Active Fault, Fault Growth and Segment Linkage Along the Janauri Anticline (Frontal Foreland Fold), NW Himalaya, India

Total Page:16

File Type:pdf, Size:1020Kb

Active Fault, Fault Growth and Segment Linkage Along the Janauri Anticline (Frontal Foreland Fold), NW Himalaya, India Tectonophysics 483 (2010) 327–343 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Active fault, fault growth and segment linkage along the Janauri anticline (frontal foreland fold), NW Himalaya, India Javed N. Malik a,⁎, Afroz A. Shah a,1, Ajit K. Sahoo a,2, B. Puhan a, Chiranjib Banerjee a, Dattatraya P. Shinde b, Navin Juyal b, Ashok K. Singhvi b, Shishir K. Rath a a Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India b Physical Research Laboratory, Ahmedabad 380 009, Gujarat, India article info abstract Article history: The 100 km long frontal foreland fold — the Janauri anticline in NW Himalayan foothills represents a single Received 27 October 2009 segment formed due to inter-linking of the southern (JS1) and the northern (JS2) Janauri segments. This Accepted 30 October 2009 anticline is a product of the fault related fold growth that facilitated lateral propagation by acquiring more Available online 10 November 2009 length and linkage of smaller segments giving rise to a single large segment. The linked portion marked by flat-uplifted surface in the central portion represents the paleo-water gap of the Sutlej River. This area is Keywords: comparatively more active in terms of tectonic activity, well justified by the occurrence of fault scarps along Active faults Fault related fold growth the forelimb and backlimb of the anticline. Occurrence of active fault scarps on either side of the anticline Lateral propagation of fault suggests that the slip accommodated in the frontal part is partitioned between the main frontal thrust i.e. the Segment linkage Himalayan Frontal Thrust (HFT) and associated back-thrust. The uplift in the piedmont zone along southern Paleoseismology portion of Janauri anticline marked by dissected younger hill range suggests fore-landward propagation of NW Himalaya tectonic activity along newly developed Frontal Piedmont Thrust (FPT), an imbricated emergent thrust branching out from the HFT system. We suggests that this happened because the southern segment JS1 does not linked-up with the northwestern end of Chandigarh anticline segment (CS). In the northwestern end of the Janauri anticline, due to no structural asperity the tectonic activity on HFT was taken-up by two (HF1 — in the frontal part and HF2 — towards the hinterland side) newly developed parallel active faults (Hajipur Fault) branched from the main JS2 segment. The lateral propagation and movements along HF1 and HF2 resulted in uplift of the floodplain as well as responsible for the northward shift of the Beas River. GPR and trench investigations suggest that earthquakes during the recent past were accompanied with surface rupture. OSL (optical stimulated luminescence) dates from the trench suggests occurrence of at least two events during the recent historic past, with the latest — Event II during 1500 AD (?). © 2009 Elsevier B.V. All rights reserved. 1. Introduction represent the principal intracrustal thrusts: the Main Central Thrust (MCT), Main Boundary Thrust (MBT), and Himalayan The tectonic collision between Indian and Eurasian plates has Frontal Thrust (HFT), with younger initiation ages towards the made the Himalayan arc as one of the most seismically active south (Thakur, et al., 2007). The strain accumulated across the regions of the world. Since collision (∼50 Ma) along the Indus– Himalayan zone due to ongoing deformation has been episodically Tsangpo Suture Zone, the successive zones of deformation have released in form of large to moderate magnitude earthquakes in progressively advanced southward, resulting in faulting and folding the region. The recent 2005 (Mw 7.6) Muzaffarabad earthquake has along the prominent structural features of the Himalayan orogenic again proved the capability of the Himalaya in producing large belt (Gansser, 1964; Seeber et al., 1981; Lyon-Caen and Molnar, magnitude earthquakes. Field investigations revealed a rupture of 1983). From north to south these prominent structural features about 65 km along an earlier identified “Tanda active fault” having lateral extend of about 16 km (Nakata et al., 1991; Kaneda et al., 2006; Yeats and Hussain, 2006). These earthquakes have raised ⁎ Corresponding author. concerns toward the seismic hazard assessment in Himalaya, E-mail addresses: [email protected] (J.N. Malik), [email protected] (A.A. Shah), especially in the foothill zones bordering the thickly populated [email protected] (A.K. Sahoo), [email protected] (D.P. Shinde), Indo-Gangetic Plain. Apart from few large magnitude events in NW [email protected] (N. Juyal), [email protected] (A.K. Singhvi). Himalaya with M≥ 7.6 viz. 1555 and 1885 Kashmir events; 1905 1 Now at School of Earth & Environmental Sciences, James Cook University, Townsville Queensland 4811, Australia. Kangra and recent 2005 Muzaffarabad, no historical records are 2 Now at Reliance India Limited, Mumbai. available from this region. In seismically active regions of the 0040-1951/$ – see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.tecto.2009.10.028 328 J.N. Malik et al. / Tectonophysics 483 (2010) 327–343 Fig. 1. (a) DEM of the area around NW Himalaya showing prominent NNW–SSE striking frontal foreland fold — the Janauri anticline. Inset shows map of India with location of Janauri anticline and study area, (b) Profile AA` is across the Hajipur fault in the northwestern fringe of Janauri anticline, (c) BB` is drawn in the central part of Janauri anticline, and (d) CC` is across the southern fringe showing the Frontal Piedmont Thrust. HFT — Himalayan Frontal Thrust, BT — Back Thrust, SnT — Soan Thrust and NaT — Nalagarh Thrust. J.N. Malik et al. / Tectonophysics 483 (2010) 327–343 329 world, active faults are considered to be the source for large 2. Geomorphology magnitude earthquakes, and the paleoseismic investigations along such faults have proved their capability in producing large earth- 2.1. Geomorphological setting and active fault distribution quakes periodically (e.g. Nakata, 1989; McCalpin, 1996; Yeats et al., 1997; Meghraoui and Doumaz, 1996; Oatney et al., 2001; The area along the NW Himalayan foothill zone shows three major Meghraoui et al., 2003; Malik and Nakata, 2003; Pantosti et al., geomorphic zones (Figs. 1 and 2) from north to south. These zones are 2004; Malik and Mathew, 2005; Lavé et al., 2005; Kumar et al., bounded by major fault lines (Fig. 1a). The longitudinal intermontane 2006; Kaneda et al., 2006; Yeats and Hussain, 2006). It is therefore valley — Soan Dun (Dun= valley) is the northern most major extremely important to have precise active fault map in the region geomorphic unit in the study area. The Soan Dun is confined between like Himalaya, where not much information is available on the the Lower Siwalik Hills to its north and the Sub-Himalayan range (Upper distribution of active faults. Because without such studies the Siwalik) in south. The boundary between the Lower Siwalik Hills and hazard posed by these faults may be underestimated. Soan Dun is marked by Nalagarh Thrust (NaT) and the southern limit by The studies on active tectonic deformation in the Himalayan frontal Back-thrust (BT) along the back-limb of Janauri anticline. The Sub- zone from Nepal and India have revealed occurrence of uplifted-tilted Himalayan range marked by the Janauri anticline represents the late Pleistocene and Holocene fluvial terraces and alluvial fan surfaces, youngest foreland fold demarcating the southern boundary the with prominent fault scarps ranging in height from 5 to 50 m resulted Himalaya with respect to the Indo-Gangetic Plain (IGP) to its south. due ongoing active deformation along the Himalayan Frontal Thrust This vast flat alluvial plain (IGP) represents the present foreland basins (HFT), Main Dun Thrust (MDT) and the Main Boundary Thrust (Nakata, 1972; Powers et al., 1998; Malik and Mohanty, 2007). (MBT) (Nakata, 1972, 1975; Valdiya, et al., 1984; Nakata, 1989; Nakata The boundary between the Janauri anticline and Indo-Gangetic Plain is et al., 1990; Valdiya, 1992; Yeats et al., 1992; Mugnier et al., 1998; marked by Himalayan Frontal Thrust (HFT). Wesnousky et al., 1999; Lavé and Avouac, 2000; Malik and Nakata, The Sutlej and Beas Rivers emerging from higher Himalayas are the 2003; Malik et al., 2003; Mugnier et al., 2004). However, still there are major drainage in the region (Figs. 1–3). The Beas River borders to the several areas particularly in NW Himalaya were very little information northern fringe of the Janauri anticline and Sutlej River to its south is available. before debauching on the Indo-Gangetic Plain. The growth of the Along with active fault identification it is important to know the 100 km long Janauri anticline has influenced the flow paths of these pattern of deformation, which in turn, helps in understanding the major rivers. The flat topped uplifted surface in the central part of the overall evolution of the landscape and also towards identifying the anticline marks the paleo-water gap of Sutlej River and a linked-up geometry of the fault related fold segments. Frontal fault-propaga- segment formed by the linkage of two smaller fault segments (Malik tion fold growth in forward as well as lateral directions are and Mohanty, 2007). commonly noticed in active fold-and-thrust belt (e.g. Mueller and Talling, 1997; Delcaillau et al., 1998; Champel et al., 2002; Delcaillau 3. Active fault distribution along Janauri anticline et al., 2006; Malik and Mohanty, 2007; Simoes et al., 2007). Lateral propagation of fault and related development of fold to some extent Several traces of active fault scarps were identified in the central has been attributed to slip along the fault during major earthquakes portion along the Janauri anticline by Malik and Mohanty (2007),butno (Walsh et al., 2002). It has been suggested that fault and associated ground truthing was carried out.
Recommended publications
  • Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with Receiver Function CCP Stacking
    Earth and Planetary Science Letters 367 (2013) 15–27 Contents lists available at SciVerse ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with receiver function CCP stacking Warren B. Caldwell a,n, Simon L. Klemperer a, Jesse F. Lawrence a, Shyam S. Rai b, Ashish c a Stanford University, Stanford, CA, United States b National Geophysical Research Institute, Hyderabad, India c CSIR Centre for Mathematical Modeling and Computer Simulation, NAL Belur, Bangalore, India article info abstract Article history: We use common conversion point (CCP) stacking of Ps receiver functions to image the crustal structure Received 20 November 2012 and Moho of the Garhwal Himalaya of India. Our seismic array of 21 broadband seismometers spanned Received in revised form the Himalayan thrust wedge at 79–801E, between the Main Frontal Thrust and the South Tibet 10 February 2013 Detachment, in 2005–2006. Our CCP image shows the Main Himalayan Thrust (MHT), the detachment Accepted 11 February 2013 at the base of the Himalayan thrust wedge, with a flat-ramp-flat geometry. Seismic impedance Editor: T.M. Harrison contrasts inferred from geologic cross-sections in Garhwal imply a negative impedance contrast (velocity decreasing downward) for the upper flat, located beneath the Lower Himalaya, and a positive Keywords: impedance contrast (velocity increasing downward) for the ramp, located beneath the surface trace of Himalaya the Munsiari Thrust (or MCT-I). At the lower flat, located beneath the Higher Himalaya, spatially India coincident measurements of very high electrical conductivities require the presence of free fluids, and Garhwal receiver functions we infer a negative impedance contrast on the MHT caused by ponding of these fluids beneath the CCP stacking detachment.
    [Show full text]
  • Himalayan Megathrust Geometry and Relation to Topography Revealed by the Gorkha Earthquake J
    ARTICLES PUBLISHED ONLINE: 11 JANUARY 2016 | DOI: 10.1038/NGEO2623 Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake J. R. Elliott1*, R. Jolivet2†, P. J. González3, J.-P. Avouac2,4, J. Hollingsworth5, M. P. Searle6 and V. L. Stevens4 The Himalayan mountain range has been the locus of some of the largest continental earthquakes, including the 2015 magnitude 7.8 Gorkha earthquake. Competing hypotheses suggest that Himalayan topography is sustained and plate convergence is accommodated either predominantly on the main plate boundary fault, or more broadly across multiple smaller thrust faults. Here we use geodetic measurements of surface displacement to show that the Gorkha earthquake ruptured the Main Himalayan Thrust fault. The earthquake generated about 1 m of uplift in the Kathmandu Basin, yet caused the high Himalaya farther north to subside by about 0.6 m. We use the geodetic data, combined with geologic, geomorphological and geophysical analyses, to constrain the geometry of the Main Himalayan Thrust in the Kathmandu area. Structural analyses together with interseismic and coseismic displacements are best explained by a steep, shallow thrust fault flattening at depth between 5 and 15 km and connecting to a mid-crustal, steeper thrust. We suggest that present-day convergence across the Himalaya is mostly accommodated by this fault—no significant motion on smaller thrust faults is required. Furthermore, given that the Gorkha earthquake caused the high Himalayan mountains to subside and that our fault geometry explains measured interseismic displacements, we propose that growth of Himalayan topography may largely occur during the ongoing post- seismic phase.
    [Show full text]
  • Surface Rupture of the 2005 Kashmir, Pakistan, Earthquake and Its Active
    Bulletin of the Seismological Society of America, Vol. 98, No. 2, pp. 521–557, April 2008, doi: 10.1785/0120070073 Ⓔ Surface Rupture of the 2005 Kashmir, Pakistan, Earthquake and Its Active Tectonic Implications by Heitaro Kaneda, Takashi Nakata, Hiroyuki Tsutsumi, Hisao Kondo, Nobuhiko Sugito, Yasuo Awata, Sardar S. Akhtar, Abdul Majid, Waliullah Khattak, Adnan A. Awan, Robert S. Yeats, Ahmad Hussain, Muhammad Ashraf, Steven G. Wesnousky, and Allah B. Kausar Abstract To provide a detailed record of a relatively rare thrust surface rupture and examine its active tectonic implications, we have conducted field mapping of the sur- M face rupture associated with the 2005 w 7.6 Kashmir earthquake. Despite the diffi- culty arising from massive earthquake-induced landslides along the surface rupture, we found that typical pressure ridges and warps extend northwestward for a distance of ∼70 km, with a northeast-side-up vertical separation of up to ∼7 m. Neither the main frontal thrust nor the main boundary thrust is responsible for the earthquake, but three active faults or fault segments within the Sub-Himalaya, collectively called the Balakot–Bagh fault, compose the causative fault. Although the fault exhibits sub- stantial geomorphic expression of repeated similar surface ruptures, only a part of it had been mapped as active before the earthquake. The location of the hypocenter suggests that the rupture was initiated at a deep portion of the northern–central seg- ment boundary and propagated bilaterally to eventually break all three segments. Our obtained surface rupture traces and the along-strike-slip distribution are both in good agreement with results of prompt analyses of satellite images, indicating that space geodesy can greatly aid in time-consuming field mapping of surface ruptures.
    [Show full text]
  • Active Tectonics in the Assam Seismic Gap Between the Meizoseismal Zone of AD 1934 and 1950 Earthquakes Along Eastern Himalayan Front, India
    J. Earth Syst. Sci. (2018) 127:66 c Indian Academy of Sciences https://doi.org/10.1007/s12040-018-0967-7 Active tectonics in the Assam seismic gap between the meizoseismal zone of AD 1934 and 1950 earthquakes along eastern Himalayan front, India Arjun Pandey1,3,IshwarSingh1, Rajeeb Lochan Mishra1,4, Priyanka Singh Rao2, Hari B Srivastava 3 and R Jayangondaperumal1,* 1Wadia Institute of Himalayan Geology, Dehradun 248 001, India. 2Geological Survey of India, SU: WB & AN, ER, Kolkata 700 016, India. 3Department of Geology, Banaras Hindu University, Varanasi 221 005, India. 4Present address: Ravenshaw University, Cuttack 753 003, India. *Corresponding author. e-mail: [email protected] MS received 31 July 2017; revised 10 November 2017; accepted 23 November 2017; published online 25 June 2018 The Assam Seismic Gap has witnessed a long seismic quiescence since the Mw∼8.4 great Assam earthquake of AD 1950. Owing to its improper connectivity over the last decades, this segment of the Himalaya has long remained inadequately explored by geoscientists. Recent geodetic measurements in the eastern Himalaya using GPS document a discrepancy between the geologic and geodetic convergence rates. West to east increase in convergence rate added with shorter time span earthquakes like the 1697 Sadiya, 1714 (Mw∼8) Bhutan and 1950 (Mw∼8.4) Tibet–Assam, makes this discrepancy more composite and crucial in terms of seismic hazard assessment. To understand the scenario of palaeoearthquake surface rupturing and deformation of youngest landforms between the meizoseismal areas of Mw∼8.1 1934 and 1950 earthquakes, the area between the Manas and Dhanshiri Rivers along the Himalayan Frontal Thrust (HFT) was traversed.
    [Show full text]
  • Examining the Tectono-Stratigraphic Architecture, Structural Geometry, and Kinematic Evolution of the Himalayan Fold-Thrust Belt, Kumaun, Northwest India
    Boise State University ScholarWorks Geosciences Faculty Publications and Presentations Department of Geosciences 8-1-2019 Examining the Tectono-Stratigraphic Architecture, Structural Geometry, and Kinematic Evolution of the Himalayan Fold-Thrust Belt, Kumaun, Northwest India Subhadip Mandal University of Alabama Delores M. Robinson University of Alabama Matthew J. Kohn Boise State University, [email protected] Subodha Khanal Georgia Department of Transportation Oindrila Das University of Alabama Follow this and additional works at: https://scholarworks.boisestate.edu/geo_facpubs Part of the Geophysics and Seismology Commons Publication Information Mandal, Subhadip; Robinson, Delores M.; Kohn, Matthew J.; Khanal, Subodha; and Das, Oindrila. (2019). "Examining the Tectono-Stratigraphic Architecture, Structural Geometry, and Kinematic Evolution of the Himalayan Fold-Thrust Belt, Kumaun, Northwest India". Lithosphere, 11(4), 414-435. https://dx.doi.org/ 10.1130/L1050.1 RESEARCH Examining the tectono-stratigraphic architecture, structural geometry, and kinematic evolution of the Himalayan fold-thrust belt, Kumaun, northwest India Subhadip Mandal1,*, Delores M. Robinson1, Matthew J. Kohn2, Subodha Khanal3, and Oindrila Das1 1DEPARTMENT OF GEOLOGICAL SCIENCES, CENTER FOR SEDIMENTARY BASIN STUDIES, UNIVERSITY OF ALABAMA, BEVILL BUILDING, TUSCALOOSA, ALABAMA 35487, USA 2DEPARTMENT OF GEOSCIENCES, BOISE STATE UNIVERSITY, 1910 UNIVERSITY DRIVE, BOISE, IDAHO 83725, USA 3GEORGIA DEPARTMENT OF TRANSPORTATION, 600 WEST PEACHTREE STREET NORTHWEST,
    [Show full text]
  • Seismic Imaging of the Main Frontal Thrust in Nepal Reveals a Shallow Décollement and Blind Thrusting Rafael V
    Boise State University ScholarWorks Center for Geophysical Investigation of the Shallow CGISS Publications and Presentations Subsurface (CGISS) 6-15-2018 Seismic Imaging of the Main Frontal Thrust in Nepal Reveals a Shallow Décollement and Blind Thrusting Rafael V. Almeida Nanyang Technological University Judith Hubbard Nanyang Technological University Lee Liberty Boise State University Anna Foster Nanyang Technological University Soma Nath Sapkota Department of Mines and Geology Publication Information Almeida, Rafael V.; Hubbard, Judith; Liberty, Lee; Foster, Anna; and Sapkota, Soma Nath. (2018). "Seismic Imaging of the Main Frontal Thrust in Nepal Reveals a Shallow Décollement and Blind Thrusting". Earth and Planetary Science Letters, 494, 216-225. http://dx.doi.org/10.1016/j.epsl.2018.04.045 Earth and Planetary Science Letters 494 (2018) 216–225 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Seismic imaging of the Main Frontal Thrust in Nepal reveals a shallow décollement and blind thrusting ∗ Rafael V. Almeida a, , Judith Hubbard a,b, Lee Liberty c, Anna Foster a,d, Soma Nath Sapkota e a Earth Observatory of Singapore, Nanyang Technological University, Singapore b Asian School of the Environment, Nanyang Technological University, Singapore c Department of Geosciences, Boise State University, ID, USA d Département des sciences de la Terre et de l’atmosphère, Université du Québec à Montréal, Canada e Department of Mines and Geology, Kathmandu 44600, Nepal a r t i c l e i n f o a b s t r a c t Article history: Because great earthquakes in the Himalaya have an average recurrence interval exceeding 500 yr, most Received 29 September 2017 of what we know about past earthquakes comes from paleoseismology and tectonic geomorphology Received in revised form 19 April 2018 studies of the youngest fault system there, the Main Frontal Thrust (MFT).
    [Show full text]
  • Seismicity of Himalaya Vis-À-Vis Tectonics and Focal
    SEISMICITY OF HIMALAYA VIS-À-VIS TECTONICS AND FOCAL MECHANISM 1 2 Kathuria Sukriti , Bhan Uday 1,2Department of Petroleum Engineering & Earth Sciences, University of Petroleum and Energy Studies, (India) ABSTRACT The active continent- continent collision between Indian and Eurasian plates have given rise to mighty Himalaya which separates the Tibetan plateau in the north from Indo-Gangetic plain in the south. This active collision since 65 million years has produced variety of geological features in the region in the form of large thrust faults running into several thousands of kilometers and many transverse features. The region has high earthquake productivity with four great earthquakes in a span of 53 years between 1897 and 1950 and many large earthquakes. It has been found by researchers that great and major earthquakes in the Himalaya occur on the northward dipping (with a dip of about 5-10) seismically active segment of detachment (Seeber et al., 1981;Ni and Barazangi, 1984;Molnar,1990). The small and moderate magnitude earthquakes are confined in a narrow belt, referred to as Himalayan Seismic Belt (HSB), which is around 50 km wide, which may be marked by 20-30 degree dip. In this study an earthquake catalog for the past 50 years is prepared; focal mechanism of all significant earthquakes is collected from various sources and a seismo-tectonic map of Himalaya is prepared with all major features which are digitized. The seismicity is studied with respect to geological features, focal mechanism. Keywords: Focal mechanism of Himalaya, Seismicity of Himalaya. I. INTRODUCTION Himalayan range extends from northwest to southeast in a 2400 kilometer stretch, separating Indo-Gangetic in south from Tibetan plateau in north.
    [Show full text]
  • Thrust Belt of the Garhwal Himalaya Author(S)
    FE stress analysis and Quaternary deformation in the fold-and- Title thrust belt of the Garhwal Himalaya Author(s) Joshi, Ganesh Raj; Hayashi, Daigoro 琉球大学理学部紀要 = Bulletin of the College of Science. Citation University of the Ryukyus(85): 1-37 Issue Date 2008-03 URL http://hdl.handle.net/20.500.12000/5608 Rights Bull. Fac. Sci., Univ. Ryukyus, No.85 : 1-37 (2008) FE stress analysis and Quaternary deformation in the fold-and-thrust belt of the Garhwal Himalaya Ganesh Raj Joshi and Daigoro Hayashi Simulation Tectonics Laboratory, Faculty of Science University of the Ryukyus, Okinawa, 903-0213, Japan. Abstract The immense Himalayan arc is evolved as a consequence of the collision between Indian and Eurasian landmasses some 50 million year ago. The Indian plate converges northward at the average rate of 20.5 ± 2 mm/year (Bilham et al., 1988), and is under-thrusting beneath Tibet. This continuous northward penetration of India under Eurasia has produced the broad zone of active crustal deformation, shortening, slicing and surface uplift of the northern margin of the Indian continent; and build up the Himalaya is under very strong compressive strain that made the entire Himalayan region one of the most seismo- tectonically dynamic intercontinental regions of the world. In the present study, an approach has been made to model a NE-SW cross-section (Ram et al., 2005) extending from the Gangetic Plain to the Tethys Himalaya including potentially active major faults by means of FE method (Hayashi, 2008) considering an elastic rheology under plane strain condition with convergent boundary environment in the fold-and-thrust belt of the Garhwal Himalaya.
    [Show full text]
  • Topographic and Tectonic Discontinuities in Western Nepal
    Lithosphere, published online on 17 June 2015 as doi:10.1130/L444.1 Along-strike changes in Himalayan thrust geometry: Topographic and tectonic discontinuities in western Nepal Jonathan E. Harvey1,*, Douglas W. Burbank1, and Bodo Bookhagen2 1DEPARTMENT OF EARTH SCIENCE, UNIVERSITY OF CALIFORNIA–SANTA BARBARA, SANTA BARBARA, CALIFORNIA 93106, USA 2INSTITUTE OF EARTH AND ENVIRONMENTAL SCIENCE, UNIVERSITY OF POTSDAM, 14476 POTSDAM-GOLM, GERMANY ABSTRACT Geodetic and seismologic studies support a tectonic model for the central Himalaya wherein ~2 cm/yr of Indo-Asian convergence is accom- modated along the primary décollement under the range, the Main Himalayan thrust. A steeper midcrustal ramp in the Main Himalayan thrust is commonly invoked as driving rapid rock uplift along a range-parallel band in the Greater Himalaya. This tectonic model, developed primarily from studies in central Nepal, is commonly assumed to project along strike with little lateral variation in Main Himalayan thrust geometry or associated rock uplift patterns. Here, we synthesize multiple lines of evidence for a major discontinuity in the Main Himalayan thrust in western Nepal. Analysis of topography and seismicity indicates that west of ~82.5°E, the single band of steep topography and seismicity along the Main Himalayan thrust ramp in central Nepal bifurcates around a high-elevation, low-relief landscape, resulting in a two-step topographic front along an ~150 km segment of the central Himalaya. Although multiple models could explain this bifurcation, the full suite of data appears to be most consistent with a northward bend to the Main Himalayan thrust ramp and activation of a young duplex horse to the south.
    [Show full text]
  • First Paleoseismic Evidence for Great Surface-Rupturing Earthquakes in the Bhutan Himalayas, J
    PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE First paleoseismic evidence for great surface-rupturing 10.1002/2015JB012733 earthquakes in the Bhutan Himalayas Key Points: Romain Le Roux-Mallouf1, Matthieu Ferry1, Jean-François Ritz1, Théo Berthet2, Rodolphe Cattin1, • Bhutan has been struck by at least two 3 great earthquakes over the last and Dowchu Drukpa millennium 1 2 • The present-day low-seismicity Géosciences Montpellier, CNRS, UMR5243, Université de Montpellier, Montpellier, France, Department of Earth Sciences, 3 rate observed in Bhutan is not Uppsala University, Uppsala, Sweden, Seismology and Geophysics Division, Department of Geology and Mines, Thimphu, representative of the seismic activity Bhutan at a longer timescale • A Mw 9 earthquake from central Nepal to Assam between A.D. 1090 and A.D. Abstract The seismic behavior of the Himalayan arc between central Nepal and Arunachal Pradesh 1145 may satisfy all observations remains poorly understood due to the lack of observations concerning the timing and size of past major and great earthquakes in Bhutan. We present here the first paleoseismic study along the Himalayan Supporting Information: • Supporting Information S1 topographic front conducted at two sites in southern central Bhutan. Paleoseismological excavations and related OxCal modeling reveal that Bhutan experienced at least two great earthquakes in the last millennium: Correspondence to: one between the seventeenth and eighteenth century and one during medieval times, producing a total R. Le Roux-Mallouf, cumulative vertical offset greater than 10 m. Along with previous studies that reported similar medieval [email protected] events in Central Nepal, Sikkim, and Assam, our investigations support the occurrence of either (i) a series of great earthquakes between A.D.
    [Show full text]
  • Active Strike-Slip Faults and an Outer Frontal Thrust in the Himalayan Foreland Basin
    Active strike-slip faults and an outer frontal thrust in the Himalayan foreland basin Michael J. Duvalla, John W. F. Waldrona,1, Laurent Godinb, and Yani Najmanc aDepartment of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G2E3, Canada; bDepartment of Geological Sciences and Geological Engineering, Queen’s University, Kingston ON K7L 3N6, Canada; and cLancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, United Kingdom Edited by Lisa Tauxe, University of California San Diego, La Jolla, CA, and approved June 11, 2020 (received for review February 2, 2020) The Himalayan foreland basin formed by flexure of the Indian Plate unconformably on Proterozoic mobile belts, sedimentary basins, below the advancing orogen. Motion on major thrusts within the and an Archean craton, exposed along the southern edge of the orogen has resulted in damaging historical seismicity, whereas south basin. The stratigraphy of the basin is known from drilling and of the Main Frontal Thrust (MFT), the foreland basin is typically from outcrop in the sub-Himalaya and Lesser Himalaya (22). portrayed as undeformed. Using two-dimensional seismic reflection The basin fill is divided by an Oligocene disconformity in the sub- data from eastern Nepal, we present evidence of recent deformation Himalaya (23, 24), below which a thin (>90 m) Paleogene suc- propagating >37 km south of the MFT. A system of tear faults at a cession is dominated by marine mudstone (25). The overlying high angle to the orogen is spatially localized above the Munger- Miocene to Quaternary rocks are fluvial deposits that filled the Saharsa basement ridge. A blind thrust fault is interpreted in the subsiding basin (4).
    [Show full text]
  • Crustal Structure of the Bhutanese Himalaya: New Insights from a Gravity Analysis in Western and Central Bhutan
    BearWorks MSU Graduate Theses Spring 2018 Crustal Structure of the Bhutanese Himalaya: New Insights from a Gravity Analysis in Western and Central Bhutan Kinzang Duba Missouri State University, [email protected] As with any intellectual project, the content and views expressed in this thesis may be considered objectionable by some readers. However, this student-scholar’s work has been judged to have academic value by the student’s thesis committee members trained in the discipline. The content and views expressed in this thesis are those of the student-scholar and are not endorsed by Missouri State University, its Graduate College, or its employees. Follow this and additional works at: https://bearworks.missouristate.edu/theses Part of the Geophysics and Seismology Commons Recommended Citation Duba, Kinzang, "Crustal Structure of the Bhutanese Himalaya: New Insights from a Gravity Analysis in Western and Central Bhutan" (2018). MSU Graduate Theses. 3240. https://bearworks.missouristate.edu/theses/3240 This article or document was made available through BearWorks, the institutional repository of Missouri State University. The work contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact [email protected]. CRUSTAL STRUCTURE OF THE BHUTANESE HIMALAYA: NEW INSIGHTS FROM A GRAVTITY ANALYSIS IN WESTERN AND CENTRAL BHUTAN A Master’s Thesis Presented to The Graduate College of Missouri State University TEMPLATE In Partial
    [Show full text]