotherinterfertileplantspeciesgroups(e.g.in Helianthus spp.;(Kaneet al.2009).Inoaks,afewstudieshavefocusedonthecomparisonofinterspecificversus intraspecificgeneticdifferentiationusingdatafromecologicallydivergentsites.Bodénès etal.(1997)describedonegenelocusshowingahighgeneticvariationamongdifferent regions, but very low interspecific introgression at the local level. In addition, observations about genetic variation along ecological clines have been made within species,showingthatadaptationinfluencesalimitedportionofthegenome(Albertoet al. 2010). The extensive cpDNA sharing, as well as the direct molecular evidence of hybridization between Q. petraea and Q. robur support that the exchange of genetic variants through gene flow is possible. However, the influence degree of interspecific geneflowasanevolutionaryfactorisstilldebated(MuirandSchlötterer2005,Lexeret al. 2006). More studies of ‘neutral’ and adaptive introgression within and between the two species using multipopulation approaches in a large scale are needed, in order to betterunderstandtheconsequencesofnaturalhybridizationontheirgenomes.

14 3.Literaturereview

3.4. Quercusalnifolia , Q.coccifera and Q.infectoria ssp. veneris in Cyprus:Speciesdistributionandecologicalrequirements. TheislandofCyprusalongwithSouthernAsiaMinorisplacedwithinoneoftheten most significant biodiversity hotspots of the Mediterranean Basin (Medail and Quezel 1997).Thehighlydiversegeologicalsubstrateandthevariablereliefoftheislandresultin arichfloraandvegetation,aswellashighlevelsofendemism(Tsintidesetal.2002).The genusQuercus isrepresentedbythreespeciesontheisland,Quercus alnifolia and Q. coccifera , bothevergreen,andthesemideciduous Q. infectoria .Quercus alnifolia isanarrowendemic restrictedtotheTroodosMountainsonthecentralandsouthwesternpartofCyprus, where it is abundant. Quercus coccifera is a common element of various sclerophyllous communities, whereas Q. infectoria has a more restricted distribution range mainly dependingonwateravailability(Meikle1977,Tsintidesetal.2002).Allthreespeciesare absent from natural associations of the central plain due to its increased aridity. According to recent molecular evidence, the first two species belong to the section Cerris, as this was initially defined by Manos et al. (1999) and are closely related the Mediterranean‘ilicoid’oakspeciesQuercus ilex andQ. aucheri (DenkandGrimm2010). ThephylogeneticstatusofQuercus infectoria wasdisputeduntilveryrecently(Meikle1977, SchironeandSpada2001).Accordingtomolecularevidencepublishedinthelastyears, the species should be placed into section Quercus along with Q. petraea , Q. robur , Q. pubescens and other deciduous oak species of Europe, since it shows a strong genetic affinitywiththesespecies(DenkandGrimm2010).

3.4.1. Quercusalnifolia Poech. Quercus alnifolia isanevergreenshruboramuchbranchedwidecrownedsmalltreeupto 10m,exceptionallyreaching14munderoptimalconditions(Meikle1977,Knopf2006). Itischaracterizedbyitsdarkgreenglabrousleaveswiththeirgoldentomentouslower surface.ItgrowsexclusivelyontheTroodosMountainswhereitisconfinedtoultrabasic igneous rocks of the ophiolite complex, in altitudes ranging from 400 to 1800 m. Its wholehabitatischaracterizedbyaMediterraneanclimatewithincreasingwintercoldand decreasingsummeraridityatthehigheraltitudes.Attheloweraltitudesitisrestrictedto themoister sitesanditisgraduallyreplacedbymoredroughttolerant species(Knopf 2008). Its upper altitudinal limit is characterized by relatively harsh winters with temperatures dropping to 15°C and snow cover lasting 34 months (Tsintides et al. 2002).Itstotalareaofdistributionis23700ha(Esser1996). Withinitsdistributionrange, Q. alnifolia playsanimportantecologicalrole.Itoccursin dryhabitats,whereitisassociatedwith( Pinus brutia or P. nigra )or,lessoften,forms high maquis in mesic habitats characterized by deep forest soils with mull humus (BarberoandQuezel1979).Moreover,itcolonizesloosediabasicscreescontributingto soil stabilization. Quercus alnifolia can readily regenerate vegetatively after fire or felling throughcoppicing.Besidesitssignificantroleinsoilprotectionagainsterosion,itsfruits offeranexcellentfoodsourcetothelocalfauna.Incontrastto Q. coccifera ,itisnotused asafoodsourceforgrazinganimals.Inearliertimesitshardwoodhasbeenwidelyused inthepastforconstructionoftools,chairsandparquetfloors.Nowadays,itisstillused forproductionofhighqualitycharcoal(Knopf2008).

3.Literaturereview 15

3.4.2. Quercuscoccifera L. Quercus coccifera isadominantelementofthesclerophyllouscommunitiesthroughoutthe Mediterranean Basin. It is an evergreen shrub or small tree up to 10 m, occasionally attaininglargeheightsupto20m(Meikle1977,Chatziphilippidis2006).Itsleavesare leatherywithserratemarginsandglabrousorthinlystellatepubescentlowersurface.In Cyprus,itcanbefoundinawidevarietyofecosystemsoccurringinaltitudesfromnear sealevelupto1400m.Itgrowsbothonlimestoneandigneousrocksandcanoccur underdriersiteconditionsthan Q. alnifolia (Tsintidesetal.2002).Itcanbefoundmore oftenasanunderstoryelementofforests( Pinus brutia ).Italsooccursinassociation with Q. infectoria ondeepersoilsoncalcareousgeologicalsubstrateinthesouthwestern partofCyprus,whereasdensemaquiscommunitieswhere Q. coccifera isdominantarenot commoninCyprus(BarberoandQuezel1979).Itisnotanimportantsourceofwood, but it plays an important ecological role. As Q. alnifolia , it possesses a high ability of vegetativeregenerationanditistolerantagainstovergrazingandfire(Chatziphilippidis 2006).Besidesitsimportanceforanimalgrazing(mainlygoats),itsacornsareconsumed by the local wild fauna. Additionally, it offers protection against soil erosion with its densefoliage.Inearliertimes,itwasfamedforthecrimsondyeobtainedfromthescale insect( Kermes vermilio )infestingthetwigs(Meikle1977). Thesubspecies calliprinos ,citedbyseveralauthors,ischaracterizedbylargerdimensions ofindividualsandoccursintheeasternMediterraneanincludingCyprus.Incontrast,the subspecies coccifera grows in the western part of the Mediterranean and mostly attains shrubbydimensions.However,neitheraclearcutgeographicrestriction,nordiagnostic morphological(BussottiandGrossoni1997)ormoleculartraits(DenkandGrimm2010) supportthisintraspecificseparation.

3.4.3. Quercusinfectoria ssp.veneris A.Kern Quercus infectoria ssp. veneris is a semideciduous robust tree attaining 10 m height. In Cyprus, it grows in altitudes from sea level up to 1500 m. Its distribution is mostly marginalandrestrictedtosmallfragmentedpopulationsalongstreamsorattheborders ofcultivatedland.Thesearebelievedtoberemnantsofextendedwoodlandsformerly coveringthesouthernpartoftheTroodosMountains(Meikle1977,Christou2001). Fromtheecologicalpointofview, Quercus infectoria ssp. veneris playsanimportantroleby forming a special phytosociological association (Anagyro phoetidaeQuercetum infectoriae)characterizedbyarichfloraanddevelopingdeepforestsoils(Barbéroand Quézel1979).However,thesesitesareoftenusedagriculturallyduetotheirhighfertility, thus threatening Quercus infectoria ssp. veneris with limitation and fragmentation of its habitat. For this reason, it is currently under protection and its importance is mainly ecological and esthetic. In earlier times it has been used for timber production, dyes, acorns, and medical extracts, whereas its acorns were used for animal husbandry (Christou2001).

16 3.Literaturereview

3.4.4.Differentiationandhybridizationbetween Q.alnifolia and Q. coccifera Thedistributionrangesof Q. alnifolia and Q. coccifera areoverlappinginwideareasinthe igneousrockformationsoftheTroodosMountainsinaltitudesbetween400and1400m. In these areas, the two species occur in sympatry and sometimes form mixed stands. Individuals with intermediate morphology are known to local people, among others because they were preferentially used for grazing by goats in past. However, differentiation and hybridization between the two species have been only recently investigatedscientifically.Abotanicdescriptionofhybridindividualswaspublishedby Hand(2006). Thefirstanalysesofmorphologicaldifferentiationbetweenthetwospecieswerecarried out with use of leaf morphometric traits. Distinct morphology was supported by statisticallysignificantdifferencesofspecificleafdimensionalcharacters.Besidessome sparse designated hybrids, no indications of extensive introgression couldbe provided (Neophytouetal.2000,Neophytouetal.2007).Thisresult,togetherwithanobserved rarityofintermediateindividuals(Hand2006),suggeststhathybridizationbetweenthe two species may be occasional. However, segregation of the parental phenotypes in backcrossedindividualscanresultinunderestimationofgeneticintrogression(Anderson 1948, Rushton 1993). An additional finding based on leaf morphology is a reduced variabilityof Q. alnifolia incomparisonto Q. coccifera (Neophytouetal.2000). Atthemolecularlevel,thereareonlysparsedataaboutdifferentiationbetween Q. alnifolia and Q. coccifera and these mostly focus on phylogenetic relationships. According to isoenzyme,chloroplastDNAandnuclearDNAstudies,thetwospeciesshowaffinityto otherevergreenmembersofthesectionCerris(ToumiandLumaret2001,Lumaretetal. 2002,DenkandGrimm2010).Previously, Q. alnifolia hadbeenclassifiedtothe‘Cerris group’(alongwith Q. cerris and Q. suber )and Q. coccifera tothe‘ilexgroup’(alongwith Q. ilex ),bothbeingsubcladesofthesectionCerris,basedonmorphologicaltraits(Camus 1934).Accordingtorecentmoleculardata,bothspeciesareclassifiedtothe‘ilexgroup’. Atthepopulationlevel,areducedvariabilityof Q. alnifolia incomparisonto Q. coccifera wasinferredfromananalysisofsevenisoenzymeloci(ToumiandLumaret2001).On theotherhand,allalloenzymesobservedin Q. alnifolia werealsopresentin Q. coccifera , thus not precluding that the two species are able to exchange their genetic variants throughhybridization. In other evergreen species of the section Cerris, it has been shown that hybridization rates vary depending on phylogenetic relationships. For instance, limited hybridization hasbeenreportedbetweenQ. ilex and Q. suber (Miretal.2009),whichbelongtodifferent groups of the section Cerris (‘Ilex group’ and ‘Cerris group’ respectively; Denk and Grimm2010).Postpollinationreproductivebarriershamperpollinationof Q. suber from Q. ilex (Boavidaet al.2001). However, this limited hybridization was sufficient for an exchange of cpDNA haplotypes. often possesses cpDNA lineages typical for Q. ilex ,whiletheoppositehasbeenmuchmorerarelyobserved,thusreflectingthe aforementioneddirectionalityofhybridization(Belahbibetal.2001,Jimenezetal.2004, Miretal.2009).Ontheotherhand,hybridizationbetween Q. ilex and Q. coccifera ,both belonging to the ‘ilex group’ is more common as supported by both nuclear and chloroplastDNAadmixture(Jimenezetal.2004,OrtegoandBonal2010).

3.Literaturereview 17

Arecentstudyindicatesthatnucleargeneticdifferentiationamongspeciesinthesection Cerris is more pronounced in comparison to the section Quercus. Based on rRNA markers,the‘ilexgroup’isthebestresolvedwithseveralspeciesspecificmutants,while among white oaksclassification at the species level is not possible (Denkand Grimm 2010). A higher molecular differentiation may be connected with a more limited hybridizationincomparisontothesectionQuercus.InthecaseofQ. alnifolia ,adistinct ITSsequencefrom5SrRNAwasfoundcomparedtoallitsMediterraneancounterparts. Ontheotherhand,Quercus coccifera sharessomeofitsalleleswith Q. ilex and Q. aucheri . However,inferencesabouthybridizationratescannotbedrawnfrommostphylogenetic studies,sinceindividualsamplingismostlyverylimited.Furtherstudiesbasedonhighly variable nuclear and chloroplast DNA loci and on larger sample sizes are required, in ordertoprovideinsightsintodifferentiationandhybridizationbetween Q. alnifolia and Q. coccifera .

18

4.Accomplishedresearch In this chapter, results of the research are summarized following the order of the scientificobjectives. 4.1. Detecting interspecific and geographic differentiation in two interfertileoakspecies( Quercuspetraea (Matt.)Liebl.and Q.robur L.)usingsmallsetsofmicrosatellitemarkers(ManuscriptI) Theresultsoftheresearchconductedinrelationtothefirstobjectiveofthisstudywere published in the manuscript entitled ‘Detecting interspecific and geographic differentiationpatternsintwointerfertileoakspecies( Quercus petraea (Matt.)Liebl.and Q. robur L.) using small sets of microsatellite markers’ (Manuscript I). In the following chapters, the used methodology and the main results are summarized and discussed briefly.

4.1.1.Methodology Inordertosurveyinterspecificandgeographicpatternsofgeneticvariationwithinand between Q. petraea and Q. robur ,pureautochthonouspopulationsofthe twospeciesfrom CentralEuropeandtheBalkanPeninsulaweresampled.Threegeographicareas,South Western Germany, Central Bulgaria and Northern , were chosen along an ecologicalgradientwithincreasingariditytowardssouth.Fromeacharea,onepopulation of each Q. petraea and Q. robur were sampled. Multilocus genotypic data from hypervariable nuclear DNA microsatellites were used to carry out population genetic analyses. Diversity and differentiation were assessed at the population level for each locus.Lociwithhighgeneticdifferentiation(i.e.ahighF ST value)betweenspecieswere characterized as ‘species discriminant’. Similarly, loci with high intraspecific differentiation among provenances, but lower interspecific differentiation were characterizedas‘provenancediscriminant’.LocusspecificF ST sweretestedfordeviation fromtheneutralexpectationbothwithinandbetweenspecies.Finally,aBayesiananalysis ofgeneticstructureswascarriedoutusingalllocijointly(Structure;Pritchardetal.2000), aswellasbytreating‘species’and‘provenancediscriminant’lociseparately.

4.1.2.Resultsanddiscussion Amongatotalof20SSRlocitested,14displayedHardyWeinbergEquilibriawhichwere generally constant among all studied populations. Six other loci were dismissed, since theypresentedheterozygotedeficitsdueto‘null’alleles.Three‘speciesdiscriminant’loci –QrZAG30,96and112–weredetected.Theyexhibitedhighfrequencyofoneallele andverylowdiversityinonespecies,whereastheyremainedhighlyvariableintheother.

LocusQrZAG96wasan‘outlier’possessingasignificantlyhigherF ST valuetheexpected one under selectively neutral conditions. The other two ‘species discriminant’ loci (QrZAG96and112)possessednearlysignificantvalues.Inadditiontothethree‘species discriminant’ loci, five ‘provenance discriminant’ loci – QpZAG1/5, 15 and 110,

QrZAG87 and 101 – were found. These loci showed a higher F ST value among 4.Accomplishedresearch 19

populations of the same species, than between the two species in general. An examinationofallelefrequenciesoftheselocirevealedfrequencygradients,oftenwitha predominant allele in both species at the one edge of our ecological gradient. Interspecific differentiation at these loci was significantly lower than expected under selectivelyneutralconditionsattheinterspecificlevel,asrevealedbyneutralitytests. ByperformingamodelbasedBayesianclusteranalysisonallusedloci,thetwospecies could be well resolved by setting two modelled subpopulations (K=2), which correspondedtotheuppermosthierarchicallevelofstructure.Ameaningfulclustering was also received by setting four modelled subpopulations (K=4). Within species substructureswererevealedcorrespondingtotheGermanpopulationsononehandand totheBalkanpopulations(GreekandBulgarian)ontheother.Byrestrictivelyusingthe samemethodwiththe‘speciesdiscriminant’loci,taxonomicclusteringwasevenmore distinctive, whereas geographic differentiation was weaker. Results were remarkably differentwhenthe‘provenancediscriminant’lociwereused.Twoderivedclusterswere depicted;onecorrespondingtoboth Q. petraea and Q. robur populationsfromGermany andanotherincludingtheBalkanpopulations(GreeceandBulgaria).Afurtherclustering tospeciescouldnotbeachieved.Finally,highdegreeofindividualadmixtureandloose structuremostlyresolvingspecieswasobservedfortheremainingsixloci. The aforementioned results are supportive of a directional selection acting at ‘species discriminant’ loci and accounting for maintenance of species integrity. In general, selectionforoneadaptivetraitleadstogenefixation.Asaresultofgenetichitchhiking, allelic frequencies at neighbouring neutral marker loci are also influenced (Andolfatto 2001). In our case, one allele presented a very high frequency in Q. robur at locus QrZAG96, while this locus remained variable in Q. petraea . According to a QTL association study, this locus resides within a genomic area associated with a morphologicalQTL(petiolelengthasaratioofthetotalleafandpetiolelength),whichis stronglydiscriminativebetween Q. petraea and Q. robur (Kremeretal.2002,Saintagneet al.2004).Ontheotherhand,lociQrZAG30andQrZAG112werehighlyvariablein Q. robur ,whereasin Q. petraea onealleleoccurredinhighfrequency.Directionalselection andhitchhikingeffectsin Q. petraea mighthaveresultedtothispattern. Differential adaptation along an ecological gradient might have contributed to the formation of common genetic structures between Q. petraea and Q. robur at the five ‘provenancediscriminant’loci.Clinalvariationinoakshasbeenobservedamongothers forbudburst,growth,stemformandfrosthardiness(Kremeretal.,2002).Interestingly, aQTLassociationstudyrevealsthatlocusQrZAG87residesinagenomeregioncoding for timing of bud burst (ScottiSaintagne et al. 2004b). Moreover, Porth et al. (2005) couldmapaputativeosmoticstressmodulatedgene(1T21)only3,1cMapartfromlocus QrZAG101.Theseadaptivetraitsareexpectedtofollowdiversitypatternscorresponding todifferentialecologicalconditions,withbudburstbeinginfluencedbyphotoperiodand osmotic stress being more intensive with increasing aridity. The fact that interspecific populationpairsfromecologicallyequivalentareasinourstudyshowcommongenetic structures makes the hypothesis of adaptive introgression (common adaptation in presenceofinterspecificgeneflow)plausible.Arespectivecommonstructurewasnot observed for the six remaining loci (neither ‘species’ nor ‘provenance discriminant’) which demonstrated loose structures and high admixture, probably representing selectivelyneutralgenomeregions.

20 4.Accomplishedresearch

4.1.3.Conclusion Byusingamultilocusapproachgeneticstructuresamongregionsandbetweenspecies were studied. The ‘null’ hypothesis of genetic differentiation absence either at the taxonomicorthegeographicallevelwasdisproved.However,diversepatternsofgenetic differentiation were revealed depending on the marker set used. Three ‘species discriminant’ loci displayed genetic structures between species but not among regions, expressing the taxonomic factor of differentiation. Five ‘provenance discriminant’ loci showedmainlygeographicvariation,beinglocallysharedbetweenspeciesattheregional scale.Theremainingsixlociwerelooselystructuredbetweenthetwospecies.Individual geneticadmixturebasedontheselociwashigh. Fromtheevolutionarypointofview,theseresultsfitspeciationtheoriessuggestingthat directionalselectionatalimitednumberofgenesaccountsformaintenanceofspecies integrity, affecting adjacent genomic regions, while the rest of the genome can be exchanged through interspecific gene flow (Wu 2001, Nosil et al. 2007, Lexer and Widmer2008).‘Speciesdiscriminant’locifromthepresentstudymightrepresentsuch genomic regions. On the other hand, the common geographic structures of the ‘provenancediscriminant’locisuggestadaptiveintrogressionandmaycarrythegenetic imprintofcommonadaptationsof Q. petraea and Q. robur alongthestudiedecological gradient. The remaining six SSR loci seem to express “permeable” genome regions subjectedtointerspecificgeneflow,whichissupportedbythehighdegreeofindividual andpopulationadmixture. 4.2.Interfertileoaksinanislandenvironment.I.Contrastingpatterns of nuclear and chloroplast DNA differentiation between Quercus alnifolia and Q.coccifera inCyprus(ManuscriptII)

4.2.1.Methodology Interspecific differentiation between Q. alnifolia and Q. coccifera was investigated by sampling several populations across each species distribution range. First, one large sampleperspecies(96individualseach)wascollectedfromapurepopulation.Second,a mixedstandincludingbothspecies(207individualsof Q. alnifolia and66individualsof Q. coccifera ) and four individuals with intermediate morphology were sampled. Third, six further smaller samples (512 individuals) were collected from 12 additional phenotypically pure stands of each species in a greater geographic scale. The large sampleswereusedforanestimationofgeneticvariationparametersandananalysisof molecularvariation(AMOVA;Excoffieretal.1992).AmodelbasedBayesianprocedure (Structure; Pritchard et al. 2000) was carried out using all samples, in order to detect genetic structures and assign individuals to groups. Finally, cpDNA differentiation amongpopulationswascalculatedbasedonSlatkin’sR ST (Slatkin1995)andsignificance ofspatialgeneticbarrierswasassessedbybootstrapping.

4.Accomplishedresearch 21

4.2.2.Resultsanddiscussion Resultsshowedasignificantdifferentiationbetween Q. alnifolia and Q. coccifera intermsof nuclear microsatellite variation. Yet this differentiation was due to allele frequency differences. No locus was found with a strictly diagnostic species specific pattern. Differentiationbetweenspeciesvariedfromlocustolocus.Twoloci–QrZAG11and QrZAG112 – were highly discriminant. In particular, at locus QrZAG11, one allele presentedaveryhighfrequencyin Q. alnifolia ,whereasin Q. coccifera ahighdiversitywas observed.AtlocusQrZAG112,bothspeciespossessedadifferentcharacteristicallelein ahighfrequency. According to AMOVA, the largest percentage of genetic variation was found within populationsandbetweenspecies.Variationamongpopulationsandwithinspecieswas verylowandnonsignificantinmostcases.Onthecontrary,interspecificdifferentiation was high and significant at all analyzed loci. By performing a model based Bayesian clusteranalysisbasedonalllociused(Structure;Pritchardetal.2000),thetwospecies could be well distinguished by setting two modelled subpopulations (K=2). No additionalclusteringwasreceivedbyincreasingthenumberofmodelledsubpopulations, showinghomogeneitywithinspecies.Highmembershipproportionsandlownumberof admixedindividualsindicatedlimitedgeneticintrogression,eitherinpurepopulationsor insympatry.Incontrastto Q. alnifolia and Q. coccifera inCyprus,anincreasedoccurrence of introgressed genotypes has been observed in sympatry among closely related white oaksincontinentalEurope(Curtuetal.2007,Gugerlietal.2008,Salvinietal.2009). Opposite to nuclear microsatellite markers, chloroplast DNA haplotypes were largely shared between the two species and presented a regional distribution. Common chlorotypes were often observed between neighbouring Q. alnifolia and Q. coccifera populations. Chloroplast DNA sharing at the regional level may be the result of past colonization and historic genetic introgression events. In general, cpDNA variation in Mediterranean sclerophyllous oaks reflects very ancient migration and introgression events,sinceitremainedunaffectedbytheQuartenaryglaciation(Jimenezetal.2004, LópezdeHerediaetal.2007).Ancestrallineagesareconcentratedintheeasternpartof theregionisinagreementwiththehypothesisofaneasternoriginofthesespeciesanda westwardcolonizationduringtheTertiary(Zhu1993,Lumaretetal.2002,Lumaretetal. 2005).

4.2.3.Conclusion In the present publication, genetic variation among regions and between species was tested against the ‘null’ hypothesis of absence of genetic differentiation either at the taxonomic or the geographical level. Highly significant interspecific differentiation between Q. alnifolia and Q. coccifera wasshownbyananalysisofnuclearmicrosatelliteloci. This differentiation was pronounced in pure populations, as well as in sympatry indicatinglowlevelsofinterspecificgeneflow.Withinspecies,differentiationwaslower andnonsignificantatmostloci.Ingeneral,itwasshownthathybridizationbetween Q. alnifolia and Q. coccifera doesnotleadtohighlevelsofgeneticintrogressionatleastinthe nucleargenome,whilstpopulationswithinspeciesarenotsignificantlystructured.Onthe other hand, cpDNA haplotypes were shared between species at the regional level. A higherdegreeofcpDNAsharingbetweenthetwospeciesmightbetheresultofhistoric

22 4.Accomplishedresearch

hybridizationevents.Thefactthatcommonstructuresaresharedattheregionalscale supportsthishypothesis. 4.3. Interfertile oaks in an island environment. II. Limited hybridizationbetween Quercusalnifolia Poechand Q.coccifera L.in amixedstand(ManuscriptIII)

4.3.1.Methodology Hybridizationdynamicsbetween Q. alnifolia and Q. coccifera insympatrywereinvestigated byfocusingonthemixedstandofthepreviousstudy.Adulttreesincludedindividuals phenotypicallyassignedtothetwoparentalspecies,aswellalimitednumberofavailable intermediate forms. Furthermore, acorns were collected from nine mother trees, phenotypically assigned either to the two parental species of being morphologically intermediate. The adult trees of the stand were analysed by a principal component analysis (PCA) and a multiple discriminant analysis (MDA) of leaf morphometric characters, a factorial correspondence analysis (FCA) of genotypic data from nuclear microsatellitelociandacalculationofintrogressionindexbasedoncpDNAhaplotypes according to Belahbib et al. (2001). Progenies were genotyped using the same nuclear microsatelliteloci.Malegameteheterogeneityanddifferentiationamongprogenyarrays werestudiedwithuseofaTwoGeneranalysis(Smouseetal.2001).Finally,malegametic contributions(pollenclouds)wereanalyzedbymeansofaStructureanalysis(Pritchardet al.2000),inordertodetectgeneticstructuresandassignthemtospeciesgroups.

4.3.2.Resultsanddiscussion Asrevealedbythemultivariateanalysesofleafmorphometrictraits, Q. alnifolia and Q. coccifera weremorphologicallywellcircumscribed.Byusingthefirstprincipalcomponent from the PCA, which explained 62,0% of the variation, designated Q. alnifolia and Q. coccifera couldbewellseparated.Moreover,individualsassignedtotheparentalspeciesin the field returned by 100% to their species group after discriminant analysis. The intermediatestateofthefourdesignatedhybridscollectedfromthestandwasverifiedby both multivariate methods used. Multivariate analysis of leaf morphometric traits has beenprovedtobeanefficienttooltodistinguishbetween Q. alnifolia , Q. coccifera andtheir hybrids.However,duetosegregationoftheparentalphenotypesinthesecondandin highergenerations,backcrossedindividualsandgeneticintrogressioninoaksmaynotbe detectablebasedonlyonmorphology(Anderson1948,Rushton1993,Jensenetal.1993). Analysisofnuclearandchloroplastmicrosatellitesintheadultindividualsofthestand providedadditionalevidencetowardsalowdegreeofgeneticintrogressionbetween Q. alnifolia and Q. coccifera .Themedianpositionofthefourpinpointedhybridswasverified bybothnuclearandchloroplastDNAanalyses.Incontrasttotheirdistributioninalarge scale,chloroplastgenomesdemonstratedaverylowintrogressioninthismixedstand, which indicated a low interbreeding of the two species on this site. Furthermore, Q. alnifolia formedamarkedlymorecondensedgrouponthescatterdiagramofFCA,which mayattestitslowergeneticvariationincomparisonto Q. coccifera (ManuscriptIII).Similar resultswerefoundinpreviousstudieswithisoenzymes(ToumiandLumaret2001),but alsowithleafmorphologicaltraits(Neophytouetal.2007).Thiswaspartiallyattributed

4.Accomplishedresearch 23

togeneticdriftin Q. alnifolia ,duetoitsrestricteddistributionarea(ToumiandLumaret 2001). Geneticanalysesofprogenyarraysfurthersupportedthatinterspecificcrossingsbetween Q. alnifolia and Q. coccifera are rare. Pollen clouds shared the same gene pool as their maternal trees. Interspecific differentiation among pollen clouds was always high and significantincontrasttotheintraspecificone.Onlyfiveoffspringinatotalof176among Q. coccifera mothertreesmighthavearisenfrominterspecificcrosses.Fourofthemwere observed in the same progeny array. No evidence about interspecific crossings in the opposite direction could be provided. Interestingly, the hybrid mother tree that was employedinthisanalysiswaspredominantlypollinatedby Q. alnifolia paternaltrees.This directionality may be due to differences in flowering phenology. Flowering in Quercus alnifolia andintermediatesoccurswithadelayincomparisonto Q. coccifera (Hand2006). Giventhatthetwospeciesareprotandrous,ahigherdegreeoffertilizationof Q. coccifera and hybrid female flowers with Q. alnifolia pollenis expected than the reciprocal (it is more likely that female flowers of Q. coccifera are receptive during maturation of male flowersof Q. alnifolia thantheopposite).Otherfactorsresultinginthisdirectionalitymay be the relative abundance of Q. alnifolia in the study stand, as well as postpollination reproductivebarriers.

4.3.3.Conclusion Exceptionallylowlevelsofinterspecificgeneflowinsympatryweresupportedbyvarious different approaches followed in Manuscript III. Quercus alnifolia and Q. coccifera demonstratedseparatemorphologicalidentitiesanddistinctivegeneticdiversitypatterns. Onlyfourintermediateindividualsamongatotalof277adulttreespossessedamixed morphologicalandmolecularidentities.TheverylowdegreeofcpDNAsharingbetween adulttreesofthetwospeciesprovidedadditionalsupporttowardslimitedhybridization andintrogression.Thisisfurthersupportedbyanalysisofpollencloudswhichshowed that levels of successful interspecific pollinations were very low. In all cases of interspecificcrossesQ. alnifolia actedasthepollendonor.Moreover,thisdirectionality wasobservedinthepollencloudofanintermediatemothertree.Malegametesofthis progenyoriginatedpredominantlyfrom Q. alnifolia .Preorpostpollinationreproductive barriersmayhaveresultedinthispattern. 4.4.ConservationofnuclearSSRlocirevealshighaffinityof Quercus infectoria ssp. veneris A. Kern (Fagaceae) to section Robur (ManuscriptIV)

4.4.1.Methodology Crossamplificationofnuclearmicrosatellitelociwastestedinthisstudyasameansfor studyingitstaxonomicidentityincomparisonto Q. petraea and Q. robur ononehandand Q. alnifolia and Q. coccifera on the other. Conservation of 16 nuclear microsatellite loci originallydevelopedinvariouswhiteoakspecies(Quercus macrocarpa (Dowetal.1995), Q. petraea (Kampferetal.1998), Q. robur (Steinkellneretal.1997)and Q. myrsinifolia (Isagi

24 4.Accomplishedresearch

andSuhandono1997)wastestedinanaturalpopulationofQ. infectoria ssp. veneris from Cyprus. Moreover, sequences of allelic variants from Q. alnifolia and Q. coccifera were compared to those of Q. infectoria ssp. veneris . In particular, allele sequences of equally sized alleles at locus QpZAG9 were analyzed in all three species. Homoplastic allele variants at this locus between oaks belonging to the sections Quercus and Cerris had beendescribedinapreviousstudy(Curtuetal.2004).Acomparisonoftheresultsfrom thethreespeciesofCypriotprovenancetopublishedsequenceswasattemptedaswell.

4.4.2.Resultsanddiscussion All tested microsatellite loci were successfully amplified in Q. infectoria ssp. veneris and showed diploid patterns. They were polymorphic and fragment sizes matched those initially measured in the source species. Population genetics parameters also provide somepreliminaryindication,thatthisspecieskepthighlevelsofgeneticdiversity,inspite oflongtimefragmentationandlimitationofitshabitatsinCyprus.Takingintoaccount that the tested loci belong to 10 out of 12 genomic chromosomes and provided that genetic variation is evenly dispersed in the genome, it could be postulated that this variabilitymightbegenomewide.Thedegreeofcrossamplificationusingmicrosatellite primers has been shown to correlate with the phylogenetic affinity of the species (Steinkellneretal.1997,Sotoetal.2003). Overlappingallelesizesamong Q. infectoria ssp. veneris , Q. alnifolia and Q. coccifera atlocus QpZAG9 was due to homoplasy. Quercus infectoria ssp. veneris showed three additional insertionsinthemicrosatelliteflankingregions,whilsttherepetitivesequenceregionwas shorter.Ontheotherhand,theamplifiedsequencesofequallysizedallelesin Q. alnifolia and Q. coccifera demonstrated exactly the same insertions and deletions (indels). Homoplasyatthesamelocushasbeenreportedinacomparisonbetween Q. cerris versus fourotherspeciesofthesectionQuercusinanaturalpopulationinRomania(Curtuetal. 2004).Thesequenceof Q. infectoria ssp. veneris showedanindelpatternidenticalto Q. robur .Ontheotherhand,sequencesof Q. alnifolia and Q. coccifera didnotabsolutelymatch thesequenceof Q. cerris asreportedinCurtuetal.(2004).Thissuggestsalongertimeof divergence, between the two sclerophyllous Cypriot oaks and Q. cerris , which allowed accumulationofmutations.Inarecentstudy,DenkandGrimm(2010)provideevidence that groups ‘Ilex’, including Q. alnifolia , Q. aucheri , Q. coccifera and Q. ilex , and ‘Cerris’, including Q. cerris and Q. suber ,areparaphyletic.Thisisinagreementwiththeresultsfrom thepresentstudy.

4.4.3.Conclusion Amplification patterns and diversity of the tested microsatellite loci, as well as allele sequence data at locus QpZAG9 support a high affinity of Q. infectoria ssp. veneris to sectionQuercus(where Q. petraea and Q. robur belong).Alldatapresentaverydistinct evolutionary history in comparison to section Cerris (where Q. alnifolia and Q. coccifera belong).Furthermore,sequentialsimilarityof Q. alnifolia and Q. coccifera supportsthehigh phylogenetic relatedness of these species, which is in agreement with the incomplete reproductiveisolationbetweenthem.Bothlocusdiversitypatternsandallelesequences reflectmajorgenomicrearrangementsandshowthegreatphylogeneticdistancebetween Q. infectoria ssp. veneris ononehandand Q. alnifolia and Q. coccifera ontheother.Basedon

4.Accomplishedresearch 25

these results, effective gene flow between these distinct groups, at least under natural conditions,shouldbeprecluded. 4.5. Phylogenetic relationships among the study species based on chloroplastDNAhaplotypes

4.5.1.Methodology In this last chapter, a comparison is made among chlorotypes (chloroplast DNA haplotypes) from all species studied. The analysis was based on seven cpDNA microsatellite loci. Each chlorotype was defined as a unique combination of the SSR allelelengthsattheanalyzedloci.Adetaileddescriptionoftheanalysismethodanda citation of the used loci are given in Manuscript II. Quercus alnifolia and Q. coccifera , chlorotypicdataarealsoincludedinManuscriptII.Inthecaseof Q. infectoria ssp. veneris , Q. petraea and Q. robur furtherunpublisheddatafromthesamelociarepresented.Forthis purpose,asubsamplewastakensystematicallyfromeachoneofthespeciespopulations describedinManuscriptsIandIII.Mutationalstepsamongoperationaltaxonomicunits (OTUs)werecalculatedassumingthestepwisemutationmodel(SMM)bytheArlequin software(Excoffieretal.2005).Resultswereusedtoconstructanunrootedminimum spanning tree by employing the SplitsTree software (Huson and Bryant 2006). It was sought to resolve phylogenetic relationships among study oaks of section Cerris ( Q. alnifolia and Q. coccifera )ononehandandstudyoaksofsectionQuercus( Q. petraea , Q. robur and Q. infectoria ssp. veneris )ontheother.

4.5.2.Resultsanddiscussion Intotal,20chlorotypeswereidentified.Twelvechlorotypesoccurredin Q. alnifolia and Q. coccifera andeightin Q. infectoria ssp. veneris , Q. petraea and Q. robur (Table4.1).Twomain lineages separated by four mutational steps could be recognized, one representing the twosclerophyllousoaksofCyprus,belongingtosectionCerris,andonerepresentingthe remainingoakspeciesofsectionQuercus(Figure4.1).Chlorotypesharingwasobserved withinbothlineages.ThewidecpDNAsharingbetween Q. alnifolia and Q. coccifera and theirgeographicdistributioninCypruswasdiscussedinManuscriptII.Withintheoaks ofsectionQuercus,tworelatedgroupscouldberecognized.Chlorotypes21,22,23and 28formadistinctclade.Theywerefoundinboth Q. petraea and Q. robur andtheywere met in all analyzed regions, namely Greece, Bulgaria and Germany (Table 4.1). In contrast,chlorotypes24,25,26and27areconfinedtotheBalkan(GreekandBulgarian) populationsofthesespecies.Thisisinagreementwithlargescalephylogeneticstudies showingthatonlyafractionoftherefugialcpDNAvariationmigratedtowardsCentral Europeduringposticeagerecolonization(Petitetal.2002).Occurrenceofchlorotype 24intheCypriotpopulationof Q. infectoria ssp. veneris (theonlyonechlorotypeobserved there) further supported the affinity of this species to section Quercus and its distinctnessincomparisonto Q. alnifolia and Q. coccifera .Furthermore,thisobservation indicatesacommonevolutionaryhistoryofwhiteoaksbetweenSouthernand theEasternMediterranean.

26 4.Accomplishedresearch

Table4.1–ChloroplastDNAhaplotypes.Thenameofeachchlorotype,allelelengthsat eachSSRlocus,speciesandregionaregiven. A= Q. alnifolia , C = Q. coccifera , I = Q. infectoria ssp. veneris , P= Q. petraea , R = Q. robur . Chlorotype dt1 dt3 cd7 kk3 ccmp3 cd4 ccmp2 Species Region 1 81 119 83 95 115 95 235 A, C CY 2 81 119 84 95 115 95 235 A, C CY 3 81 120 83 95 115 93 234 A CY 4 81 120 83 95 115 94 234 A, C CY 5 81 120 84 95 115 93 234 C CY 6 81 120 84 95 115 94 234 A, C CY 7 81 120 84 95 115 95 234 A, C CY 8 82 119 83 94 115 93 235 C CY 9 82 119 84 94 115 93 235 A, C CY 10 82 120 83 95 115 94 234 A CY 11 82 120 84 95 115 94 234 A CY 12 82 120 84 95 115 93 234 C CY 21 78 122 83 95 116 93 233 R DE 22 79 122 83 95 116 92 233 P GR,BG,DE 23 79 122 83 95 116 93 233 P BG 24 80 120 83 95 116 91 233 I, R CY,GR 25 80 120 83 95 116 92 233 R GR 26 80 120 83 96 116 93 233 R BG 27 80 120 83 96 116 94 233 R BG 28 80 122 83 95 116 92 233 P DE

4.5.3.Conclusions Two monophyletic groups are revealed by the construction of an unrooted minimum spanning tree of haplotypes based on chloroplast DNA SSRs. The collocation of Q. alnifolia and Q. coccifera withinthesamephylogeneticcladeandthehighdegreeofcpDNA sharingsupportstheircommonmembershiptothesectionCerrisandparticularlytothe group ‘Ilex’ along with other sclerophyllous Mediterranean species. In contrast, the species Q. infectoria ssp. veneris , Q. petraea and Q. robur all belong to a distinct lineage compared to Q. alnifolia and Q. coccifera supporting their common membership to the section Quercus. Moreover, cpDNA sharing between the Cypriot population of Q. infectoria ssp. veneris andtheGreekpopulationof Q. robur underlinesthecloserelationship oftheformerspeciestosectionQuercus.

4.Accomplishedresearch 27

Figure 4.1 – Unrooted minimum spanning tree of chlorotypes observed. Distance is measuredinmutationalsteps.

28

5.Generaldiscussion Diverseaspectsofgeneticdifferentiationanditsunderlyingevolutionarymechanismsin oakswereelucidatedinthepresentstudy.Aspecialfocuswasgivenonhybridization,a widelydistributedphenomenoninthegenus Quercus .Itsroleinshapinggeneticvariation between species was investigated by examining two specific paradigms of oak species arising from drastically different environments and possessing distinct evolutionary histories.Asynergyofinterspecificgeneflowandadaptationwasshowntoformand shapegeneticdifferentiationwithinandbetweentheeuryoecious Q. petraea and Q. robur (section Quercus; Manuscript I). On the other hand, in the insular environment of Cyprus, hybridization was shown to be restricted and to have limited influence on interspecificnucleargeneticandphenotypic(intermsofleafmorphometrics)variation patterns between the indigenous Q. alnifolia and Q. coccifera (section Cerris). However, hybridizationmighthavehappenedrecurrentlythroughouttheirlongcoexistenceonthe island as supported by common chloroplast DNA structures at the regional level (ManuscriptsII,III).RegardingthethirdindigenousoakspeciesofCyprus, Q. infectoria ssp. veneris ,acompletelydifferentphylogeneticidentityandanaffinitytothewhiteoaks (sectionQuercus),including Q. petraea and Q. robur ,wasevidencedbybothchloroplast andnuclearDNAdata.Basedonthisresult,naturalhybridizationofthisspecieswith Q. alnifolia and Q. coccifera shouldbeexcluded(ManuscriptIV,Chapter4.5). Inbothpairsofinterfertileoaksinvestigatedinthepresentstudy,geneticdifferentiation varies(a)betweennuclearandorganellegenomesand(b)acrossnucleargenomes.Inthe case of Q. alnifolia and Q. coccifera , sharing of the main chloroplast DNA (cpDNA) haplotypeswasrevealedbyanalysisofmultipopulationdata.Themainchlorotypeswere not only found in both species, but they formedspatial geographic structures as well. Theseweresharedbetweenthespeciesattheregionallevel(ManuscriptII).Thisfinding supports the hypothesis of past hybridization rather than common ancestry. Since, according to geological and paleobotanical evidence, uplift of Cyprus in the Mediterraneansucceededspeciationofbothtaxa(Robertson1977,Palamarev1989),the most plausible explanation for the common cpDNA structures is exchange through interbreeding. Besides cytoplasmic introgression, hybridization was shown to result in homogenizing introgressionvaryingfromlocustolocuswithinthenucleargenomesofinterfertileoaks. Intheparadigmof Q. petraea and Q. robur inEurope(ManuscriptI),regionalstructures shared by the two species were revealed by a series of ‘provenance discriminant’ loci. Twoconspecificclusterscorrespondingtotwodistinctecologicalregionswereformed byananalysisoftheselociandnotaxonomicseparationcouldberesolvedusingthese particular loci, which again provides evidence of introgressive hybridization. On the otherhand,evidenceaboutlowlevelsofinterspecificintrogressionintheparadigmof Q. alnifolia and Q. coccifera wasprovidedbyalargescalemultipopulationapproachfollowed in Manuscript II. An equally high interspecific differentiation either between pure or sympatricpopulationswasrevealedeitheratthesinglelocuslevelorbyconsideringall locisimultaneously.Individualswithadmixedcoancestrywerealsosparse. Acloserinsightintointerspecificgeneflowwasgainedbyperformingfinescaleanalysis of hybridization between Q. alnifolia and Q. coccifera in sympatry (Manuscript III). It involvedtwogenerationlevels,adulttreesandtheirprogenies(acornembryos),inorder to quantify interspecific matings and to infer their directionality. Results indicate that 5.Generaldiscussion 29

hybridizationbetweenthesespeciesisararephenomenon.Withinatotalof277trees, only four intermediate individuals were found, whose hybrid origin was supported by morphologicaltraits,aswellasbynuclearandchloroplastDNAmarkers.Besidesthese scattered hybrids, further genetic introgression could not be ascertained among adult treesinthisstand.SharingofchloroplastDNAinthemixedstandwasverylimitedand genotypesofindividualspossessingsharedchlorotypeswerenotadmixed.Thelowrates of hybridization were endorsed by the results from analysis of acorn embryos, which revealed very low rates of interspecific matings (Manuscript III). Moreover, an asymmetrywasobservedwith Q. alnifolia alwaysactingaspollendonorintherarecases ofinterspecificpollinations,butalsointheprogenyarrayofahybridmaternaltree. Resultsofthepresentstudysuggestthatreproductivebarriersplayasignificantrolein preventinggeneflowbetweenQ. alnifolia and Q. coccifera .Prezygoticreproductivebarriers mayinvolveasynchronousflowering.Thisissupportedbydirectionalityofhybridization with Q. alnifolia actingpreferentiallyaspollendonor.Floweringin Q. alnifolia occursin average12weekslaterthanin Q. coccifera (Knopf2008).Givenprotandryintheseoak species,thisfloweringpatternmayratherfacilitatepollinationof Q. coccifera by Q. alnifolia than the opposite. This hypothesis was postulated in the case of the Mediterranean speciesQ. ilex and Q. suber whereaunidirectionalhybridizationwith Q. suber beingthe paternalparentwasattributedtoitsdelayedanthesis(Belahbibetal.2001,Jimenezetal. 2004,Varelaetal.2008).Amongtheseldominterspecificpollinationcasesof Q. coccifera by Q. alnifolia ,allexceptonewereobservedinonecertainmothertree.Thismayindicate that intraspecific variation of anthesis timing may lead to a rare and limited flowering periodoverlappingofthetwospeciesandinthesecaseshybridsaregenerated.Oneof thefourhybridtreeswasobservedclosetothisparticularQ. coccifera mothertree.The genotype and chlorotype of this hybrid show that it arose probably through a past interspecificpollinationeventofthis–potentiallyolderaged–mothertreeby Q. alnifolia pollen.Differentlevelsofhybridizationamongmothertrees,alongwithavariationof floweringphenologywithineachspecieshavealsobeenreportedinthespeciescomplex ofQ. petraea and Q. robur (Streiffetal.1999)andof Q. ilex and Q. suber (Varelaetal. 2008). Pre and postzygotic reproductive barriers due to physiological incompatibilities may additionallyrestrictinterspecificgeneflowandinfluenceitsdirectionality.Inthecaseof Q. ilex and Q. suber , pollenpistil interactions and abortions of female flowers and immature acorns shortly after pollination were reported to prevent pollination of the latter species by the former (Boavida et al. 2001, Varela et al. 2008). Complex reproductive cycle patterns exist in Q. coccifera , including biennial and annual acorn maturation, with the former occurring predominantly. Variation among reproductive cycle patterns has been found within and among individuals and has been shown to dependonweatherconditionsduringthegrowingperiod(BiancoandSchirone1985). The same phenomenon has been described in Q. suber , another Mediterranean oak speciesofsectionCerris(Boavidaetal.1999,2001;DíazFernándezetal.2004),whereas Q. ilex has a typical annual reproductive cycle (Bellarosa et al. 1990). These biological differenceshavebeenshowntorestricthybridizationbetween Q. ilex and Q. suber (Varela etal.2008)andmayaccountforlimitedhybridizationobservedbetween Q. coccifera and Q. ilex as well (Ortego and Bonal 2010). In Q. alnifolia , annual acorn maturation is assumed(Hand2006);however,detailedobservationscomparableto Q. cocciferaand Q. suber are not available. This biological difference may set an additional barrier against hybridizationbetween Q. alnifolia and Q. coccifera .

30 5.Generaldiscussion

Thepresentstudyprovidesevidencethatinterbreedingfrequencybetween Q. alnifolia and Q. coccifera islow.Moreover,occurrenceofmorphologicalintermediatesisfairlysparsein Cyprus,althoughthetwospeciesoftengrowinsympatry.Thepresenceoftheobserved hybrids along with some other exemplars around Kampos village (Hand 2006, Neophytouetal.2007)maybeduetoparticularecologicalconditionsthere.Reduction ofmaterecognitionduetoenvironmentalstresshasalsobeenreportedasafactorthat reinforces hybridization in oaks (Williams et al. 2001). The study stand may represent such a disturbed environment, quite proximal to a rural community where strong anthropogenicinfluencehasbeenreported.Theremnantsofpreviousagriculturaluseare still visible and grazing by goats was practiced as recently as 2030 years ago (A. Christou 1, personal communication). Based on the hypothesis mentioned above, disturbedenvironmentalconditionsinthestudiedstandmayhaveincreasedthedegree ofsuccessfulinterspecificmatingsallowingthelimitedhybridizationobserved. In the previous paragraphs factors have been discussed that may have enhanced or prevented interspecific matings between Q. alnifolia and Q. coccifera . Nevertheless, the degree of realized gene flow between two interfertile species depends on further seed germination, survival and fitness of hybrids. In the case of Q. alnifolia and Q. coccifera , adulthybridswerefertileandproducedlargeamountsofseeds.However,introgression ofthechloroplastgenomesamongadulttreeswasverylimitedinsympatry(Manuscript III).Ifbackcrossesweresuccessful,givenasufficientnumberofgenerations,chloroplast DNA introgression would be expected. For instance, the directionality ofinterspecific mating would result in chlorotype capture by Q. coccifera by Q. alnifolia . Nonetheless, results from the mixed stand do not support such an introgression pattern. It could therefore be hypothesized that acorns from backcrossing fathered by Q. alnifolia have limitedornogerminationsuccess.Alternatively,thetwospeciesmayhavenotcoexisted for a long time on this site. Given that Q. coccifera is preferred as a pasture species in comparisonto Q. alnifolia ,anthropogenicintroductionoftheformerintheproximityof theruralcommunityadjacenttothestudysiteinrelativelyrecenttimescannotberuled out.Incasethespeciescontactisrecent,thetimespanoftheirsympatriccoexistence may not have been enough to allow cpDNA exchanges and genetic introgression in general.Therarityofinterbreedingandthefactthatregenerationthroughseedsislimited in the two species (Chatziphilippidis 2006, Knopf 2006) suggest that a relatively long timeintervalisrequiredforanintrogressionoftheirchloroplastgenomestooccur. Adaptability to the site conditions is a further important factor that can limit interbreeding and can influence the directionality of backcrosses. Ecological differentiation has been shown to set an effective barrier to hybridization. Often hybridization is well restricted to intermediate habitats (Anderson 1948, Muller 1952, Burger1975,Petitetal.2004). Quercus alnifolia and Q. coccifera are partially ecologically differentiated,withthefirstpossessinganarrowerhabitatconfinedtovolcanicrocksof the Troodos Mountains and the second having a wider distribution and being independentofgeologicalformationandmoredroughttolerant(Knopf2008).Sympatric populationsmostlyoccurinthelowerareasofthedistributionrangeof Q. alnifolia ,where this species seems to be less competent due to increasing drought. In the higher elevations of the Troodos Mountains, Q. alnifolia becomes more dominant and increasingly forms pure stands. The area of ecological overlapping is fairly wide and sympatricoccurrenceisnotinfrequent(Neophytouetal.2000).However,hybridswarms

1AndreasK.Christou ResearchSectionForestryDepartment,MinistryofAgriculture,NaturalResourcesand Environment,Cyprus

5.Generaldiscussion 31

havenotbeenobservedinoverlappingdistributionareasandintermediateformsarevery rare. Thus, it can be stated that interspecific hybridization is rather impaired by reproductivethanbyecologicalbarriers. In contrast to the above, in the Q. petraea – Q. robur complex, there is evidence that ecological differentiation plays a significant role as a barrier against a widespread establishmentofhybrids.Regardingtheirhabitatrequirements,thetwospeciesarewell circumscribed. Quercus petraea isdroughtresistant,doesnottoleratewaterloggingandcan affordamoderatedegreeofshading. Quercus robur cancopewellwithflooding,buthasa more pronounced pioneer character being lightdemanding (Bacilieri et al. 1995, Aas 1998).Asshownbycontrolledcrossesandstudiesinnaturalstands,reproductivebarriers betweenthetwospeciesaregenerallyweakandanthesisissynchronous(Bacilierietal. 1995,Bacilierietal.1996,Steinhoff1998).Naturalselectionhasbeenshowntofavour the‘resurrection’oftheparentalspeciesthroughbackcrosseswithinafewgenerations (Petit et al. 2004). During this natural process, neutral or mutually beneficial genetic variants may be transferred between the two taxa. Low genetic differentiation at the majority of nuclear loci (Bodénès et al. 1997, Lexeretal.2006,ScottiSaintagneetal. 2004a)andcommoncpDNAstructures,bothinfine(Petitetal.1997,Petitetal.2002) andinlargescale(Petitetal.2002),supportthismodel.‘ManuscriptI’aimedtoprovide insights into the differential effects of this process among a number of hypervariable markerlocialongdivergentmacroecologicalconditions. The 14 analyzed SSR loci in Q. petraea and Q. robur displayed contrasting patterns of differentiation.Threeofthemsharplyresolvedthetwospecies(speciesdiscriminantloci) and six of them were loosely structured between the two species, whereas five others presented geographic structures which were shared between the two species at the regionallevel(provenancediscriminantloci).Thethree‘speciesdiscriminant’locimight representgenomicregionsthatencodegenesresponsiblefortheadaptiveprofilesofthe twospecies.Stebbins(1950),byobservinghybridizationinseveraloakpairs,noticedthat both artificial and natural hybrids segregate sharply. He raised the hypothesis that the numberofgenesbywhichspeciesofoaksdifferfromeachothershouldbeverysmall. ScottiSaintagne et al. (2004a), in a recent molecular study, could provide molecular evidencethatalimitedportionofthegenomeaccountsforinterspecificdifferentiation between Q. petraea and Q. robur ,pointingtowardsnaturalselectiontoaccountforthere emergenceoftheparentalspecies.Highlyandsignificantlydifferentiatedmarkerscould belocatedonnineoutoftwelvechromosomes.However,only12%ofthe389tested markers were characterized as ‘outliers’ due to the limited size of hitchhiking regions. Thethree‘speciesdiscriminant’lociofthepresentstudymightrepresentgenomeregions affected by selection of genes accounting for species integrity. In all three cases a significantdecreaseofvariationinonespeciesversusadiversepatternintheotherwas observed pointing to selection. One of these loci lies within a QTL coding for a leaf morphologicaltrait,whichisdiagnosticbetweenthetwospecies(Saintagneetal.2004). Itisnoteworthythatgeneticvariationpatternofthethree‘speciesdiscriminant’lociof thepresentstudyisstableacrossallstudypopulations. Genetic differentiation patterns of the remaining loci (i.e. apart from ‘species discriminant’)suggesthighlevelsofintrogressionbetween Q. petraea and Q. robur .Onone hand, six loci presented loose structures corresponding to the two species. Based on theseloci,membershipproportionsofthepopulationstotheirspeciesclusterwerelow and the number of genetically admixed individuals was high. On the other hand, a completelydifferentpatternofgeneticstructureswasrevealedbyusingfive‘provenance

32 5.Generaldiscussion

specific’loci.Aseparateanalysisoftheselocisupportednospeciesstructures.Itresulted in a clustering of two provenances, whereby the two species did not form additional structures within each provenance. The fact that differentiation between the Central EuropeanpopulationsandtheBalkanpopulationswashighmightbeduetodifferential adaptationsalonganecologicalcline.Petitetal.(2003)supportthatexchangeofadaptive variationbetween Q. petraea and Q. robur throughbackcrossesispossibleandisexpected to increase their adaptability. Several traits present clinal adaptations along ecological gradientsinthesetwooakspecies.Theseincludebudburst,growthandstemform,and frosthardiness(Kremeretal.2002,Albertoetal.2010).‘Provenancediscriminant’loci partly reside within genomic regions coding for timing of bud burst and for osmotic stress, traits that are expected tovary between Central Europeand the Balkan due to decreasingphotoperiodicityandincreasingdroughtrespectively(ManuscriptI). Byandlarge,resultsfromthepresentstudysupportthatinterspecificgeneflowbetween Q. petraea and Q. robur islimitedbyecologicalratherthanreproductivebarriers.Presence of weak reproductive barriers and absence of reproductive isolation between the two species is further attested by the genetic differentiation pattern of ‘provenance discriminant’markers.Thecommonstructuresobservedattheselociindicateahigher connectivity between heterospecific populations within a provenance, than within the same species and across provenances. A possible adaptive introgression may have enhancedtheformationofthesecommonstructures.Ontheotherhand,onlyaminority ofloci(21%)werehighlydiscriminantbetweenthetwospecies,whichisinagreement withavailablemoleculardatafromthelasttwodecades(Bodénèsetal.1997,Kremeret al.2002,ScottiSaintagneetal.2004a,Curtuetal.2007).Quercus petraea and Q. robur area paradigmofinterfertilespecieskeepingtheiridentitiesbyoccupyingdifferent‘adaptive peaks’, according to ‘ecological speciation’ (Van Valen 1976). Species differentiation is expressedbyaminimalnumberofphenotypicandgenomicadaptations,whiletherestof the genome might be open to neutral and adaptive introgression. This pattern of speciation,assumingthegeneastheunitofspeciation,hasbeenwidelydiscussedinlast years(Wu2001,Nosiletal.2007,LexerandWidmer2008)andhasbeensupportedwith molecularmarkersinseveralgenera(e.g. Helianthus ;Yatabeetal.2007, Silene ;Minderet al.2007; Serapias ;Belluschietal.2010). Finally,withinthescopeofestablishingphylogeneticrelationships,bothinterfertileoak pairs of the study and Q. infectoria ssp. veneris from Cyprus were analyzed. A clear separationbetween Q. alnifolia and Q. coccifera ontheonehand,and Q. infectoria ssp. veneris , Q. petraea and Q. robur ontheotherwasevident.Theserelationshipsweresupportedboth by evolutionary conservation of nuclear microsatellites and by chloroplast DNA haplotypesandreflectthedistinctevolutionaryhistoriesofthesespecies.Evolutionary distance has been shown to result in decreased locus conservation in oak and other multispecificplantgenera(Steinkellneretal.1997,Whittonetal.1997,Sotoetal.2003). Among Q. infectoria ssp. veneris , Q. petraea and Q. robur alltestedmicrosatellitelociwere amplifiableandpossessedcommonallelesizeranges.Bycontrast,in Q. alnifolia and Q. coccifera , a very limited number of SSR markers were transferable (the loci included in ManuscriptsIIandIII)andstillinthesecasesevensizedalleleswerefoundtobenon homologousincomparisontotheotherspecies(ManuscriptIV).Intermsofchloroplast DNAvariation,twodistinctcladesverifiedthephylogeneticdistancebetweenthetwo different taxonomic groups. Within each clade, sharing of chlorotypes points introgressivehybridizationorrecentcommonancestry,oracombinationofboth.

5.Generaldiscussion 33

The aforementioned results strongly support the phylogenetic distinctness of the two resolvedgroups( Q. alnifolia and Q. coccifera vs. Q. infectoria ssp. veneris , Q. petraea and Q. robur ).AveryrecentphylogeneticstudyaboutwesternEurasianoaksbasedonribosomal DNA markers agrees with the aforementioned pattern and additionally supports a membershipof Q. alnifolia and Q. coccifera tothegroup‘Ilex’ofthesectionCerrisandthat oftheotherspeciestothesectionQuercusalongwithallEuropeanwhiteoaksandtheir NorthAmericancounterparts(DenkandGrimm2010).Anearlyvicariancebetweenin twosectionsatleastsincethebeginningoftheOligocene,about33,5millionyearsago,is supportedbypaleobotanicaldata(Axelrod1983,TiffneyandManchester2001).Separate evolution since then might have resulted in major genomic rearrangements, whichare expressedbythelowdegreeoflocusconservation.Intheparadigmofthewellstudied sunflowers ( Helianthus spp.), another angiosperm genus characterized by high levels of hybridization among species, extensive chromosomal repatterning between phylogeneticallyremotespecieshasbeenshowntoresultinsterilitybarriersbetweenthe species(Laietal.2005).Similarrearrangementshavebeenshownbetweentheclosely related genera Quercus and Castanea , by using highly variable SSRs (Barreneche et al. 2004).GiventhattimeofseparateevolutionbetweenthesectionsCerrisandQuercusis substantial (at least since the late Eocene – about 35 million years ago; Tiffney and Manchester 2001), significant genomic rearrangements may contribute to sterility betweenthetwosections.

34

6.Conclusionsandoutlook Genetic differentiation and hybridization within the two complexes of interfertile oak species studied in this Thesis presented some common features, but also important differences.Ontheonehand,theeuryoeciouscontinentalspeciesQ. petraea and Q. robur wereshowntosharesubstantialportionsoftheirgeneticvariation.Resultssuggestthat interspecificgeneflowplaysasignificantroleintheirevolution.Therevealedcommon geneticstructuresinecologicallysimilarlocationsaresuggestiveofadaptiveintrogression between the two species. On the other hand, rare hybridization in the insular sclerophyllousQ. alnifolia and Q. coccifera issupported,whichresultsinalimiteddegreeof geneticintrogressionbetweenthetwospecies.Nuclearinterspecificgeneticvariationwas high both between pure and sympatric populations, whilst chloroplast DNA introgression in sympatry was also very limited. Low frequency of interspecific pollinations suggests that reproductive barriers may restrict gene flow between them. Finally,aphylogeneticdistinctnessbetweenthetwooakcomplexesmentionedaboveis supportedbynuclearandchloroplastvariationandunderlinesthecompletelydivergent evolutionaryhistoriesofthem.ThethirdoakspeciesofCyprus,thesemideciduous Q. infectoria ssp. veneris , shows a markedly close affinity to Q. petraea and Q. robur , thus pointingtoitshighevolutionarydivergenceandgeneticisolationincomparisonto Q. alnifolia and Q. coccifera . Resultsfromthecurrentstudy,besidestheirevolutionaryrelevance,maysetthestarting pointforscientificandpracticeorientedapplicationsinvolvingthefiveincludedspecies. Theidentificationof‘provenancediscriminant’markersin Q. petraea and Q. robur could be a useful tool for characterization of individual trees, populations and reproductive material(certificationofbothreproductivematerialandlogs).Asaconsequenceofthe ongoingclimaticchange,ashiftofclimaticzonesisalreadyobserved,forcingspeciesto migrate.Migratoryresponsesevenfasterthanthemaximumpostglacialratesmightbe required if the present global warming continues with the same speed (Pearson and Dawson2005,Aitkenetal.2008,Vitasseetal.2009).Connectivityofpopulationsand establishment of corridors allowing species movement northwards and towards higher altitudesareimportantmeasurestowardsasustainableconservationofforesttreespecies (Lindenmayeretal.2000).Connectivityintermsofadaptivevariationmaybeenhanced by high levels of interspecific gene flow resulting in a flexible ecological reaction. In addition, under scenarios of rapid global warming, facilitated gene flow of preadapted alleles (assisted migration) from warmer climates may be necessary to promote adaptationattheleadingedgeofmigration(Aitkenetal.2008,Savolainenetal.2007). Identificationofadaptiveclinesisaprerequisitefortheimplementationofconservation strategies. ‘Provenance discriminant’ microsatellite loci from the present study show variationalonganecologicalgradientandsuggestadaptationprocesses.Theselocimay bean‘easytouse’toolfortherecognitionofsuchclinalvariation.Inclusionofadditional sitesandrefugialareaswillrefinetheresolutionoftheresults.Moreover,markerassisted studyofgenomicregionsunderselectioncouldcomplementQTLstudiesforadaptive traits.TheincreasingavailabilityofESTderivedmicrosatellitemarkersinoaksintroduces anewperspectivetowardsthisstudyarea. Regarding Q. alnifolia and Q. coccifera , novel results were provided about their genetic differentiationandhybridizationpatterns.Althoughalimitednumberoflocifromother oak species were usable, highly discriminant markers were found. The utility of these markersforfurtherpopulationgeneticstudieswithinandbetweenthetwospeciescould 6.Conclusionsandoutlook 35

assist conservation policies. The recent development of ESTderived hypervariable microsatelliteswhicharehighlyconservedamongdifferenttaxonomicgroups(Uenoet al.2008)mayincreasethepotentialofpopulationgeneticstudies.Studyofreproductive barriersbetweenthetwospeciesshouldbeapriorityinfuturestudies.Controlledcrosses and study of the fertilization process would elucidate the underlying mechanisms restrictinginterspecificgeneflow.Anadditionalpointofinterestistheextensionoffine scale studies in more mixed stands under varying ecological conditions. This could providecluesaboutmechanismsofinterspecificgeneflowbetweenthetwospecies.It would further elucidate the particular finescale vs. landscapescale distribution of haplotypesrevealedbythepresentstudy,aswellasapotentialadaptivesignificanceof hybridizationleadingtocriteriafor in situ conservationstrategies.Thisappliesespecially for Q. alnifolia whichisoneofthemostnotableendemicspeciesofCyprus.Furthermore, giventhattheMediterraneanclimaticzoneisexpectedtomigratenorthwards(Giorgiand Lionello2008),newhabitatsmaybecreatedinEurope,whichcouldbesuitableforthese two species. Knowledge of their genetic resources and patterns of hybridization is a prerequisitefortheirpotentialuseoutoftheircurrenthabitats. AnevenhigherneedforconservationinCyprusexistsfor Q. infectoria ssp. veneris .The populationsofthisspeciesaresmallandfragmentedanditsmainhabitatislargelyused foragriculture(Christou2001).Thestudyofevolutionaryconservationofhypervariable SSR loci (Manuscript IV) provides an efficient tool for assessment of its genetic resourcesanddetectionofinbreedingandspatialgeneticbarriers.Additionally,givenits highwoodqualityitmaybeapotentialcandidateforuseinEuropeanforestry.Itisof particular interest to study possible drought adaptations and underlying QTLs, given climatic aridity in its distribution area in Cyprus. Its high phylogenetic affinity to European deciduous oak species of the section Quercus suggests that it should be interfertilewiththecentralEuropean Q. petraea and Q. robur .Geneticintrogressionfrom xericoakspeciesinto Q. petraea and Q. robur insouthernareasoftheirdistributionranges under natural conditions has been reported and resulted in a series of intermediate phenotypic forms which had been wrongly recognized as separate species (e.g. Q. pedunculiflora , Q. virgiliana , Q. longipes and Q. erucifolia ; Kleinschmit 1993). It is entirely plausible that hybridization serves as a mechanism of adaptive trait transfer in these cases.Inasimilarway,adaptivetraitsfromsouthernprovenancesandspeciesmaybe transferredthroughcontrolledinterspecificandintraspecificcrosseswiththetwoCentral Europeanspecies. OaksareamongthetreespecieswhoseecologicalandeconomicalimportanceinCentral Europeisexpectedtoincreaseinlightofglobalwarming.Whilstaretreatofotherforest treespecieslikebeech,spruceandfirfromtheircurrentdistributionareasispredicted, oaks may profit from these changes and occupynew sites (Iverson and Prasad 2001). There is evidence that during its evolutionary history, the genus Quercus behaved opportunisticallyandrapidlyevolvedinperiodsofclimaticdeterioration(Axelrod1983, Manosetal.1999,ManosandStanford2001,TiffneyandManchester2001).Asrevealed by the geographic distribution of their chloroplast DNA lineages and by fossils, Mediterranean oaks persisted in their current geographic regions without large extinctionsatleastthroughoutthelateMioceneandPleistocene(inthelast30million years)throughperiodsofextremedrought,coolingandwarming(Jimenezetal.2004, Magrietal.2007,LópezdeHerediaetal.2007).Hybridizationhasplayedasignificant rolethroughoutthislongevolutionaryhistoryasameansofgeneexchange.Facingan ongoingclimatechangeitisimportanttoimproveourknowledgeabouttreespeciesthat have been proved to be true lords of evolution, such as oaks. The present study of

36 6.Conclusionsandoutlook

geneticdifferentiationandhybridizationamongoakspecieswithdivergentecologicaland evolutionaryprofilesaimedtomakeacontributioninthisareaofresearch.

37

7.Summary Oaks( Quercus L.)constituteoneofthemostspeciesrichgeneraofwoodyangiosperms intheNorthernHemisphere.Oakspeciesareadaptedtoalargevarietyofecosystems andplayanimportantecologicalandeconomicalroleinmanyregions.Hybridizationin thegenusiswidelydistributedanditsroleintheevolutionofoakshasbeenincreasingly recognized. Recent molecular evidence supports substantial exchanges of genetic variationamongdifferenttaxonomicunits.Inthepresentthesis,speciesdifferentiation andinterspecificgeneflowwasstudiedintwoparadigmsofoakspecieswithdivergent ecologicalandevolutionaryprofiles. Thefirstobjectivewastostudyinterspecificandgeographicpatternsofgeneticvariation among very distinct environments in the interfertile Q. petraea and Q. robur , two continentaloakspeciesofsectionQuercuswithalargedistributionrangeandanalogous ecologicalamplitude.Forthispurpose,purepopulationsofthesespeciesweresampled from three regions, Southwestern Germany, Central Bulgaria and Northern Greece, alonganecologicalgradientwithincreasingariditytowardssouth.Amultilocusapproach basedonnuclearmicrosatellites(SSRs)wasfollowed.Diversitypatternsdifferedamong the used loci. By using a group of three ‘species discriminant’ loci species genetic structurescouldbewellresolved.Bycontrast,five‘provenancediscriminant’lociwere characterizedbyahighgeneticdifferentiationamonggeographicregions,whereasthey displayed common genetic structures within regions. Six further loci included in the analyses showed loose species structures and high levels of introgression between Q. petraea and Q. robur .Thisdifferentiationpatternsuggestsacombinationofgeneflowand natural selection, which form genetic variation within and between the two species. ‘Species discriminant’ loci might represent genome regions affected by directional selection maintaining species integrity. ‘Provenance discriminant’ loci might represent genomeregionswithhighinterspecificgeneflowandcommonadaptivepatternstolocal environmental factors. These findings agree with the notion that ecological barriers accountformaintenanceofspeciesidentityinthisoakcomplex. The second objective of the thesis was to investigate the interspecific gene flow and geneticdifferentiationwithinandbetweenQ. alnifolia and Q. coccifera ,twoMediterranean oakspeciesofsectionCerrisgrowingintherestrictiveinsularenvironmentofCyprus. Firstly, a large scale approach was followed in order to assess genetic differentiation within and between species. Large samples were taken from a mixed and one pure population of each species in order to analyze nuclear genetic variation and to infer diversitymeasuresbasedonSSRmarkers.Inaddition,smallersamplesweretakenfrom six further pure populations in order to study chloroplast DNA differentiation and spatial structuring. A high and significant interspecific differentiation and a limited genetic introgression were revealed by nuclear SSRs, either among pure or sympatric populations.Onthecontrary,chloroplastDNAhaplotypesweresharedbetweenthetwo speciesandformedcommonspatialstructuresattheregionallevel. Inasecondapproach,insightsintointerspecificgeneflowweregainedbyperforming furtheranalyseswithinthemixedstand.Multivariateanalysesofleafmorphometrictraits and nuclear SSR loci,aswellas ananalysis of chloroplast DNA was performed in all adulttreesofthestand,inordertoinvestigategeneticintrogressionatafinescale.In addition,acornsweresampledfromknownmaternaltreesrepresentingthetwospecies and intermediate forms, in order to study gene flow. By subtracting the maternal 38 7.Summary

contribution,ageneticcharacterizationofthepollencloudwhichfertilizedeachtreewas made. Regarding adult trees, results further supported a very limited genetic introgression.Thetwospecieswerebothmorphologicallyandgeneticallydistinctand,in contrasttotheresultsfromthemultipopulationstudy,chloroplastDNAintrogression wasalsoverylimited.Ontheotherhand,theintermediatestatusoffourputativehybrids (1,4% among all adult trees) was supported by both morphological and genetic data. Regardingprogenies(acornembryos),evidenceaboutinterspecificpollinationswasrare. Inparticular,nointerspecificpollinationsweredetectedin Q. alnifolia .In Q. coccifera ,rare pollinationfrom Q. alnifolia couldbeinferred(2,8%amongallmalegametes)andthese weremostlyobservedinaparticularmothertree.Additionally,thehybridmothertree wasmostlypollinatedby Q. alnifolia . Resultsfrombothlargeandfinescaleapproachesshowthatinterspecifichybridization between Q. alnifolia and Q. coccifera in Cyprus is rare and genetic introgression limited. This is particularly evident in sympatry, where, besides the four designated hybrids, intermediate individuals were not supported either by leaf morphometric traits, or by genetic data. Although chloroplast DNA haplotypes were shared in a landscape scale, chloroplast DNA introgression within the mixed stand was very low. Additionally, interspecificcrossings,asrevealedbytheanalysisofpollenclouds,werescarceandwere observedonlyinonedirection.Therefore,reproductivebarriers(preorpostpollination) might account for the limited genetic introgression between the two species. On the other hand, regional interspecific sharing of chloroplast DNA can be attributed to seldomhistoricaleventsofhybridizationandbackcrossing. The third objective of the thesis was to resolve phylogenetic relationships among all studyspecies. Quercus infectoria ssp. veneris ,thethirdoakspeciesgrowingonCypruswas also included in this analysis, in order to provide molecular evidence about its membershiptothesectionQuercus.Aclearseparationbetween Q. alnifolia and Q. coccifera ontheonehand,and Q. infectoria ssp.veneris, Q. petraea and Q. robur ontheotherwas supportedbybothnuclearSSRconservationandchloroplastDNAhaplotypes.Among Q. infectoria ssp. veneris , Q. petraea and Q. robur alltestedmicrosatellitelocicouldbecross amplifiedandtheirallelesizesoccurredinthesamerange.Bycontrast,in Q. alnifolia and Q. coccifera ,averylimitednumberoftheseloci,originallydescribedinoaksofthesection Quercus,wereconserved.Additionally,allelesequencingshowedsizehomoplasyatone locusbetweenthetwoaforementionedgroups.Finally,basedonchloroplastDNASSRs, these groups were assigned to two distinct clades. Within each clade, haplotypes were oftensharedamongspecies.Insummary,resultsfromthephylogeneticanalysissupport themembershipof Q. infectoria ssp. veneris tosectionQuercusalongwith Q. petraea andQ. robur ,whereas Q. alnifolia and Q. coccifera shouldbeplacedwithinthesectionCerrisandin particular in the group ‘ilex’ together with other evergreen oaks of the Mediterranean Basin.

39

8.Zusammenfassung DieEichen( Quercus L.)stelleneinederartenreichstenGattungenderAngiospermenauf dernördlichenHalbkugeldar.EichenartensindaneinegroßeVielfaltvonÖkosystemen angepasst und in vielen Regionen spielen sie eine wichtige ökologische und wirtschaftlicheRolle.HybridisierungistweitverbreitetinnerhalbderGattungundihre BedeutungfürdieEvolutionderEichewirdzunehmendanerkannt.NeueErkenntnisse basierendaufmolekulargenetischenMethodenweisendaraufhin,dasseinbedeutsamer Austausch genetischer Variation zwischen verschiedenen taxonomischen Einheiten durch Hybridisierung stattfindet. In der vorliegenden Arbeit wurde Artdifferenzierung undGenflussvonEichenartenanzweiBeispielenmitverschiedenenökologischenund evolutionärenProfilenerforscht. Das erste Ziel der Arbeit bestand in der Untersuchung von interspezifischer und geographischer genetischer Variationsmuster zwischen ökologisch differenzierten Regionen in Q. petraea und Q. robur , zweier kontinentaler Eichenarten der Sektion Quercus mit einem großen Verbreitungsareal und einer entsprechenden ökologischen Amplitude.ZudiesemZweckwurdenreinePopulationendieserArtenausdreiRegionen – Südwestdeutschland, Zentralbulgarien und Nordgriechenland – entlang eines ökologischenGradientenbeprobt.DiegenetischeDiversitätdieserPopulationenwurde basierend auf mehreren Mikrosatellitenloci (SSR) analysiert. Verschiedene Diversitätsmusterwurdennachgewiesen,jenachdemwelcheSSRlociverwendetwurden. Durch die Verwendung von drei „artunterscheidenden“ Loci konnten artspezifische genetische Strukturen nachgewiesen werden. Im Gegesatz dazu zeigten fünf weitere „herkunftsunterscheidende“ Loci eine hohe genetische Differenzierung zwischen geographischenRegionen,wobeisieinnerhalbeinerRegionkeinegenetischenStrukturen zwischen Arten aufzeigten. Sechs weitere Loci zeigten nur in geringem Ausmaß genetischeStrukturenunddarüberhinauseinenhohenGradgenetischerIntrogression zwischen Q. petraea und Q. robur .DiesesErgebnislässtsichdurcheineKombinationvon interspezifischem Genfluss und natürlicher Selektion erklären, die die genetische DifferenzierunginnerhalbundzwischendenbeidenArtenprägen.„Artunterscheidende“ LocikönntenGenombereichevertreten,dievoneinerdirektionalenSelektionbeeinflusst werden und die für den Erhalt der Artintegrität sorgen. „Herkunftsunterscheidende“ LocikönntenGenombereichemithoheminterspezifischemGenflussundgemeinsamen Anpassungen von Arten an lokale bzw. regionale ökologische Bedingungen vertreten. Diese Ergebnisse weisen darauf hin, dass an diesem Beispiel von Eichenarten ökologischeBarrierenfürdieArtunterscheidungderuntersuchtenEichenartensorgen. Das zweite Ziel dieser Arbeit war die Ermittlung interspezifischen Genflusses und genetischer Differenzierung innerhalb und zwischen Q. alnifolia und Q. coccifera – zwei mediterraner Eichenarten der Sektion Cerris, die sich auf der geographisch eingeschränkten insularen Umgebung von Zypern verbreiten. Als erstes wurde eine weiträumige Analyse durchgeführt, um die genetische Differenzierung innerhalb und zwischen den Arten zu erfassen. Zwei Rein und ein Mischbestand wurden intensiv beprobt, um eine Analyse der nuklearen genetischen Variation durchzuführen und Parameter der genetischen Diversität zu ermitteln. Zusätzlich wurden geringere Stichproben in sechs weiteren reinen Populationen jeder Art durchgeführt, um die Variation der ChloroplastenDNA und die räumliche Verteilung dieser Variation zu untersuchen. Sowohl zwischen reinen als auch zwischen sympatrischen Populationen konnten eine hohe und signifikante genetische Differenzierung und eine geringe 40 8.Zusammenfassung

genetische Introgression zwischen den Arten mithilfe von nuklearen Mikrosatelliten nachgewiesen werden. Im Gegensatz dazu zeigten die untersuchten Artein ein gemeinsames Vorkommen von ChloroplastenDNAHaplotypen geteilt zwischen den ArtenundsowiegemeinsameräumlichegenetischeStrukturen. DarüberhinauswurdeanhandvonweiterenAnalysenindemMischbestandEinblickin den Genfluss zwischen den Arten gewonnen. Multivariatanalysen von blattmorphometrischen Merkmalen und nuklearen Mikrosatelliten wurden in allen Altbäumen im Mischbestand durchgeführt, um die genetische Introgression auf einer kleineren räumlichen Ebene intensiv zu untersuchen. Darüber hinaus wurden Eicheln von bekannten Mutterbäumen aus beiden Arten als auch einem Individuum mit intermediären Phänotyp beerntet, um den Genfluss zu erforschen. Dadurch, dass der mütterlicheBeitraganjedesEichelembryobekanntwar,konntenanhandderväterlichen BeiträgediePollenwolkencharakterisiertwerden.BezüglichderAltbäumekonntekeine wesentliche genetische Introgression nachgewiesen werden. Die beiden Arten waren sowohl morphologisch als auch genetisch unterschlich und im Gegensatz zu der weiträumigen Analyse war die ChloroplastenDNAIntrogression auch sehr begrenzt. Auf der anderen Seite wurden vier Individuen unter allen Altbäumen (1,4%), die als Zwischenformen im Gelände bezeichnet worden waren, nach den Multivariatanalysen sowohlmorphologischalsauchgenetischalsHybrideeingestuft.WasdieNachkommen (Eichelnembryonen)betrifft,wareninterspezifischePaarungenäußerstselten(2,8%der männlichen Gameten). Insbesondere wurden unter den Mutterbäumen in Q. alnifolia keine interspezifischen Paarungen nachgewiesen. In Q. coccifera wurden einige seltene Paarungen gezeigt, die vorwiegend auf einen Mutterbaum zurückzuführen waren. Der Hybridmutterbaumwargrößtenteilsvon Q. alnifolia Pollenbefruchtet. SowohlErgebnisseausderweiträumigenUntersuchungalsauchausdemMischbestand weisen darauf hin, dass interspezifische Hybridisierung zwischen Q. alnifolia und Q. coccifera seltenundgenetischeIntrogressiongeringsind.Diesistäußersteindeutigindem Mischbestand, in dem abgesehen von vier aufgezeichneten Hybridformen keine signifikante genetische Introgression gezeigt werden konnte. Untersuchung der ChloroplastenDNA zeigte, dass die genetische Introgression in dem Mischbestand äußerstgeringwar,obwohlgemeinsamegenetischeStrukturenzwischendenArtennach der weiträumigen Untersuchung nachgewiesen wurden. Darüber hinaus waren interspezifische Paarungen sehr selten und auf eine Richtung beschränkt, wie aus den Pollenwolkenanalysenzuentnehmenist.Daherkannvermutetwerden,dassreproduktive Barrieren (vor oder nach der Bestäubung) die genetische Introgression zwischen den beiden Arten einschränken. Andererseits könnten gemeinsame ChloroplastenDNA Strukturen auf der regionalen Skala auf seltene historische Hybridisierungs und Rückkreuzungsereignissezurückgeführtwerden. Das dritte Ziel der vorliegenden Arbeit bestand darin, eine phylogenetische Analyse zwischenallenArtendurchzuführen.IndieserAnalysewurdeauchQuercus infectoria ssp. veneris , die dritte Eichenart, die auf Zypern vorkommt, mit einbezogen, um ihre ZugehörigkeitzuderSektionQuercusmitmolekularenMarkernzuuntersuchen.Sowohl eineAnalysederevolutionärenKonservierungvonnuklearenMikrosatellitenlocialsauch eineAnalysederChloroplastenDNAHaplotypenzeigteneineklareTrennungzwischen Q. alnifolia und Q. coccifera aufdereinenSeiteund Q. infectoria ssp. veneris , Q. petraea und Q. robur aufderanderen.Zwischen Q. infectoria ssp. veneris , Q. petraea und Q. robur konnten alle getesteten Mikrosatellitenloci amplifiziert werden und besaßen die gleichen Allellängenbereiche. Dem entgegen waren war in Q. alnifolia und Q. coccifera nur ein

8.Zusammenfassung 41

geringer Anteil dieser Loci konserviert, die ursprünglich in Eichenarten der Sektion Quercus entwickelt wurden. Darüber hinaus wurde an einem Locus mittels DNA Sequenzierung eine Allellängenhomoplasie zwischen den o. g. Gruppen nachgewiesen. Schließlich waren diese Gruppen basierend auf ChloroplastenDNAMikrosatelliten in zwei verschiedenen phylogenetischen Zweigen eingestuft. Insgesamt unterstützen die Ergebnisse der phylogenetischen Analyse einerseits die Zugehörigkeit von Q. infectoria ssp. veneris zu der Sektion Quercus zusammen mit Q. petraea und Q. robur , und andererseits die Zugehörigkeit von Q. alnifolia zusammen mit Q. coccifera und anderen immergrünenEichenartendesMittelmeerraumszuderSektionCerrisundinbesondere zuderGruppe„Ilex“.

42

9.Περίληψη Οιδρύες( Quercus L.)αποτελούνένααπόταπιοποικίλαωςπροςτοναριθόειδώνγένη ξυλωδών αγγειοσπέρων στο Βόρειο Ηισφαίριο. Τα διάφορα είδη του γένους παρουσιάζουν προσαρογές σε ία εγάλη ποικιλία οικοσυστηάτων και παίζουν ένα σηαντικόοικολογικόκαιοικονοικόρόλοσεπολλέςπεριοχές.Ουβριδισόςεντόςτου γένουςείναιευρέωςδιαδεδοένοςκαιορόλοςτουστηνεξέλιξητωνδρυώναναγνωρίζεται όλοκαιπερισσότερο.Πρόσφαταδεδοένααπόοριακέςγενετικέςαναλύσειςυποστηρίζουν ότιέσωτουυβριδισούλαβάνουνχώρασηαντικέςανταλλαγέςγενετικήςποικιλότητας εταξύδιάφορωνταξινοικώνονάδων.Στηνπαρούσαδιδακτορικήδιατριβήελετάταιη γενετική ποικιλότητα και η γονιδιακή ροή εταξύ των ειδών σε δύο παραδείγατα αλληλοδιασταυρούενων ειδών δρυός από διαφορετικά οικολογικά περιβάλλοντα και ε διαφορετικήεξελικτικήιστορία. Οπρώτοςστόχοςτηςπαρούσαςδιατριβήςείναιηδιερεύνησητηςγενετικήςποικιλότηταςσε επίπεδο είδους και σε επίπεδο γεωγραφικής περιοχής εταξύ διακριτών περιβαλλοντικών περιοχών στα αλληλοδιασταυρούενα είδη Q. petraea και Q. robur . Τα είδη αυτά παρουσιάζουν εγάλες περιοχές εξάπλωσης και ανάλογο περιβαλλοντικό εύρος. Για το σκοπό αυτό λήφθηκαν δείγατα αιγών πληθυσών του είδους από τρεις περιοχές, τη νοτιοδυτική Γερανία, την κεντρική Βουλγαρία και τη Βόρεια Ελλάδα κατά ήκος ενός οικολογικού κλινούς ε αυξανόενη ξηρασία προς τα νότια. Οι γενετικές αναλύσεις βασίστηκαν σε πυρηνικούς ικροδορυφόρους (SSRs). Η γενετική ποικιλότητα εντός και εταξύ των ειδών ήταν διαφορετικά δοηένη εταξύ των διάφορων γονιδιακών θέσεων. Ένας ξεκάθαρος διαχωρισός γενετικών δοών εταξύ ειδών επιτεύχθηκε ε βάση τρεις «διαφοριστικέςστοεπίπεδοείδουςγονιδιακέςθέσεις».Αντίθετα,πέντε«διαφοριστικέςστο επίπεδο προέλευσης γονιδιακές θέσεις» χαρακτηρίστηκαν από ία έντονη διαφοροποίηση εταξύγεωγραφικώνπεριοχών,παρουσίασανόωςκοινήγενετικήποικιλότηταεταξύειδών στο τοπικό επίπεδο. Τέλος, έτρια διαφοροποίηση εταξύ των ειδών και ψηλά επίπεδα γονιδιακής εισδοχής βρέθηκαν ε βάση έξι επιπλέον γονιδιακές θέσεις που συπεριλήφθηκαν στις αναλύσεις. Αυτές οι διαφορές στο πρότυπο της διαφοροποίησης εταξύ διαφορετικών οάδων γονιδιακών θέσεων συνηγορούν σε ία αλληλεπίδραση γονιδιακήςροήςκαιφυσικήςεπιλογής.Οιεν«διαφοριστικέςστοεπίπεδοείδουςγονιδιακές θέσεις» πιθανώς αντιπροσωπεύουν περιοχές του γενώατος οι οποίες επηρεάζονται από κατευθυντήρια επιλογή που συντείνει στη διατήρηση της ταυτότητας των ειδών. Στις δε «διαφοριστικές στο επίπεδο προέλευσης γονιδιακές θέσεις» η γενετική ποικιλότητα έχει πιθανώς διαορφωθεί από τη εταξύ ειδών ροή γονιδίων και κοινές προσαρογές σε τοπικούςπεριβαλλοντικούςπαράγοντες.Ταευρήατααυτήςτηςανάλυσηςυποστηρίζουντην άποψηότιηακεραιότητατης Q. petraea καιτης Q. robur ωςδύοξεχωριστάείδηδιατηρείται έσααπόοικολογικούςφραγούςπαράταυψηλάεπίπεδαδιεισδυτικούυβριδισούεταξύ τους. Οδεύτεροςστόχοςτηςπαρούσαςδιατριβήςήτανηδιερεύνησητηςγονιδιακήςροήςκαιτης γενετικής διαφοροποίησης εντός και εταξύ της Q. alnifolia και της Q. coccifera , δύο εσογειακών ειδών του τήατος Cerris τα οποία φύονται στο περιορισένο νησιωτικό περιβάλλον της Κύπρου. Σε ια πρώτη προσέγγιση λήφθηκαν εγάλα δείγατα από ένα αιγή πληθυσό από κάθε είδος και ένα ικτό πληθυσό εταξύ τους ε σκοπό την ανάλυση της γενετικής ποικιλότητας εντός και εταξύ των ειδών και τον υπολογισό διάφορων παραέτρων γενετικής παραλλακτικότητας των πληθυσών ε τη χρήση πυρηνικών ικροδορυφόρων. Επιπλέον λήφθηκαν ικρότερα δείγατα από έξι επιπρόσθετους αιγείς πληθυσούς κάθε είδους ε σκοπό τη ελέτη της γενετικής 9.Περίληψη 43

διαφοροποίησης και των γεωγραφικών δοών του χλωροπλαστικού DNA. Τα αποτελέσατα ε βάση τους πυρηνικούς ικροδορυφόρους καταδεικνύουν σηαντική διαφοροποίησηκαιχαηλάεπίπεδαγονιδιακήςεισδοχήςεταξύειδών,είτεεταξύαιγών, είτε εταξύ συπατρικών πληθυσών. Αντίθετα, οι απλότυποι του χλωροπλαστικού DNA βρέθηκαννασυνυπάρχουνσταδύοείδηκαινασχηατίζουνκοινέςχωρικέςδοέςεταξύ γειτονικώνπληθυσών. Σε ια δεύτερη προσέγγιση πραγατοποιήθηκε σε βάθος ανάλυση της γονιδιακής ροής εταξύειδώνέσαστηικτήσυστάδα.Πολυεταβλητέςαναλύσειςδιεξήχθηκαναφενόςε βάση ορφοετρικά γνωρίσατα του φύλλου και αφετέρου ε βάση την ποικιλότητα σε γονιδιακέςθέσειςπυρηνικώνικροδορυφόρων.Στιςαναλύσειςαυτέςσυπεριλήφθηκανόλα τα ενήλικα δέντρα της συστάδας. Επίσης, ε σκοπό τη διερεύνηση της γονιδιακής ροής λήφθηκαν δείγατα βαλανιδιών από προεπιλεγένα ητρικά δέντρα από τα δύο πατρικά είδη και ένα εν δυνάει υβρίδιο. Αφαιρώντας τη ητρική συνεισφορά στο έβρυο επιχειρήθηκεέναςγενετικόςχαρακτηρισόςτουνέφουςγύρηςπουεπικονίασεκάθεητρικό δέντρο. Σ’ ό,τι αφορά τα ενήλικα δέντρα, τα αποτελέσατα υποστηρίζουν πολύ περιορισένη γενετική εισδοχή. Τα δύο είδη αποτελούν ξεχωριστές οντότητες, τόσο στο ορφολογικό, όσο και στο γενετικό επίπεδο. Σε αντίθεση ε τις συγκρίσεις σε επίπεδο πληθυσού, η κατ’ άτοο γενετική εισδοχή του χλωροπλαστικού DNA είναι πολύ περιορισένη. Από την άλλη, ο ενδιάεσος χαρακτήρας τεσσάρων εν δυνάει υβριδίων (1,4%τωνενηλίκων),ταοποίαείχανχαρακτηριστείστοπεδίο,επιβεβαιώθηκετόσοεβάση ορφολογικά, όσο και ε βάση γενετικά δεδοένα, υποστηρίζοντας ότι οι διασταυρώσεις εταξύ των ειδών πορούν να είναι επιτυχείς. Σ’ ό,τι αφορά τους απογόνους (έβρυα βαλανιδιών), οι διασταυρώσεις εταξύ των δύο ειδών ήταν ιδιαίτερα σπάνιες. Στην περίπτωσητης Q. alnifolia καίαδιασταύρωσηεταξύτωνειδώνδεδιαγνώστηκε.Ανάεσα στα ητρικά δέντρα της Q. coccifera διασταυρώσεις εταξύ των ειδών διαγνώστηκαν σε σπάνιεςπεριπτώσεις(2,8%τωναρσενικώνγαετών),οιοποίεςπεριορίζοντανκυρίωςσεένα συγκεκριένο ητρικό δέντρο. Επιπλέον, η γενετική ανάλυση κατέδειξε ότι το ητρικό δέντροεχαρακτηριστικάυβριδίουεπικονιάστηκεωςεπίτοπλείστοναπόπατρικάάτοα Q. alnifolia . Τααποτελέσατατόσοαπότιςαναλύσειςεταξύπλυθυσώνσεεγάληκλίακα,όσοκαι απότακατ’άτοοαποτελέσατααπότηικτήσυστάδασυγκλίνουνστοότιουβριδισός εταξύ Q. alnifolia και Q. coccifera στηνΚύπροείναιπολύπεριορισένος.Αυτόείναιιδιαίτερα φανερό σε συπατρία, όπου πέρα από τα τέσσερα ενήλικα εν δυνάει υβρίδια, τα αποτελέσατα δεν κατέδειξαν άτοα ε ενδιάεσα χαρακτηριστικά, είτε στη βάση ορφοετρικών χαρακτηριστικών του φύλλου, είτε στη βάση γενετικών δεδοένων. Στο επίπεδο του χλωροπλαστικού DNA, παρόλο που σε εγάλη κλίακα οι απλότυποι εφανίζονται από κοινού και στα δύο είδη, η κατ’ άτοο γενετική εισδοχή στη ικτή συστάδαήτανπολύπεριορισένη.Επίσης,οιδιασταυρώσειςεταξύτωνειδώνήτανσπάνιες και περιορίστηκαν σε ία κατεύθυνση, όπως καταδείχθηκε από την ανάλυση των νεφών γύρης. ς εκ τούτου συπεραίνεται ότι αναπαραγωγικοί φραγοί (πριν ή ετά την επικονίαση)έχουνωςαποτέλεσατονπεριορισότηςγενετικήςεισδοχήςεταξύτωνδύο ειδών.Απότην άλλη,σπάνιαεπεισόδιαυβριδισού καιαναδιασταυρώσεωνστοπαρελθόν εξηγούντιςκοινέςχωρικέςγενετικέςδοέςχλωροπλαστικούDNA. Οτρίτοςστόχοςτηςανάχείραςδιατριβήςήτανηεξακρίβωσητωνφυλογενετικώνσχέσεων εταξύ των υπό ελέτη ειδών. Στη φυλογενετική ανάλυση συπεριλήφθηκε και το τρίτο είδοςδρυόςπουφύεταιστηνΚύπρο,η Q. infectoria ssp. veneris εσκοπότηνεξέτασητης φυλογενετικήςτουταυτότηταςκαιτηςπιθανήςτουσυγγένειαςετιςδρύεςτουτήατος Quercus.Τααποτελέσατα,τόσοεβάσητηενίσχυσηπυρηνικώνικροδορυφόρων,όσο

44 9.Περίληψη

και ε βάση τους απλότυπους του χλωροπλαστικού DNA, καταδεικνύουν ια ξεκάθαρη διαφοροποίησηεταξύενόςκλάδουαποτελούενουαπότην Q. alnifolia καιτην Q. coccifera αφενόςκαιαφετέρουενόςκλάδουπουπεριλαβάνειτην Q. infectoria ssp. veneris , Q. petraea και Q. robur . Μεταξύ των τριών τελευταίων ειδών επιτεύχθηκε ενίσχυση όλων των δοκιασένων θέσεων ικροδορυφόρων, ειδικά αναπτυγένων σε διάφορα είδη του τήατος Quercus, και τα εγέθη των αλληλοόρφων κυάνθηκαν στο ίδιο εύρος. Εν αντιθέσει, στην Q. alnifolia και Q. coccifera , ανάεσα στις δοκιασένες θέσεις ικροδορυφόρωνόνοέναςπολύπεριορισένοςαριθόςέδωσεενίσχυση.Επίσης,ανάλυση αλληλουχιών σε συγκεκριένη θέση ικροδορυφόρου κατέδειξε οοπλασία στο έγεθος εταξύ των προαναφερθεισών οάδων. Τέλος, ε βάση τους απλότυπους του χλωροπλαστικού DNA, οι δύο αυτές οάδες κατανεήθηκαν σε δύο διακριτούς φυλογενετικούς κλάδους. Γενικά τα αποτελέσατα της φυλογενετικής ανάλυσης υποστηρίζουν την ένταξη της Q. infectoria ssp. veneris στο τήα Quercus αζί ε τις Q. petraea και Q. robur . Η φυλογενετική συγγένεια της Q. alnifolia ε την Q. coccifera , όπως καταφαίνεται από τα δεδοένα της παρούσας εργασίας υποστηρίζει την ένταξη των δύο αυτώνειδώνστοτήαCerrisκαιειδικάστηνοάδα‘Ilex’,στηνοποίαανήκειη Q. coccifera καιάλλεςαείφυλλεςεσογειακέςδρύες.

45

10.References Aas G . 1988 . Untersuchungen zur Trennung und Kreuzbarkeit von Stiel und Traubeneiche.(Quercus robur L.und Quercus petraea (Matt.)Liebl.).Dissertation.Universität München. Aas G . 1998 . Morphologische und ökologische Variation mitteleurop\äischer Quercus Arten:EinBeitragzumVerständnisderBiodiversität. Libri botanici 19 . AasG . 2008a . Quercus petraea (Mattuschka)Lieblein,1784. Enzyklopädie der Holzgewächse .1 16. AasG . 2008b . Quercus robur L.,1753. Enzyklopädie der Holzgewächse .114. AitkenSN,YeamanS,HollidayJA,WangT,CurtisMcLaneS . 2008 .Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications 1:95. Alberto F, Niort J, Derory J, Lepais O, Vitalis R, Galop D, Kremer A . 2010 . PopulationdifferentiationofsessileoakatthealtitudinalfrontofmigrationintheFrench Pyrenees. Molecular Ecology 19 :26262639. AndersonE . 1948 .Hybridizationofthehabitat. Evolution 2:1–9. AndolfattoP . 2001 .Adaptivehitchhikingeffectsongenomevariability. Current Opinion in Genetics & Development 11 :635641. AsmussenMA,ArnoldJ,AviseJC . 1987 .Definitionandpropertiesofdisequilibrium statisticsforassociationsbetweennuclearandcytoplasmicgenotypes. Genetics115 :755. Axelrod DI . 1983 . Biogeography of oaks in the ArctoTertiary province. Annals of the Missouri Botanical Garden 70 :629–657. Bacilieri R, Ducousso A, Kremer A . 1995 . Genetic, morphological, ecological and phenologicaldifferentiationbetween Quercus petraea (Matt.)Liebl.and Quercus robur L.ina mixedstandofnorthwestofFrance. Silvae Genetica 44 :1–9. Bacilieri R, Roussel G, Ducousso A . 1993 . Hybridization and mating system in a mixedstandofsessileandpedunculateoak. Annales des Sciences Forestières 50 :6. BacilieriR,DucoussoA,PetitRJ,KremerA . 1996 .MatingSystemandAsymmetric HybridizationinaMixedStandofEuropeanOaks. Evolution 50 :900908. Barbero M, Quézel P . 1979 . Contribution à l’étude des groupements forestiers de Chypre. Documents Phytosociologiques IV :934. BarrenecheT,CasasoliM,RussellK,AkkakA,MeddourH,PlomionC,VillaniF, Kremer A . 2004 . Comparative mapping between Quercus and Castanea using simple sequencerepeats(SSRs). TAG Theoretical and Applied Genetics 108 :558–566. 46 10.References

BelahbibN,PemongeM,OuassouA,SbayH,KremerA,PetitRJ . 2001 .Frequent cytoplasmicexchangesbetweenoakspeciesthatarenotcloselyrelated: Quercus suber and Q. ilex inMorocco. Molecular Ecology 10 :20032012. BellarosaR,DelreV,SchironeB,MagginiF . 1990 .RibosomalRNAgenesin Quercus spp.(Fagaceae). Plant Systematics and Evolution 172 :127139. Belluschi F, Pellegrino G, Palermo AM, Musacchio A . 2010 . Crossing barriers betweentheunrewardingMediterraneanorchids Serapias vomeracea and Serapias cordigera . Plant Species Biology 25 :6876. Bianco P, Schirone B . 1985 . On Quercus coccifera L. s.l.: Variation in reproductive phenology. Taxon 34 :436439. BoavidaLC,VarelaMC,FeijoJA . 1999 .Sexualreproductioninthecorkoak( Quercus suber L.).I.Theprogamicphase. Sexual Plant Reproduction 11 :347–353. BoavidaLC,SilvaJP,FeijóJA . 2001 .Sexualreproductioninthecorkoak( Quercus suber L).II.Crossingintraandinterspecificbarriers. Sexual Plant Reproduction 14 :143152. Bodénès C, Labbé T, Pradère S, Kremer A . 1997 . General vs. local differentiation betweentwocloselyrelatedwhiteoakspecies. Molecular Ecology 6:713724. Bruschi P, Grossoni P, Bussotti F . 2003 . Withinand amongtree variation in leaf morphologyof Quercus petraea (Matt.)Liebl.naturalpopulations. Trees-Structure and Function 17 :164–172. BurgerWC . 1975 .TheSpeciesConceptin Quercus . Taxon 24 :4550. BussottiF,GrossoniP . 1997 .EuropeanandMediterraneanoaks( Quercus L.,Fagaceae): SEMcharacterizationofthemicromorphologyoftheabaxialleafsurface. Bot. J. Linn. Soc 124 :183–199. CamusA . 1934 . Les chênes: monographie du genre Quercus .P.Lechevalier. ChatziphilippidisG . 2006 . Quercus coccifera Linné,1753.In:Enzyklopädie der Holzgewächse 6pp. ChristouA . 2001 .Cyprus(countryreport). Mediterranean Oaks Network: Report of the first meeting: 12-14 October 2000-Antalya, . CottamWP,SantamourFS,TuckerJM . 1982 . Oak hybridization at the University of Utah . StateArboretumofUtah. CousensJE . 1962 .NotesonthestatusofthesessileandpedunculateoaksinScotland andtheiridentification. Scottish Forestry 16 . Cousens JE . 1963 . Variation of some diagnostic characters of the sessile and pedunculateoaksandtheirhybridsinScotland. Watsonia 5:273–286. CousensJE . 1965 .ThestatusofthepedunculateandsessileoaksinBritain. Watsonia 6:

10.References 47

161–176. CurtuAL,FinkeldeyR,GailingO . 2004 .Comparativesequencingofamicrosatellite locusrevealssizehomoplasywithinandbetweenEuropeanoakspecies( Quercus spp.). Plant Molecular Biology Reporter 22 :339–346. Curtu AL, Gailing O, Finkeldey R . 2009 . Patterns of contemporary hybridization inferredfrompaternityanalysisinafouroakspeciesforest. BMC Evolutionary Biology 9: 284. Curtu AL, Gailing O, Leinemann L, Finkeldey R . 2007 . Genetic Variation and Differentiation Within aNatural Community of Five Oak Species ( Quercus spp.). Plant Biology 9:116126. CurtuA,GailingO,FinkeldeyR . 2007 .Evidenceforhybridizationandintrogression withinaspeciesrichoak( Quercus spp.)community. BMC Evolutionary Biology 7:218. DeCandolleAP . 1864 .Prodromussystematisnaturalisregnivegetabilis. Demesure B, Comps B, Petit RJ . 1996 . Chloroplast DNA phylogeography of the commonbeech( Fagus sylvatica L.)inEurope. Evolution 50 :2515–2520. DenkT,GrimmGW . 2010 .TheoaksofwesternEurasia:Traditionalclassificationsand evidencefromtwonuclearmarkers. Taxon 59 :351–366. DíazFernández PM, Climent J, Gil L . 2004 . Biennial acorn maturation and its relationship with flowering phenology in Iberian populations of Quercus suber . Trees - Structure and Function 18 :615621.

DowBD,AshleyMV,HoweHF . 1995 .Characterizationofhighlyvariable(GA/CT)n microsatellitesintheburoak, Quercus macrocarpa . TAG Theoretical and Applied Genetics 91 : 137141. DumolinLapègue S, Demesure B, Fineschi S, Corre VL, Petit RJ . 1997 . Phylogeographic structure of white oaks throughout the European continent. Genetics 146 :1475. Ellenberg H . 1996 . Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischerundhistorischerSicht. Auflage. Ulmer, Stuttgart, 1095pp. Esser A . 1996 . Quercus alnifolia Poech. Monographie der auf Zypern endemischen ErlenblättrigenEiche.Diplomathesis.GeorgAugustUniversityofGöttingen. ExcoffierL,LavalG,SchneiderS . 2005 .Arlequin(version3.0):anintegratedsoftware packageforpopulationgeneticsdataanalysis. Evolutionary Bioinformatics Online 1:4750. ExcoffierL,SmousePE,QuattroJM . 1992 .AnalysisofMolecularVarianceInferred FromMetricDistancesAmongDNAHaplotypes:ApplicationtoHumanMitochondrial DNARestrictionData. Genetics 131 :479491. FrodinDG . 2004 .Historyandconceptsofbigplantgenera. Taxon 53 :753–776.

48 10.References

Gardiner AS . 1970 . Pedunculate and Sessile Oak ( Quercus robur L. and Quercus petraea (Mattuschka)Liebl.):AReviewoftheHybridControversy. Forestry 43 :151. GiorgiF,LionelloP . 2008 .ClimatechangeprojectionsfortheMediterraneanregion. Global and Planetary Change 63 :90104. Gömöry D, Yakovlev I, Zhelev P, Jedináková J, Paule L . 2001 . Genetic differentiationofoakpopulationswithinthe Quercus robur /Quercus petraea complexin CentralandEasternEurope. Heredity 86 :557563. GottliebLD . 1977 .ElectrophoreticEvidenceandPlantSystematics. Annals of the Missouri Botanical Garden 64 :161180. GugerliF,WalserJ,DounaviK,HoldereggerR,FinkeldeyR . 2007 .Coincidenceof Smallscale Spatial Discontinuities in Leaf Morphology and Nuclear Microsatellite Variationof Quercus petraea and Q. robur inaMixedForest. Annals of Botany 99 :713722. Gugerli F, Brodbeck S, Holderegger R . 2008 . Utility of Multilocus Genotypes for TaxonAssignmentinStandsofCloselyRelatedEuropeanWhiteOaksfromSwitzerland. Annals of Botany 102 :855863. GuttmanSI,WeigtLA . 1989 .Electrophoreticevidenceofrelationshipsamong Quercus (oaks)ofeasternNorthAmerica. Botany 67 :339351. HandR . 2006 .SupplementarynotestothefloraofCyprusV. Willdenowia 36 :761809. Heuertz M, Carnevale S, Fineschi S, Sebastiani F, Hausman JF, Paule L, VendraminGG . 2006 .ChloroplastDNAphylogeographyofEuropeanashes, Fraxinus sp.(Oleaceae):rolesofhybridizationandlifehistorytraits. Molecular ecology 15 :2131–2140. HoegE . 1929 .OmMellemformernemellem Quercus robur L.og Q. sessiliflora . Martyn. Bot. Tids. Copenhagen 40 :411–27. Hubby JL, Lewontin RC . 1966 . A molecular approach to the study of genic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura . Genetics 54 :577. Huson DH, Bryant D . 2006 . Application of Phylogenetic Networks in Evolutionary Studies. Mol Biol Evol 23 :254267. Isagi Y, Suhandono S . 1997 . PCR primers amplifying microsatellite loci of Quercus myrsinifolia Blumeandtheirconservationbetweenoakspecies. IversonLR,PrasadAM . 2001 .PotentialChangesinTreeSpeciesRichnessandForest CommunityTypesfollowingClimateChange. Ecosystems 4:186199. JensenJ,LarsenA,NielsenLR,CottrellJ . 2009 .Hybridizationbetween Quercus robur and Q. petraea inamixedoakstandinDenmark. Annals of Forest Science 66 :12. JensenRJ,HokansonSC,IsebrandsJG,HancockJF . 1993 .Morphometricvariation

10.References 49

inoaksoftheApostleIslandsinWisconsin:evidenceofhybridizationbetween Quercus rubra and Q. ellipsoidalis (Fagaceae). American Journal of Botany 80 :1358–1366. JensenRJ . 2003 .TheConundrumofMorphometrics. Taxon 52 :663671. JimenezP,deHerediaUL,ColladaC,LorenzoZ,GilL . 2004 .Highvariabilityof chloroplastDNAinthreeMediterraneanevergreenoaksindicatescomplexevolutionary history. Heredity 93 :510515.

Kampfer S, Lexer C, Glössl J, Steinkellner H . 1998 . Characterization of (GA) n MicrosatelliteLocifrom Quercus robur . Hereditas 129 :183186. KaneNC,KingMG,BarkerMS,RaduskiA,KarrenbergS,YatabeY,KnappSJ, Rieseberg LH . 2009 . Comparative genomic and population genetic analyses indicate highlyporousgenomesandhighlevelsofgeneflowbetweendivergent Helianthus species. Evolution 63 :2061–2075. KleinschmitJ . 1993 .IntraspecificvariationofgrowthandadaptivetraitsinEuropean oakspecies. Annales des Sciences Forestières (France) . KnopfH . 2008 . Quercus alnifolia Poech. Enzyklopädie der Holzgewächse .17. KrahlUrban J . 1951 . Traubenund Stieleiche in Schweden. Forstwissenschaftliches Centralblatt 70 . KremerA,DupoueyJL,DeansJD,CottrellJ,CsaiklU,FinkeldeyR,EspinelS, Jensen J, Kleinschmit J, Van Dam B . 2002 . Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Annales de Sciences Forestières 59 :777787. Kremer A, Petit R, Zanetto A, Fougère V, Ducousso A, Wagner D, Chauvin C . 1991 .Nuclearandorganellegenediversityin Quercus robur and Q. petraea . Genetic variation in European populations of forest trees :141–166. KremerA,PetitRJ . 1993 .Genediversityinnaturalpopulationsofoakspecies. Annales des sciences forestières .186–202. KremerA,KleinschmitJ,CottrellJ,CundallEP,DeansJD,DucoussoA,König AO,LoweAJ,MunroRC,PetitRJ,StephanBR . 2002 .Isthereacorrelationbetween chloroplasticandnucleardivergence,orwhataretherolesofhistoryandselectionon geneticdiversityinEuropeanoaks? Forest Ecology and Management 156 :7587. KrüssmannG . 1978 .HandbuchderLaubgehölze. Berlin: Parey 112p.-Maps.. General (KR, 197800102) . Lai Z, Nakazato T, Salmaso M, Burke JM, Tang S, Knapp SJ, Rieseberg LH . 2005 . Extensive chromosomal repatterning and the evolution of sterility barriers in hybridsunflowerspecies. Genetics 171 :291. LepaisO,PetitRJ,GuichouxE,LavabreJE,AlbertoF,KremerA,GerberS . 2009 . Species relative abundance and direction of introgression in oaks. Molecular Ecology 18 :

50 10.References

22282242. LeuzingerS,ZotzG,AsshoffR,KornerC . 2005 .Responsesofdeciduousforesttrees toseveredroughtinCentralEurope. Tree physiology 25 :641. Lewontin RC, Hubby JL . 1966 . A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosityinnaturalpopulationsof Drosophila pseudoobscura . Genetics 54 :595. Lexer C, Kremer A, Petit RJ . 2006 . Shared alleles in sympatric oaks: recurrent gene flowisamoreparsimoniousexplanationthanancestralpolymorphism. Molecular Ecology 15 :20072012. Lexer C, Widmer A . 2008 . The genic view of plant speciation: recent progress and emerging questions. Philosophical Transactions of the Royal Society B: Biological Sciences 363 : 30233036. Lindenmayer DB, Margules CR, Botkin DB . 2000 . Indicators of biodiversity for ecologicallysustainableforestmanagement. Conservation Biology 14 :941–950. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, GarciaGonzalo J, SeidlR,DelzonS,CoronaP,KolströmM,LexerMJ,MarchettiM . 2010 .Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259 :698709. LópezdeHerediaU,CarriónJS,JiménezP,ColladaC,GilL . 2007 .Molecularand palaeoecologicalevidenceformultipleglacialrefugiaforevergreenoaksontheIberian Peninsula. Journal of Biogeography 34 :1505–1517. LópezdeHerediaU,JiménezP,SimeoneMC,BellarosaR,SchironeB,Cervera MT, Gil L . 2007 . Multimarker phylogeny of three evergreen oaks reveals vicariant patternsintheWesternMediterranean. Taxon 56 :12091220. Lumaret R, Mir C, Michaud H, Raynal V . 2002 . Phylogeographical variation of chloroplastDNAinholmoak( Quercus ilex L.). Molecular Ecology 11 :232736. LumaretR,TryphonDionnetM,MichaudH,SanuyA,IpotesiE,BornC,MirC . 2005 . Phylogeographical Variation of Chloroplast DNA in Cork Oak ( Quercus suber ). Annals of Botany 96 :853861. MüllerStarckG,HerzogS,HattemerHH . 1993 .Intraandinterpopulationalgenetic variationinjuvenilepopulationsof Quercus robur Land Quercus petraea Liebl.Annales des sciences forestières .233–244. Magri D, Fineschi S, Bellarosa R, Buonamici A, Sebastiani F, Schirone B, Simeone MC, Vendramin GG . 2007 . The distribution of Quercus suber chloroplast haplotypes matches the palaeogeographical history of the western Mediterranean. Molecular Ecology 16 :52595266. Manos PS, Doyle JJ, Nixon KC . 1999 . Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Molecular phylogenetics

10.References 51

and evolution 12 :333–349. ManosPS,StanfordAM . 2001 .ThehistoricalbiogeographyofFagaceae:trackingthe tertiary history of temperate and subtropical forests of the northern hemisphere. International Journal of Plant Sciences 162 :S77–S93. Manos PS, Fairbrothers DE . 1987 . Allozyme Variation in Populations of Six Northeastern American Red Oaks (Fagaceae: Quercus Subg. Erythrobalanus). Systematic Botany 12 :365373. MayrE . 1942 .SystematicsandtheOriginofSpecies.P.imprenta: New York: 334 pp . MedailF,QuezelP . 1997 .Hotspotsanalysisforconservationofplantbiodiversityin theMediterraneanbasin. Annals of the Missouri Botanical Garden 84 :112–127. MeikleRD . 1977 .FloraofCyprus12. Kew (UK): Bentham-Moxon Trust . MinderAM,RothenbuehlerC,WidmerA . 2007 .Geneticstructureofhybridzones between Silene latifolia and Silene dioica (Caryophyllaceae): evidence for introgressive hybridization. Molecular ecology 16 :2504. Mir C, Jarne P, Sarda V, Bonin A, Lumaret R . 2009 . Contrasting nuclear and cytoplasmic exchanges between phylogenetically distant oak species ( Quercus suber > L. and Q. ilex L.)inSouthernFrance:inferringcrossesanddynamics. Plant Biology 11 :213 226. Mooney HA, Dunn EL . 1970 . Convergent evolution of Mediterraneanclimate evergreensclerophyllshrubs. Evolution 24 :292–303. MuirG,FlemingCC,SchlottererC . 2000 .Speciesstatusofhybridizingoaks. Nature 405 :1016. MuirG,SchlöttererC . 2005 .Evidenceforsharedancestralpolymorphismratherthan recurrent gene flow at microsatellite loci differentiating two hybridizing oaks ( Quercus spp.). Molecular Ecology 14 :549561. Muller CH . 1952 . Ecological control of hybridization in Quercus : a factor in the mechanismofevolution. Evolution 6:147–161. Mullis KB, Faloona FA . 1987 . Specific synthesis of DNA in vitro via a polymerase catalyzedchainreaction. Methods in Enzymology 155 :335. NeophytouC,PalliG,AravanopoulosF . 2000 .Hybridizationbetween Quercus alnifolia Poech and Quercus coccifera ssp. calliprinos (Webb) Holmboe in Cyprus assessed by an analysis of phenological characters. Scientific Annals of the Faculty of Forestry and Natural Environment 43 . Neophytou C, Palli G, Dounavi A, Aravanopoulos F . 2007 . Morphological differentiation and hybridization between Quercus alnifolia Poech and Quercus coccifera L. (Fagaceae)inCyprus. Silvae Genetica 56 :271277.

52 10.References

Nixon KC . 1993 . Infrageneric classification of Quercus (Fagaceae) and typification of sectionalnames. Annales des Sciences Forestières .25–34. Nosil P, Egan SP, Funk DJ . 2007 . Heterogeneous genomic differentiation between walkingstick ecotypes: "Isolation by adaptation" and multiple roles for divergent selection. Evolution 62 :316–336. OlaldeM,HerránA,EspinelS,GoicoecheaPG . 2002 .Whiteoaksphylogeographyin theIberianPeninsula. Forest Ecology and Management 156 :89–102. Olsson U . 1975 . A morphological analysis of phenotypes in populations of Quercus (Fagaceae)inSweden. Botanical Notes 128 :55–68. OrtegoJ,BonalR . 2010 .Naturalhybridisationbetweenkermes( Quercus coccifera L.)and holmoaks( Q. ilex L.)revealedbymicrosatellitemarkers. Plant Biology 12 :234–238. PalamarevE . 1989 .PaleobotanicalevidencesoftheTertiaryhistoryandoriginofthe Mediterraneansclerophylldendroflora. Plant Systematics and Evolution 162 :93107. PalmerEJ . 1948 .HybridoaksofNorthAmerica. Journal of the Arnold Arboretum 29 . Pearson RG, Dawson TP . 2005 . Longdistance plant dispersal and habitat fragmentation: identifying conservation targets for spatial landscape planning under climatechange. Biological Conservation 123 :389–401. Petit RJ, Kremer A, Wagner DB . 1993 . Geographic structure of chloroplast DNA polymorphismsinEuropeanoaks. TAG Theoretical and Applied Genetics 87 :122128. PetitR,BodénèsC,DucoussoA,RousselG,KremerA . 2004 .Hybridizationasa MechanismofInvasioninOaks. New Phytologist 161 :151164. PetitR,CsaiklUM,BordácsS,BurgK,CoartE,CottrellJ,DamBV,DeansJD, DumolinLapègueS,FineschiS,FinkeldeyR,Amanda,GlazI,GoicoecheaPG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Olalde M, Pemonge M, Popescu F, Slade D, Tabbener H, Taurchini D, Vries SGMD, ZiegenhagenB,KremerA . 2002 .ChloroplastDNAvariationinEuropeanwhiteoaks: Phylogeography and patterns of diversity based on data from over 2600 populations. Forest Ecology and Management 156 :526. Petit R, Pineau E, Demesure B, Bacilieri R, Ducousso A, Kremer A . 1997 . Chloroplast DNA footprints of postglacial recolonization by oaks. Proceedings of the National Academy of Sciences of the United States of America 94 :999610001. Porth I, ScottiSaintagne C, Barreneche T, Kremer A, Burg K . 2005 . Linkage mappingofosmoticstressinducedgenesofoak. Tree Genetics & Genomes 1:3140. PritchardJK,StephensM,DonnellyP . 2000 .Inferenceofpopulationstructureusing multilocusgenotypedata. Genetics 155 :945959. Robertson A . 1977 . Tertiary uplift history of the Troodos massif, Cyprus. Geological Society of America Bulletin 88 :17631772.

10.References 53

Rohlf FJ, Marcus LF . 1993 . A revolution in morphometries. Trends in Ecology and Evolution 8:129–132. RoloffA,WeisgerberH,LangU,StimmB . 2008 . Enzyklopädie der Holzgewächse .Wiley VCH. RushtonBS . 1977 .Artificialhybridizationbetween Quercus robur L.and Quercus petraea (Matt.)Liebl. Watsonia 11 :229–236. Rushton BS . 1979 . Quercus robur L. and Quercus petraea (Matt.) Liebl.: a multivariate approachtothehybridproblem.2.Thegeographicaldistributionofpopulationtypes. Watsonia 12 :209–224. RushtonBS . 1993 .Naturalhybridizationwithinthegenus Quercus L. Annales des Sciences Forestières 50 :18pp. Saintagne C, Bodenes C, Barreneche T, Pot D, Plomion C, Kremer A . 2004 . DistributionofgenomicregionsdifferentiatingoakspeciesassessedbyQTLdetection. Heredity 92 :2030. Salvini D, Bruschi P, Fineschi S, Grossoni P, Kjaer ED, Vendramin GG . 2009 . Natural hybridisation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. withinanItalianstandasrevealedbymicrosatellitefingerprinting. Plant Biology 11 :758– 765. SavolainenO,PyhäjärviT,KnürrT . 2007 .Geneflowandlocaladaptationintrees. SchironeB,SpadaF . 2001.Someremarksontheconservationofgeneticresourcesof Mediterranean oaks. Mediterranean Oaks Network: Report of the first meeting: 12-14 October 2000-Antalya, Turkey .21. Schnitzler JP, Steinbrecher R, Zimmer I, Steigner D, Fladung M . 2004 . Hybridization of European oaks ( Quercus ilex x Q. robur ) results in a mixed isoprenoid emittertype. Plant, Cell & Environment 27 :585–593. Schwarz O . 1936 . Entwurf zu einem natürlichen System der Cupuliferen und der Gattung Quercus L. Notizblatt des Botanischen Gartens und Museums zu Berlin-Dahlem :122. ScottiSaintagneC,BodénèsC,BarrenecheT,BertocchiE,PlomionC,KremerA . 2004 . Detection of quantitative trait loci controlling bud burst and height growth in QuercusroburL. TAG Theoretical and Applied Genetics 109 :16481659. ScottiSaintagneC,MarietteS,PorthI,GoicoecheaPG,BarrenecheT,Bodenes C, Burg K, Kremer A . 2004 . Genome Scanning for Interspecific Differentiation BetweenTwoCloselyRelatedOakSpecies[ Quercus robur L.and Q. petraea (Matt.)Liebl.]. Genetics 168 :16151626. Slatkin M . 1995 . A measure of population subdivision based on microsatellite allele frequencies. Genetics 139 :457.

54 10.References

SmousePE,DyerRJ,WestfallRD,SorkVL . 2001 .Twogenerationanalysisofpollen flowacrossalandscape.I.Malegameteheterogeneityamongfemales. Evolution 55 :260– 271. SotoA,LorenzoZ,GilL . 2003 .Nuclearmicrosatellitemarkersfortheidentificationof Quercus ilex L.and Q. suber L.hybrids. Silvae Genetica 52 :6366. StebbinsGL . 1950 .Variationandevolutionin.643p. The Columbia Biological Series. Editorial Columbia University, New York, USA . SteinhoffS . 1998 .Controlledcrossesbetweenpendunculateandsessileoakresultsand conclusion;KontrollierteKreuzungenzwischenStielundTraubeneicheErgebnisseund Folgerungen. Allgemeine Forst-und Jagdzeitung (Germany) . Steinkellner H, Fluch S, Turetschek E, Lexer C, Streiff R, Kremer A, Burg K,

GlösslJ . 1997 .Identificationandcharacterizationof(GA/CT) nmicrosatellitelocifrom Quercus petraea . Plant Molecular Biology 33 :10931096.

Steinkellner H, Lexer C, Turetschek E, Glössl J . 1997 . Conservation of (GA) n microsatellitelocibetween Quercus species. Molecular Ecology 6:11891194. StreiffR,DucoussoA,LexerC,SteinkellnerH,GloesslJ,KremerA . 1999 .Pollen dispersalinferredfrompaternityanalysisinamixedoakstandof Quercus robur L.and Q. petraea (Matt.)Liebl. Molecular Ecology 8:831841. StreiffR,LabbeT,BacilieriR,SteinkellnerH,GlösslJ,KremerA . 1998 .Within populationgeneticstructurein Quercus robur L.andQuercus petraea (Matt.)Liebl.assessed withisozymesandmicrosatellites. Molecular Ecology 7:317328. Thomas FM, Blank R, Hartmann G . 2002 . Abiotic and biotic factors and their interactionsascausesofoakdeclineinCentralEurope. Forest Pathology 32 :277–307. TiffneyBH,ManchesterSR . 2001 .Theuseofgeologicalandpaleontologicalevidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary. International Journal of Plant Sciences 162 :S3S17. ToumiL,LumaretR . 2001 .AllozymecharacterisationoffourMediterraneanevergreen oakspecies. Biochemical Systematics and Ecology 29 :799817. Tsintides TC, Hadjikyriakou GN, Christodoulou CS . 2002 . Trees and shrubs in Cyprus. Foundation A. G. Leventis. Nicosia. Ueno S, Taguchi Y, Tsumura Y . 2008 . Microsatellite markers derived from Quercus mongolica var. crispula (Fagaceae) inner bark expressed sequence tags. Genes & Genetic Systems 83 :179–187. ValladaresF,BalaguerL,MartinezFerriE,PerezCoronaE,ManriqueE . 2002 . Plasticity, instability and canalization: is the phenotypic variation in seedlings of sclerophyll oaks consistent with the environmental unpredictability of Mediterranean ecosystems? New Phytologist 156 :457–467.

10.References 55

VanValenL . 1976 .Ecologicalspecies,multispecies,andoaks. Taxon 25 :233–239. Varela M, Brás R, Barros IR, Oliveira P, Meierrose C . 2008 . Opportunity for hybridizationbetweentwooakspeciesinmixedstandsasmonitoredbythetimingand intensityofpollenproduction. Forest Ecology and Management 256 :1546–1551. Viscosi V, Fortini P, Slice DE, Loy A, Blasi C . 2009 . Geometric morphometric analysesofleafvariationinfouroak speciesofthesubgenus Quercus (Fagaceae). Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology: Official Journal of the Societa Botanica Italiana 143 :575. VitasseY,PortéAJ,KremerA,MichaletR,DelzonS. 2009 .Responsesofcanopy durationtotemperaturechangesinfourtemperatetreespecies:relativecontributionsof springandautumnleafphenology. Oecologia 161 :187–198. WhittemoreAT,SchaalBA . 1991 .Interspecificgeneflowinsympatricoaks. Proceedings of the National Academy of Sciences 88 :2540. Whitton J, Rieseberg LH, Ungerer MC . 1997 .Microsatellite loci are not conserved acrosstheAsteraceae. Molecular biology and evolution 14 :204–209. Williams JH, Boecklen WJ, Howard DJ . 2001 . Reproductive processes in two oak (Quercus )contactzoneswithdifferentlevelsofhybridization. Heredity 87 :680–690. Wolfe KH, Li WH, Sharp PM . 1987 . Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences of the United States of America84 :9054. WuC . 2001 .Thegenicviewoftheprocessofspeciation. Journal of Evolutionary Biology 14 : 851865. Yatabe Y, Kane NC, ScottiSaintagne C, Rieseberg LH. 2007 . Rampant gene exchangeacrossastrongreproductivebarrierbetweentheannualsunflowers, Helianthus annuus and H. petiolaris . Genetics 175 :1883. Zanetto A, Roussel G, Kremer A . 1994 . Geographic variation of interspecific differentiation between Quercus robur L. and Quercus petraea (Matt.) Liebl. Forest Genetics (Slovakia) 1:111123. ZhuZ . 1993 .Thefossilhistoryof Quercus . Acta Botanica Yunnanica 15 :21–33.

56

11.Acknowledgments This thesis was financially supported by a DAAD scholarship and a scholarship according to the State Law on Graduate Funding. The laboratory equipment was financed by the FVA in the framework of the project entitled “Artbestimmung und Hybridisierung von verschiedenen EichenArten aus Mitteleuropa”. A special thank is owedtoallthosewhosupportedmeduringthisprojectinmanyrespects–scientifically, technicallyandmentally. IwanttoexpressmygratitudetoProf.Dr.SiegfriedFinkforgivingmetheopportunity to accomplish my thesis in the fascinating study area of evolutionary genetics. I am gratefulforhissupervisionandsupporttomyapplicationforascholarshipaccordingto the State Law on Graduate Funding. I am grateful to my second supervisor, Prof. Aravanopoulos, who provided his scientific mentoring with a high motivation and enthusiasmthroughoutmythesis,inspiteofstronggeographicbarriersbetweenus!His helpandhismentalsupportwereinvaluable.IwouldliketothankDr.KaterinaDounavi forhercontributiontothepreparationandimplementationofthestudyconceptofmy thesisandforgivingmetheopportunitytoworkattheFVAandgetknownwiththe workingareaofmoleculargenetics.IamindebtedtoDr.EberhardAldingerformaking theimplementationofmyproposalpossiblebyapprovingthefinancialsupportofthe laboratoryequipment.AgreatandwarmthankisowedtoDr.AkiHöltken,whooffered his scientific help and advice with a relaxed and human way during his period of employmentattheFVA.IamthankfultoProf.Dr.AlbertReifforallhishintsandhis enthusiasminsharinghisknowledgeinthefieldandelsewhere. I would like to acknowledge the help of Mr. Richard Haas for introducing me to laboratorywork.Iamgratefultoallmycolleaguesnotonlyfortheirhelp,butalsofor the pleasant atmosphere during my work as a doctorate student at the FVA. I owe a special thank на мой приятел Radko Babakov, for his help in lab and in sample collectionsandforbeingaverykindandveryhonestfriend.Agreat“eskerrikasko”is dedicated to Elizabeth Macho Carretero for helping in the lab and giving me mental support with empathy and humour. I express my cordial thank to Sara Virseda and BarbaraMadariaga,whoworkedhardtocarryoutpartoftheprojectanalyses.Itwasa pleasure for me to work with them during their diploma theses which were based on these analyses. I express my gratitude to Ariane Lorenz and MariCarmen Dacasa Rüdinger for her steady support, especially during difficult times in the laboratory. A great thank is owed to Dr. Henning Wildhagen for offering his help in the – always critical–lasthoursbeforeprintingthismanuscript.IamalsogratefultoThomasSeliger forsomehintsinlabandaboutthepresenttext.AspecialthankbelongstoChristine Schumacher for her help and very kind attitute throughout my stay at the FVA and especiallyintheselastmomentsshortlybeforethismanuscriptgoestopress.Inanycase, IcannotomitfromtheacknowledgmentsNourAlhammoudwhonotonlyworkedby myside,butalsocontributedalottotheniceatmosphereinthelaboratoryteamwithan orientaltemperament,partiallyremindingmemylovedhomeland. HerrmannSchottandKlausWinkleraregreatlyacknowledgedfortheirassistanceduring field collections in Germany and their help to improve my language skills in the allemanischlanguage!IamindebtedtoPetrosAnastasiou,ZachariasTriftarides,Savvas ProtopapasandothercolleaguesoftheDepartmentofForestsofCypruspersonnel,for theirassistanceduringplantcollectionsinsteepslopesandundertheharshconditionsof 11.Acknowledgments 57

theCypriotsummer.IexpressmyspecialgratitudetoDr.AndreasChristou,headofthe research department of the Cypriot Department of Forests, for his invaluable advice throughoutmydoctoratethesis.IthankDr.CostasKadisforsomescientifichintsand hishelptogetherinfieldworktogetherwithConstantinosKounnamas. Iwouldliketoexpress–alsoinwrittenform–agreatthanktoallthosepeoplewho mentallystoodbymysideduringthisimportantperiodofmyeducationandmylife.A greatthankisowedtoPeterFreyforbeingsteadilybymysidesharinggoodandbad momentsandcommondreamsaswell.Itisdifficulttoexpressmygratitudeinwords.I express my gratitude to my old study colleagues and good friends Nikos Alexandris, Dimitris Samaras and Fotis Xystrakis, with whom I shared many common reflections duringalmostthewholetimeofmyacademicexperiencesinceenteringtheUniversityof Thessaloniki more than ten years ago. I cannot omit my friends Constantinos Kounnamas and Adonis Panayides from the acknowledgments. Although geographic distanceamonguswasalwaysbig,mentaldistancenevergrewlargeandwealwaysshared funnyanddifficultmomentsofourlives.Finally,Iexpressagreatthanktomyloved parents,whohavealwaysbeenthemostimportantbackingduringdifficultmomentsand conflictsandcouldalwaysexpressawordofmotivationinworkandlifelikenobodyelse coulddo.

58

12.Publications Manuscript I: C. Neophytou, F.A. Aravanopoulos, S. Fink, A. Dounavi 2010. Detecting interspecific and geographic differentiation patterns in two interfertile oak species ( Quercus petraea (Matt.) Liebl. and Q. robur L.) using small sets of microsatellite markers.ForestEcologyandManagement. 259 :2026–2035 Manuscript II: C. Neophytou, A. Dounavi, S. Fink, F.A. Aravanopoulos 2010. Interfertile oaks in an island environment. I. Contrasting patterns of nuclear and chloroplast DNA differentiation between Quercus alnifolia and Q. coccifera in Cyprus. EuropeanJournalofForestResearch.DOI:10.1007/s1034201004428. Manuscript III: C. Neophytou, F.A. Aravanopoulos, S. Fink, A. Dounavi 2011. Interfertile oaks in an island environment. II. Limited hybridization between Quercus alnifolia Poechand Q. coccifera L.inamixedstand.EuropeanJournalofForestResearch. DOI:10.1007/s1034201004544. Manuscript IV: C. Neophytou, A. Dounavi & F.A. Aravanopoulos 2008. ConservationofnuclearSSRlocirevealshighaffinityof Quercus infectoria ssp. veneris A. Kern(Fagaceae)tosectionRobur.PlantMolecularBiologyReporter 26 :133141.