Zoological Journal of the Linnean Society, 2010, 159, 22–194. With 70 figures

Beyond the wasp-waist: structural diversity and phylogenetic significance of the mesosoma in apocritan wasps (Insecta: )

LARS VILHELMSEN1*, ISTVAN MIKÓ2 and LARS KROGMANN3

1Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100, Denmark 2Department of Entomology, North Carolina State University, Campus Box 7613, 2301 Gardner Hall, Raleigh, NC 27695-7613, USA 3Staatliches Museum für Naturkunde Stuttgart, Entomology, Rosenstein 1, D-70191 Stuttgart, Germany

Received 1 October 2008; accepted for publication 17 February 2009

A comprehensive data set of hymenopteran mesosomal anatomy is presented and analysed. Eighty-nine taxa, including three outgroups, were scored for 273 characters. Analyses were carried out under different weighting conditions (equal and implied weights). Topologies retrieved for the non-apocritan Hymenoptera were highly congruent with previously published results. were always retrieved as monophyletic, as were most superfamilies. Relationships amongst apocritan superfamilies were mostly weakly corroborated. Stephanoidea were almost always the sister group to the remaining Apocrita. Evaniomorpha were usually retrieved, Ceraph- ronoidea being the sister group to Megalyroidea, and Evanioidea to Trigonaloidea. Aculeata did not always come out as monophyletic, and of the aculeate superfamilies, only Apoidea was retrieved. Ichneumonoidea were always monophyletic and often the sister group of Aculeata. Maamingidae and Mymarommatoidea were usually sister groups; together, they often form the sister group of Chalcidoidea. A large clade comprising Cynipoidea, Platyga- stroidea, and Proctotrupoidea was usually retrieved, the two former superfamilies being nested within Proc- totrupoidea. Cynipoidea were usually closely related to some of the Diapriidae. Platygastroidea were usually the sister group of a clade comprising Heloridae, Pelecinidae, Proctotrupidae, and Vanhorniidae. The mesosomal region proved to be a very substantial source of phylogenetically relevant information. The results of the present analyses indicate that a reclassification, especially of Proctotrupoidea, is required, but this should be carried out after thorough analyses of more comprehensive combined data sets.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194. doi: 10.1111/j.1096-3642.2009.00576.x

ADDITIONAL KEYWORDS: Apocrita – cladistic analyses – comparative anatomy – evolutionary history – mesosomal skeleton – musculature – wasps.

INTRODUCTION predators (e.g. legionary ants), pollinators (e.g. bees), pests (e.g. some herbivorous sawflies), and biocontrol With more than 115 000 described species (Sharkey, agents (many parasitic wasps). 2007), Hymenoptera is one of the four megadiverse The parasitoid/predatory lifestyle is predominant endopterygote orders. In terms of exploration of diver- amongst Apocrita, the major subgroup of sity, it is probably the least known. Members of the Hymenoptera. Apocrita are characterized by having order have huge ecological and economic impacts as the first abdominal tergite incorporated in the meta- thorax as the propodeum. The thorax and propo- *Corresponding author. E-mail: [email protected] deum together are known as the mesosoma, the

22 © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 23 remaining abdomen as the metasoma. The mesosoma ing phylogenetic hypotheses across the order, but accommodates the main locomotory apparatus of the despite progress in some areas, notably in the rela- wasp body, i.e. the legs and wings and their associ- tionships of the basal lineages (Vilhelmsen, 2003a), a ated, extrinsic musculature. As such, it has the most robust phylogenetic hypothesis for Hymenoptera as a complex skeletomusculature of the . In particu- whole remains elusive (Austin, Dowton & Deans, lar, the generation of power for flight and the more 2003). The current consensus in the phylogeny of the subtle adjustments of the orientation of the wings basal Hymenoptera was obtained by assembling large required for steered flight require substantial distor- morphological and molecular data sets and analysing tion and displacement of sclerites as well as muscles. them simultaneously with state-of-the-art cladistic This is reflected in the anatomy of the mesosoma. software (Vilhelmsen, 2001, 2006; Schulmeister, In Apocrita, the mesosoma and the metasoma are 2003a). separated by an articulation between the first and In contrast, data relevant for analysing apocritan second abdominal segment. The site of the articula- relationships have been much slower to accumulate. tion is usually indicated by a distinct constriction, the This is hardly surprising given the sheer size and wasp-waist, which is the most prominent character- diversity of Apocrita. The earliest attempt at a com- istic of the Apocrita. These modifications may be prehensive phylogeny for Apocrita was provided by correlated with the rise of the parasitoid life style in Königsmann (1978a, b); based on a literature survey Hymenoptera, the wasp-waist increasing the manoeu- and without implementing relevant software (which vrability of the metasoma and especially the oviposi- hardly existed at the time), it provided little resolu- tor attached to it, facilitating ovipositing in hosts in tion. Rasnitsyn (1980, 1988) introduced a wealth of difficult circumstances (Vilhelmsen, 2000a, b; Vil- new information and also included fossils in his helmsen et al., 2001). hypotheses for the evolution of Hymenoptera. The Variation in mesosomal anatomy within cladograms he presented were well resolved, but they Hymenoptera is substantial, and has been repeatedly were derived intuitively and without strict adherence mined as a source of characters for phylogenetic to cladistic methodology. Rasnitsyn’s (1988) data set analysis. Snodgrass (1910) conducted a pioneering formed the basis for the more stringent analyses study, outlining some major transitions within the executed by Ronquist et al. (1999); these failed to order, between the basal hymenopteran lineages and retrieve most of the relationships amongst Apocrita Apocrita. The mesosoma-metasoma articulation was proposed by Rasnitsyn (1988). Modification of the studied in some detail by von Stryk (1930), but her Ronquist et al. (1999) matrix by Sharkey & Roy taxon sample was heavily biased towards Aculeata. (2002) and the use of molecular data by Dowton & Shcherbakov (1980, 1981) used muscle topology to Austin (2001) and Castro & Dowton (2006) did little propose homologies and described transition series in to further resolve the phylogenetic relationships mesopleuron from the hymenopteran ground plan to within Apocrita. the Apocrita. Gibson (1985) combined highly detailed What is needed to make progress in apocritan phy- examination of selected features of mesosomal logenetics is the accumulation of comprehensively anatomy across the entire order with character analy- surveyed data sets with substantial taxon samples sis in a cladistic context. This landmark paper that eventually can be analysed together. The present inspired additional studies of parts of the mesosoma paper represents the most comprehensive compilation by Johnson (1988), Whitfield, Johnson & Hamerski to date for the Hymenoptera. We examine the (1989), and Heraty, Woolley & Darling (1994). Vil- anatomy of the mesosoma with the twin aims of helmsen (2000a, b) provided comprehensive studies of obtaining characters for phylogenetic analysis and the skeletomusculature of the pro- and metathorax, exploring the functional anatomy of this body region but focused mainly on the basal hymenopteran lin- in Apocrita. We then conduct a cladistic analysis of eages. The skeletal anatomy of the whole mesosoma this data set. in Chalcidoidea and Mymarommatoidea was explored for phylogenetically relevant information by Krog- mann & Vilhelmsen (2006) and Vilhelmsen & Krog- MATERIAL AND METHODS mann (2006). At present, a large body of data has accumulated for the hymenopteran mesosoma, but MATERIAL EXAMINED many already known characters have not been suffi- Eighty-six representatives of all the superfamilies ciently surveyed across the entire order, and some of Hymenoptera were included, with emphasis areas remain little studied, e.g. the ventral part of the on the more diverse apocritan superfamilies mesopleuron. (Appendix 1). In addition, three outgroup taxa each Future exploration of the diversity of the representing a major endopterygote lineage were Hymenoptera would be greatly facilitated by develop- included.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 24 L. VILHELMSEN ET AL.

MORPHOLOGICAL TECHNIQUES maximum length = 0. For each weighting scheme, Most of the material examined for the present study analyses with 1000 replications/1000 trees saved per was preserved in 70–80% ethanol. Dried material was replication and with 10 000 replications/100 trees used in a few instances, in which case it was soaked saved per replication were run. New technology in 70% ethanol prior to dissection. The dissections searches were conducted with equal weights and were carried out with scalpels, pieces of razor blades, implied weights with k set to 1, 3, 5, 10, 15, 20, 25, and/or minuten needles. Prior to dissecting the meso- and 30 in turn. Only the ‘ratchet’ option was imple- soma and petiole, the head, legs, wings, and posterior mented, without changing its settings. Init. addseq. metasoma were removed. One to two dissected speci- and Find min. length were set to 100. The root was mens for each taxon were stored in glycerol for exami- Chrysopa. Bremer support values were calculated in nation under stereo microscope. These were the only TNT by searching for suboptimal trees using the trees preparations made when material was limited, or obtained by the equal weights analyses as the start- specimens were particularly large (see Appendix 1). ing point. Suboptimal trees of up to 30 steps longer For most scanning electron microscopy (SEM) prepa- than the shortest trees were looked for, the search rations, three to four specimens (if available) were continuing until the number of trees reached 250 000. dissected, one specimen being bisected as close to the Bremer support values were obtained from these sub- median sagittal plane as possible. The remaining optimal trees. Absolute jacknifing values were calcu- specimens were typically dissected into the following lated in TNT, using default settings and 10 000 parts: (1) pronotum; (2) propectus (propleura, proster- replications. num); (3) mesonotum including pro- and meso- phragma; (4) mesopectus including the mesofurca; (5) RESULTS – MORPHOLOGY metathorax-propodeum complex; and (6) petiole. The preparations for skeletal structures were macerated In this section, a detailed description of Orthogonalys in 10% potassium hydroxide by either keeping them pulchella () will serve as an overview of overnight at room temperature or in a heating cabinet the anatomical region being studied. It is followed by at 40–50 °C for 2–5 h, depending on the size of the shorter descriptions of the other apocritan superfami- specimen. The preparations were then rinsed in dem- lies (in alphabetical order; the three aculeate super- ineralized water. Dissected specimens for skeletal families are presented last) that mainly focus on the structures and specimens for skeletomusculature differences with Orthogonalys. Terminology follows were transferred from 70 to 99.9% ethanol in an the Hymenoptera Ontology (Deans, Yoder & Selt- ethanol series and critical-point dried. Specimens for mann, 2008). The abbreviations used in the following examination of musculature were transferred to Blu descriptions are listed in Appendices 2 and 3. Terms Tack (Bostik Findley, 2001) and dissected. Most and abbreviations are in bold when first presented. muscles were removed successively from the body When a feature is mentioned as ‘absent’, it implies parts during dissections. that the taxa in question was examined well enough The preparations were mounted in different posi- to decide this, whereas ‘not observed’ indicates that tions together with a full complement of detached legs preparations made were not sufficient to determine on SEM stubs, sputter-coated with platinum, and the configuration with certainty. observed in a JEOL JSM-840 or JEOL JSM-6335-F SEM unit. TRIGONALOIDEA Dissected specimens and SEM stubs are deposited in the Natural History Museum of Denmark, Univer- The anatomy of Taeniogonalos gundlachii is identical sity of Copenhagen and in the North Carolina State to Orthogonalys unless otherwise noted. University Insect Museum. Skeleton (Figs 38B, 44F, 49B, 62D, 65C) Pronotum: Pronotum broad, curved sclerite, deeply ANALYTICAL METHODS emarginated anteroventrally and dorsally, expanded The data set was analysed in TNT (Goloboff, Farris & into triangular flanges laterally. Pronotum dorsally Nixon, 2000) with some characters treated as additive articulating with anterior margin of mesoscutum, (see character list). Space for 1 000 000 trees was posterolaterally rigidly associated with anterior reserved in memory. Traditional searches in equal margin of mesopleuron, immovable relative to latter. weights analyses and implied weights analyses Pronotum subdivided by distinct transverse (Goloboff, 1993) with the concavity constant k set in pronotal sulcus (N1s: cf. Fig. 37A, C–F) internally turn to 1–11, 15, 20, 25, and 30 were run to test the corresponding to internal anterolateral pronotal stability of clades under different weighting condi- ridge (apr: cf. Fig. 36E; ridge less developed medially tions. Analyses were run with collapsing rules set to in Taeniogonalos). Pronotum extended and upturned

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 25 anteromedial to transverse pronotal sulcus, with margins of propleuron inflected and abutting for narrow groove extending along broadly inflected almost entire length, slightly overlapping anterior anteroventral margin. Pronotum very short postero- part of prosternum posteriorly. Posteroventral margin medially in Orthogonalys, slightly more extended and inflected medially forming short transverse ridge vertical in Taeniogonalos. Posterolateral margin of abutting anterior part of prosternum; propleuron pos- pronotum mostly straight, dorsally with distinct terolaterally slightly extended into epicoxal lobe pronotal lobe (N1l: Fig. 38B) covering anterior tho- (epl: cf. Figs 39B, 40F, 41C), partly covering proximal racic spiracle laterally. Short posterior pronotal part of procoxa ventrally. Prosternum (s1: cf. inflection (ppi: Fig. 38B) extending along posterola- Fig. 39A–D) orientated almost vertically, broadest teral margin of pronotum from just dorsal to spiracle where abutting propleuron. Prosternum with short to just over halfway down posterolateral pronotal anteromedian projection extending beyond posterior margin. Independent prepectus absent. Anterior margin of propleuron, projection angled relative to thoracic spiracle (sp1: Fig. 38B) situated ventral to rest of prosternum. Prosternum with longitudinal dorsolateral corner of pronotum and entirely sur- prodiscrimen (dc1: cf. Fig. 39C) extending for most rounded by sclerotized cuticle, not visible in external of its length as weakly defined line; internally, line view. Occlusor muscle apodeme (oma: cf. corresponds to prodiscrimenal lamella (dcl1: cf. Figs 36E, 38D) of anterior thoracic spiracle located on Fig. 40F) arising from anterior part of prosternum to lateroventral part of pronotum. base of profurcal arms posterodorsally. Prosternum concave in middle, margins raised. Laterosternal Propectus: Propectus consists of fused laterocervicalia sclerites absent. Two separate profurcal pits (fu1p: and propleura [composite structure will be referred to Fig. 1E) situated at dorsolateral corners of proster- as propleuron (pl1: cf. Fig. 39A–D) for ease of ref- num. Profurcal arm (fu1a: cf. Figs 40C, D, 41C–F) erence], prosternum, and profurca. Propectus articu- extends anterolaterally to dorsal margin of propleu- lates anteriorly with head capsule, posteriorly ron, articulating with latter at base of propleural connects to pronotum and mesopleura by extensive arm. Transverse dorsal profurcal lamellae (dlfu1: areas of membranous cuticle. Propectus partly Figs 40D, 41A) arise as dorsal continuation of profur- retractable into opening between pronotum and cal arms; lamellae merge medially, forming profur- mesopleura. Laterocervicalia fully integrated with cal bridge (fu1b: cf. Fig. 41B, D, E). Triangular propleuron, without indication of line of fusion. projection situated anteriorly on bridge, consisting of Cervical prominence (cvpr: cf. Fig. 40A, B) situ- fused anterior profurcal apodemes (apa: cf. ated some distance ventral to anterodorsal corner of Figs 40F, 41A) being continuous with tendons for propleuron and with base retracted posteriorly, con- profurco-laterocervical muscles. Transverse ventral cealed laterally by anterior part of rest of propleuron. profurcal lamella (vlfu1: cf. Fig. 41E) located ven- Cervical apodeme (cva: cf. Fig. 40C, F) distinct, trally on lateral profurcal arm. projecting from posterior part of cervical prominence; posteriorly, apodeme separate from lateral wall of Fore leg: Procoxa broad basally, with lateral proximal propleuron. Propleuron externally subdivided by extension for lateral procoxal articulation. Transverse shallow longitudinal groove extending along its entire carina situated laterally on procoxa close to its base, length; dorsal part of propleuron smooth and devoid being continuous with longitudinal carina extending of pilosity (in Taeniogonalos, hairs present on smooth to distal end of procoxa; transverse proximal carina dorsal part), sliding along inner side of anterolateral less developed in Taeniogonalos. Only anterior apical margin of pronotum and usually concealed by latter; protibial spur present, modified into calcar. Probasi- ventral part of propleuron covered with elongate tarsal notches and combs well developed. hairs. Dorsolateral margins of propleura widely sepa- rate for entire length; small dorsal incision of propleu- ron (Mikó et al., 2007) present approximately two- Mesonotum and mesophragma: Mesonotum anteriorly thirds from anterior end. Propleural arm (ppa: cf. articulating with posterodorsal margin of pronotum Fig. 41A–F) extending dorsomedially from posterodor- and broadly continuous with vertical, internal pro- sal corner of propleuron, lying close to lateral part of phragma; laterally, it closely abuts with anterodorsal profurcal arm. Lateral procoxal articulation situated parts of mesopleura. Mesonotum posteriorly continu- approximately halfway down posterolateral margin of ous with mesopostnotum, consisting of narrow ante- propleuron, point of articulation indicated by distinct rolateral mesolaterophragma posteriorly connected to knob on inner margin of propleuron. Independent mesophragma proper. Mesophragma entirely inter- katepisternum absent. Distinct cervical groove nal, posteriorly projecting far into metathorax- extends from anterodorsal corner to posteromedian propodeum complex; mesolaterophragma articulating corner of ventral part of propleuron. Medioventral with posterodorsal margins of mesopleura.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 26 L. VILHELMSEN ET AL.

Prophragma (ph1: Fig. 2E) consisting of two pockets (ph2p: cf. Fig. 47C, D) posteriorly delimited weakly sclerotized submedian lobes medially sepa- by deeply curved line. Ventral surface of meso- rated by shallow incurvation, not extending far later- phragma smooth in Orthogonalys. Low median meso- ally. Prophragma separated from mesoscutum by phragmal longitudinal ridge (ph2r: cf. Fig. 47E) anterior mesoscutal sulcus (ams: cf. Fig. 43B); developed anteriorly on ventral surface of meso- sulcus extending laterally to fore wing tegulae and phragma in Taeniogonalos. Mesolaterophragmal accommodating posterodorsal margin of pronotum. lobe (ph2a: cf. Fig. 47E, F) short medially projecting Anterior part of mesoscutum in lateral view curves apodeme situated anteromedially on anterolateral posteriorly from anterior sulcus to become horizontal. projection of mesophragma. Median longitudinal mesoscutal sulcus and its corre- sponding internal ridge absent. Anteroadmedian Mesopectus: Mesopectus roughly U-shaped, compris- signum (aas: cf. Fig. 44B) short, inconspicuous lon- ing fused mesopleura (pl2: cf. Fig. 49E, F), meso- gitudinal line situated submedially on anterior part of sternum, and mesofurca, as well as prospinasternum, mesoscutum, adjacent to posterodorsal margin of mesospinasternum, and some intersegmentalia pronotum. Notaulus (not: cf. Fig. 44A, B, D) well- (basalare, subalare, supramesopleural sclerite); ante- developed external groove and with internally corre- riorly, it articulates with posterolateral margins of sponding notaular ridge (notr: Fig. 44F), extending pronotum; dorsally, it abuts mesonotum in several from anterior parts of mesoscutum to transscutal places, fore wing bases being inserted between articulation posteriorly; notauli converge, but still mesonotum and mesopectus; posteriorly, it abuts/ widely separate at their posterior ends. Parapsides articulates with anterior margin of metathorax- (par: cf. Fig. 44A, B) well developed lateral to notauli propodeum complex. Mid legs articulate with as elongate, diffuse lines. Mesoscutum strongly mesopectus posteroventrally. deflected lateral to parapsides to form vertical pre- External part of mesobasalare situated anterior to axilla (pax: cf. Fig. 48A), accommodating fore wing ventral mesopleural wing process, not being extended tegula (tg: cf. Fig. 48A–C); preaxilla separated from ventrally. Internal part of mesobasalare forming elon- rest of mesoscutum by parascutal carina (psc: cf. gate tendon without distinct apodeme at its end. Fig. 48A–C). Fore wing tegula exposed and abutting Postspiracular sclerite absent. Mesopleural arm situ- dorsolateral corner of pronotum anteriorly. Trans- ated at anterodorsal corner of mesopleuron, having scutal articulation (tsa: Fig. 44F) forms weakly ventral mesopleural wing process dorsally and ven- sclerotized line traversing entire mesoscutum without trally delimited from rest of mesopleuron by distinct internal corresponding ridge. Transverse scutoscu- horizontal acropleural sulcus (acs: cf. Fig. 48A) tellar sulcus (sss: cf. Fig. 45A–C, E, F) curves extending further posterior along posterodorsal anteromedially to reach transscutal articulation, less margin of mesopleuron. Posterior thoracic spi- curved in Taeniogonalos. Scutoscutellar sulcus con- racle (sp2: cf. Fig. 48C) situated in slight incurvation sists of transverse row of distinct pits. Internally, at posterodorsal corner of mesopleuron, just anterior scutoscutellar sulcus corresponding to medially con- to metapleural arm, spiracle covered laterally by tinuous scutoscutellar ridge (ssr: Fig. 44F) not small supramesopleural sclerite (sms: cf. Fig. 48C, reaching transscutal articulation anteriorly. Lateral D). Posterodorsal margin of mesopleuron bent ven- area between transscutal articulation and scutoscu- trally posterior to spiracle. Internal mesepimeral tellar sulcus forming axilla. An external longitudinal ridge (mepr: Figs 2A, 49A–C, E) extending along axillar carina (axc: cf. Figs 45A, C, D, 48A, C) margin from spiracle to approximately halfway to separating horizontal dorsal axillar surface (ax: cf. lateral mesocoxal articulation. Mesopleural ridge Fig. 45A–C, E, F) from vertical lateral axillar surface; extending from ventral wing process to coxal articu- dorsal surface large in Orthogonalys, smaller in Tae- lation absent. Mesopleural pit and corresponding niogonalos. Mesoscutellum (scl2: cf. Fig. 45A–F) mesopleural apodeme absent. Distinct prospina or domed medially, internally widely open ventrally. prospinasternal apodeme (psa: cf. Fig. 52B) situ- Mesoscutellum with narrow incurvation posteromedi- ated medially on anterior margin of mesopleuron. ally accommodating depression with short longitudi- Anterior transverse carina extending parallel close to nal carinae; depression shallower in Taeniogonalos. anterior margin of mesopleura, merging with margin Elongate, narrow mesoscutellar arms (msa: cf. approximately halfway to mesopleural wing process. Fig. 45C–F) extend anterolaterally from posterolat- Some distance posteriorly, low transverse acetabular eral parts of mesoscutellum to project lateral to carina (abc: cf. Fig. 50B) extending from mesodiscri- axillae. Mesophragma (ph2: cf. Fig. 47A–F) weakly menal line to oblique mesopleural sulcus laterally; sclerotized. Anteromedian margin of mesophragma acetabular carina forms posterior boundary of straight. Anterior part of dorsal surface of meso- shallow, concave acetabulum (act: cf. Fig. 50B) phragma with pair of submedian mesophragmal accommodating procoxae. Elongate, raised subpleural

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 27 signum present posterolaterally on ventral part of metanotum lateral to metascutellum (only weakly mesopleuron, without corresponding internal struc- developed in Taeniogonalos). Lateral margin of met- ture. Oblique pseudosternal sulcus with correspond- anotum straight, without unsclerotized incision ing internal ridge entirely absent. Oblique extending medially. Hind wing tegula not observed. mesopleural sulcus and corresponding internal Lateral metanotal apodeme (lma: cf. Fig. 15E) oblique mesopleural ridge (ompr: cf. Fig. 50A) located anterolaterally on metanotum. Anterior subdivide lateral part of mesopleuron, extending from metanotal wing process (anwp3: cf. Fig. 33H, I) dorsally on anterior transverse mesopleural carina located on transversely elongate humeral sclerite across acetabular carina almost to posterodorsal (hmsc: cf. Fig. 35A, D, E) (detached, anterolateral margin of mesopleuron; oblique mesopleural ridge part of metanotum extending medially into most developed in Taeniogonalos. Externally convex metathorax). speculum delimited ventrally by oblique mesopleural sulcus and anteriorly by shallow foveolate sulcus. Metapectus: Metapectus consists of metapleuron and Mesocoxal foramina (cx2f: cf. Figs 50B, 51A–D) internal metafurca. It is closely integrated with the broadly open dorsally. Median mesocoxal articula- propodeum. tion (cx2ma: cf. Fig. 51A) situated on elongation, Metapleuron (pl3: cf. Fig. 55A–D) fused with pro- articulating halfway down mesocoxa. Mesofurcal pit podeum along almost its entire posterodorsal margin. (fu2p: cf. Figs 50B, C, 51B–D) situated between Distinct cup-shaped metabasalar apodeme absent. mesocoxal foramina, at posterior end of mesodiscri- Metapleural arm dorsally with pleural hind wing menal line. Mesodiscrimen (dc2: cf. Fig. 50B, C) process ventrally delimited from rest of metapleuron extending medially for most of length of mesopectus by short transverse carina. Anterolateral corner of as weak impression; it is most conspicuously devel- propodeum not reaching anterior margin of metapleu- oped posterior to acetabular carina. Internally, meso- ron. Anterior margin of metapleuron straight, without discrimen corresponding to mesodiscrimenal any distinct notches or incurvations, margin inflected lamella (dcl2: cf. Fig. 52D), a longitudinal, vertical dorsally as low marginal metapleural apodeme septum. Mesodiscrimenal lamella low anteriorly, (mma: Fig. 3A). Lateral part of metapleuron subdi- rising gradually to bases of mesofurcal arms posteri- vided by distinct paracoxal sulcus (pcs: cf. Fig. 56C, orly. Mesospinasternal apodeme absent from between F) extending from lateral ends of antecostal sulcus mesofurcal arms. Mesofurcal arms diverging laterally, dorsally to metafurcal discrimen ventrally. Paracoxal being connected by straight transverse mesofurcal sulcus internally corresponds to anterior branch of bridge (fu2b: Fig. 2A) some distance from their base; paracoxal ridge (pcr: Fig. 3A) that is weakly devel- anterior projection present medially on bridge. oped except for ventralmost part; posterior branch Lateral mesofurcal arms (fu2la: Fig. 2A) extend- of paracoxal ridge (ppcr: cf. Fig. 13D, E) prominent, ing towards posterodorsal margins of mesopleura. extending posterolaterally towards metacoxal foramen. Metapleural pit (mtpi: cf. Fig. 55A, C) Mid leg: Mesocoxa subdivided by transverse groove situated in dorsal part of paracoxal sulcus; internally, approximately one-third down; proximal part of meso- pit corresponds to well-developed metapleural coxa predominantly smooth, but not reduced in width apodeme (mtpa: cf. Fig. 58A, D, E). Metapleural compared to distal part. Median mesocoxal articula- sulcus (mtps: cf. Fig. 55A) extends posteriorly from tion situated in transverse groove. Mesocoxa- metapleural pit to lateral metacoxal articulation, trochanter articulation broad; trochanter not internally corresponding to low swelling. Metapleural compressed proximally. Mesofemur subdivided by sulcus indicates boundary between metapleuron and shallow transverse line proximally, delimiting small propodeum. Anteroventral margin of metapleuron trochantellus. fused with posteroventral margin of mesopleuron. Ventral part of metapleuron extensive, with well- Metanotum: Metanotum (N3: cf. Fig. 54A, B) well developed metepisternal depressions accommodating developed, forming broad, slightly concave strip abut- mesocoxae. Depressions separated medially by ting mesoscutellum anteriorly and propodeum poste- median longitudinal metepisternal carina riorly; metanotum slanted approximately 45° relative (mlmc: cf. Fig. 56B, F; absent from Taeniogonalos) to mesonotum. Metascutellum (scl3: cf. Fig. 54C, E) and laterally delimited by lateral longitudinal well developed, broad and anteriorly reaching ante- metepisternal carina (llmc: cf. Fig. 56B). Oblique rior margin of metanotum, with no distinct incurva- internal posterior paracoxal ridge extending from tion in posterior margin. Cenchri (membranous lobes anterior end of metadiscrimen towards posterior covered with fine setae situated anterolaterally on margin of ventral part of metapleuron. Metacoxal metanotum) absent. Distinct longitudinal lateral foramen (cx3f: cf. Figs 56A, B, F, 57A–D) broad. metanotal carina (N3c: cf. Fig. 54F) transversing Well-developed median metacoxal articulation

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 28 L. VILHELMSEN ET AL.

(cx3ma: cf. Fig. 57A, B, D) situated medially, just respectively. No distinct transverse carina on propo- lateral to metafurcal pit. Lateral metacoxal articu- deum. Dorsal rim of propodeal foramen (pdf: lation (cx3la: cf. Figs 55A–D, 57A–D) situated at Fig. 62D) distinctly raised (less so in Taeniogonalos). posterior end of metapleural sulcus, articulation con- Propodeal foramen ventrally continuous with meta- cealed laterally by extension of metapleuron. coxal foramina, petiole and metacoxal bases sepa- Metafurcal pit (fu3p: cf. Fig. 56B–D) situated in rated by narrow stretches of membranous cuticle. depression some distance from anterior margin of Short but distinct triangular propodeal teeth (T1t: metapleuron and at level with anterior margin of Fig. 62D) situated laterally on propodeal foramen. metacoxal cavities. Metadiscrimen (dc3: cf. Fig. 56E) external longitudinal carina extending from Petiole: Petiole here defined as abdominal tergum and anterior margin of metapleuron to metafurcal pit. sternum 2, regardless of their configuration. Second Short internal metadiscrimenal lamella (dcl3: cf. abdominal tergum and sternum (T2, S2: Fig. 65C) Fig. 58D) corresponds to metadiscrimen. Metafurcal separated; T2 slightly overlapping S2 laterally. Pos- arms (fu3a: cf. Fig. 58A–E) arise next to each other teriorly, T2 and S2 expanding substantially to full on anterior margin of metadiscrimenal lamella, width of metasoma. Anterior margin of T2 strongly extending laterally to fuse with metapleural apo- incised medially, incised part raised on distinct demes. Dorsal metafurcal lamella (dlfu3: Fig. 3A) articulating condyle (arc: Fig. 65C). Condyle with situated dorsally on distal part of metafurcal arm. distinct depressions laterally articulating with pro- Anterior metafurcal arms not developed, metafurca podeal teeth. Condyle situated in slight, larger entirely separate from mesofurca. depression. Transverse external and longitudinal internal ridges on T2 absent. Anterior margin of S2 Hind leg: Metatrochantinal apodemes not developed. straight and raised; paired sensillar patches (spa: Metacoxa transversely constricted, proximal part not cf. Fig. 66A–C) comprising number of setae situated reduced. Metafemur without distinct ventral spines. anterolaterally. Median part of S2 posterior to ante- Preapical metatibial spurs absent. Inner side of rior margin raised and flanked by depressions (raised metatibia with numerous setae forming dense brush; area and depressions not developed in Taeniogona- brush especially developed distally, consisting of los). Transverse or longitudinal external carinae on slightly apically expanded setae. Small, membranous S2 absent. tarsal plantulae present on tarsomeres 1–4. Musculature (Figs 1A–E, 2A–E, 3A–C) Propodeum: Lateroventral margin of propodeum For homologies of muscles examined in the present (T1: Fig. 62D) fused with posterodorsal margin of paper, see Appendix 3. For occurrence of muscles in metapectus forming inseparable whole. Propodeum all taxa examined, see Appendix 4. not subdivided by longitudinal unsclerotized line. Anterior boundary of propodeum marked by broad Pronotum: Pronoto-postoccipital muscle (t1-poc: (narrow in Taeniogonalos) transverse antecostal Fig. 1A, B) arising medially from dorsal margin of sulcus (ans: cf. Fig. 54C, D, F). Metapostnotum pronotum, and inserting on postocciput. Anterior indistinguishable from antecostal sulcus. No small pronoto-laterocervical muscle (t1a-cv: Fig. 1B) cuticular projections medially or laterally extending arising lateral to site of origin of pronoto-postoccipital towards each other from opposite sides of antecostal muscle and inserting on cervical apodeme. Oblique sulcus. Antecostal sulcus internally corresponding to pronoto-propleural muscle (t1-pl1: Fig. 1A) transverse, medially continuous metaphragma arising medioventral to site of origin of pronoto- (ph3: Fig. 3A). Metaphragma without metalatero- postoccipital muscle and inserting on dorsal incision phragmal lobes developed and not continuous with of propleuron. Pronoto-prophragmal muscle sub- metapleural apodeme laterally. Unpaired median and divided into median band (t1m-ph1: Figs 1A, B, 2E) paired lateral longitudinal carinae developed as part arising just lateral to site of origin of pronoto- of sculpture of propodeum in Orthogonalys. Pro- postoccipital muscle and lateral band (t1l-ph1: podeal spiracle (psp: cf. Figs 55A–C, 60A, D, Fig. 1A, B) arising submedially from pronotum, site of 61A–D) situated anterolaterally, close to boundary origin of muscle limited ventrally by anterolateral between metapleuron and propodeum. Spiracle elon- pronotal ridge, laterally by oblique ridge that arises gate, laterally covered by distinct sclerotized flap con- medially from anterolateral pronotal ridge and corre- tinuous with propodeum. Internally, spiracle sponds to external oblique sulcus in Taeniogonalos; surrounded by sclerotized rim; smaller dorsal spi- both bands insert on anterior mesoscutal sulcus just racular apodeme (dsa: cf. Fig. 12F) and larger lateral to prophragmal lobe sharing common tendon ventral spiracular apodeme (vsa: cf. Fig. 12F) with prophragmo-postoccipital (ph1-poc: Fig. 1A, situated posterodorsally and posteroventrally on rim, B) muscle. Pronoto-propleural arm muscle (t1-

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 29 ppa: Fig. 1A, D) subdivided and arising from along muscle extending along dorsal margin of lamella, ventral margin of pronotum ventral to anterolateral inserting on posterolateral margin of procoxa. pronotal ridge and inserting on anterior surface of Mesofurco-propleural arm muscle (fu2-ppa: cf. propleural arm. Posterior pronoto-laterocervical Figs 11D, 31G) inserting on posterior surface of muscle (t1p-cv: Figs 1A, 2C) arising posterodorsally propleural arm, ventral mesofurco-profurcal from pronotum and inserting on cervical apodeme. muscle (fu2-fu1v: Fig. 1E) inserting on base of pro- Dorsal pronoto-procoxal muscle (t1d-cx1: furca, both muscles arise medially from mesofurcal Figs 1A, 2C) arising just ventral to site of origin of bridge. Prosterno-procoxal muscle (s1-cx1: pronoto-laterocervical muscle and inserting on poste- Fig. 1C) arising from along prodiscrimen and insert- rolateral margin of procoxa. Anterior thoracic spi- ing on anterolateral margin of procoxa. racle occlusor muscle (sp1occ: Fig 1A) fan shaped Laterocervico-procoxal muscle (cv-cx1: cf. and arising partly from occlusor muscle apodeme, Fig. 27F) arising from cervical apodeme and inserting partly from wall of pronotum. Pronoto-mesobasalar on anterolateral margin of procoxa on opposite side. muscle (t1-ba2: Figs 1A, 2B, C) arising posteroven- Prospinasterno-procoxal muscle (sps1-cx1: cf. tral to site of origin of anterior thoracic spiracle Figs 11D, 17C) arising from medially on anterior occlusor muscle. Pronoto-third axillary sclerite margin of mesopectus and inserting on posterolateral muscle of fore wing (t1-3ax2: cf. Fig. 19C), margin of procoxa. Laterocervico-postoccipital pronoto-profurcal (t1-fu1: cf. Figs 16A, 17C, F), muscle (cv-poc) and intrinsic muscle of propleu- ventral pronoto-procoxal (t1v-cx1: cf. Fig. 30A, B, ron (pl1-pl1) not observed; prophragmo-latero- C), and prepectus-mesobasalar (pre-ba2: cf. cervical (ph1-cv), profurco-prophragmal (fu1- Fig. 27C) muscles absent. ph1), propleural arm-postoccipital (ppa-poc: cf. Figs 4D, 30E), propleural arm-procoxal (ppa-cx1: Propectus: Median propleuro-postoccipital cf. Fig. 8A, C), posterior propleuro-postoccipital muscle (pl1m-poc: Fig. 2D) arising from posteroven- (pl1p-poc), anterior profurco-procoxal (fu1a-cx1: trally on propleuron, site of origin of muscle extends cf. Fig. 14A), profurco-protrochanteral (fu1-tr1: along posterior margin of propleuron, lateral cf. Figs 14A, 20C), dorsal mesofurco-profurcal propleuro-postoccipital muscle (pl1l-poc: (fu2-fu1d: cf. Fig. 4B), prospinasterno-profurcal Figs 1D, 2D) arising from dorsal margin of propleuron (sps1-fu1), and prospinasterno-mesofurcal (sps1- just anterior to dorsal incision of propleuron. fu2) muscles absent. Propleuro-procoxal muscle (pl1-cx1: Figs 1C, 2D) arising from dorsal margin of propleuron ventral to Mesonotum: Prophragmo-postoccipital (ph1-poc: dorsal incision of propleuron and inserting on ante- Figs 1A, B, 2E) muscle arising from anterior mesos- rolateral margin of procoxa. Propleuro- cutal sulcus just lateral to prophragmal lobe and protrochanteral muscle (pl1-tr1: Figs 1C, 2D) inserting on postocciput sharing common tendon with arising posterior to site of origin of propleuro-procoxal pronoto-postoccipital muscle. Prophragmo- muscle and inserting on protrochanteral apodeme mesophragmal muscle (ph1-ph2: cf. Fig. 17E) sharing common tendon with propleural arm- arising from posterior part of prophragma and ante- protrochanteral muscle (ppa-tr1:Figs1C,D,2D) rior part of mesoscutum between notaular ridges; arising from base of propleural arm. Median posteriorly, muscle inserting on anteroventral part of profurco-procoxal muscle (fu1m-cx1: Figs 1C, 2D) mesophragma. Median mesophragmo- arising from apex of propleural arm and inserting on metaphragmal muscle (ph2m-ph3: Fig. 3A) arising posteromedian margin of procoxa. Dorsal profurco- submedially on dorsal part of mesophragma and postoccipital muscle (fu1d-poc:Figs1A,D,2C) inserting anteriorly on metaphragma. Anterior arising from along dorsolateral margin of dorsal pro- mesofurco-mesolaterophragmal muscle (fu2a- furcal lamella and inserting on same tendon as ph2: Fig. 2A) arising submedially from dorsal surface propleuro-postoccipital muscles. Ventral profurco- of mesofurcal arm and inserting on apex of mesolat- postoccipital muscle (fu1v-poc:Figs1A,D,2C) erophragmal apodeme via elongated tendon. Poste- arising partly from dorsal profurcal lamella, ventral rior mesonoto-metanotal muscle (t2p-t3: cf. to site of origin of dorsal profurco-postoccipital Fig. 22C) arising from area posterior to scutoscutellar muscle, partly from ventral profurcal lamella and ridge and inserting medially on metanotum. First inserting ventrally on postocciput. Profurco- mesopleuro-mesonotal muscle (pl2-t2a: cf. laterocervical muscle (fu1-cv: Fig. 1A, D) arising Fig. 4E) arising from mesopleuron as indicated by from anterior profurcal apodeme and inserting on subpleural signum and inserting laterally on mesos- cervical apodeme. Dorsal profurco-procoxal cutum as indicated by parapside. Second muscle (fu1d-cx1: Fig. 1A, E) arising from posterior mesopleuro-mesonotal muscle (pl2-t2b: Fig. 2C) surface of dorsal profurcal lamella, site of origin of arising from mesopleuron dorsal to oblique mesopleu-

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 30 L. VILHELMSEN ET AL. ral ridge and inserting on ventral surface of antero- posterior to mesepimeral ridge and inserts on poste- lateral extension of lateral axillar area. rolateral margin of mesocoxa. First mesopleuro- Mesolaterophragmo-metabasalar (ph2-ba2), third axillary sclerite of fore wing muscle (pl2- mesonoto-mesobasalar (t2-ba2: cf. Fig. 14E), 3ax2a: cf. Fig. 25G) and occlusor muscle of mesolaterophragmo-hind wing base (ph2-hwb), posterior thoracic spiracle (sp3occ) not observed; and third mesopleuro-mesonotal (pl2-t2c) mesocoxo-mesobasalar (cx2-ba2: cf. Fig. 32B, C), muscles not observed; mesonoto- mesotrochantero-mesobasalar (tr2-ba2: Fig. 32B, mesolaterophragmal (t2-ph2: cf. Fig. 4F), C), intrinsic muscle of the mesopleuron (pl2-pl2), mesonoto-mesocoxal (t2-cx2: cf. Fig. 32B), mesopleuro-mesosubalar (pl2-sa2: cf. Figs 28B, mesonoto-mesotrochantinal (t2-tch2: cf. 29A), posterior mesopleuro-mesofurcal (pl2p- Fig. 32B), mesonoto-mesotrochanteral (t2a-tr2, fu2: cf. Fig. 32A, E), mesopleuro-third axillary t2p-tr2: cf. Figs 4E, 17A, E), anterior mesonoto- sclerite of hind wing (pl2-3ax3: cf. Fig. 22D), metanotal (t2a-t3: cf. Figs 15D, 22C), posterior lateral mesofurco-mesotrochanteral (fu2l-tr2: cf. mesofurco-mesolaterophragmal (fu2p-ph2: cf. Fig. 10E), mesofurco-metabasalar (fu2-ba3: cf. Fig. 32E), lateral mesophragmo-metaphragmal Fig. 32E), lateral mesofurco-metafurcal (fu2- (ph2l-ph3), and mesopleuro-metanotal (pl2-t3: cf. fu3l), and mesospinasterno-metafurcal (sps2-fu3) Fig. 14F) muscles absent. muscles absent.

Mesopectus: Intersegmental membrane- Metanotum: Anterolateral metapleuro-metanotal mesobasalar muscle (ism1,2-ba2: Fig. 2B) arising muscle (pl3la-t3: Fig. 3A, B) inserting on lateral partly from anterior margin of mesopleuron, partly metanotal apodeme and sharing common tendon with from intersegmental membrane between mesopectus posterolateral metapleuro-metanotal muscle and prothorax and inserting on mesobasalare. Site of (pl3lp-t3: Fig. 3A, B); they arise from marginal meta- origin of mesopleuro-mesobasalar (pl2-ba2: pleural apodeme ventral to site of origin of ventral Fig. 2B, C), second, and third mesopleuro-third metapleuro-third axillary sclerite muscle and from axillary sclerite of fore wing (pl2-3ax2b, c: dorsal surface of metapleural apodeme, respectively. Fig. 2B, C) limited ventrally by oblique mesopleural Metanoto-metabasalar (t3-ba3), median ridge; site of origin of second mesopleuro-third axil- metapleuro-metanotal (pl3m-t3: cf. Fig. 12A, B), lary sclerite of fore wing muscle extends ventral to metanoto-metalaterophragmal (t3-ph3: cf. oblique mesopleural ridge in Taeniogonalos, attaching Fig. 29E), anterior and posterior metanoto- in position corresponding to posterolateral part of metacoxal (t3a-cx3, t3p-cx3: cf. Fig. 34B), acetabular carina in Orthogonalys. Mesopleuro- metanoto-metatrochanteral (t3-tr3: cf. Fig. 23G–I) mesocoxal muscle (pl2-cx2: Fig. 2C) arising ventral and metanoto-metatrochantinal (t3-tch3: cf. to oblique mesopleural ridge and inserting anterolat- Fig. 33B) muscles absent. erally on mesocoxa. Anterior mesopleuro- mesofurcal muscle (pl2a-fu2: Fig. 2A, B) arising Metapectus: Anterior metapleuro-metabasalar from mesopleuron posterior to posterior end of oblique muscle (pl3a-ba3: Fig. 3A) arising anterior, poste- mesopleural ridge, site of origin of muscle extends rior metapleuro-metabasalar muscle (pl3p-ba3: along mesepimeral ridge; muscle inserting on poste- Fig. 3B) posterior to paracoxal ridge, site of origin of rior surface of lateral end of lateral mesofurcal arm. posterior muscle limited posteromedially by oblique Mesosterno-mesocoxal muscle (s2-cx2: cf. Fig. 8E) posterior paracoxal ridge. Dorsal (pl3d-3ax3: arising anteriorly, mesofurco-mesocoxal muscle Fig. 3B) and ventral (pl3v-3ax3: Fig. 3B) (fu2-cx2: Fig. 2A) posteriorly from mesodiscrimen metapleuro-third axillary sclerite muscles arise and inserting antero- and posterolaterally on meso- from marginal metapleural apodeme. Metapleuro- coxa, respectively; site of origin of latter extends to metasubalar (pl3-sa3: Fig. 3B) muscle arising from base of lateral mesofurcal arm. Median mesofurco- dorsal surface of fused metapleural apodeme and mesotrochanteral muscle (fu2m-tr2: Fig. 2A) metaphragma. Metacoxo-metasubalar muscle arising submedially on ventral part of lateral meso- (cx3-sa3: Fig. 3C) arising from lateral margin of furcal arm and inserting on mesotrochanteral metacoxa and extending posterior to metapleural apodeme. Median mesofurco-metafurcal muscle apodeme through furcoapodemal incision inserting on (fu2-fu3m: cf. Fig. 13A, B) arising from submedially metasubalare sharing common tendon with on lateral mesofurcal arm and inserting on subme- metapleuro-metasubalar muscle. Median dian part of metafurca; site of insertion limited pos- metapleuro-metacoxal muscle (pl3m-cx3: cf. teriorly by dorsal metafurcal lamella, anterodorsally Fig. 7A, E) arises from metadiscrimenal lamella by anteroventral metafurcal lamella. Mesocoxo- (dcl3: cf. Fig. 58D), whereas lateral metapleuro- mesosubalar muscle (cx2-sa2: Fig. 2A) extends metacoxal muscle (pl3l-cx3: cf. Fig. 14F) arises

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 31 from ventral surface of metapleural apodeme and apodeme. Occlusor muscle of propodeal spiracle from metapleuron ventral to metapleural apodeme, (oT1sp: cf. Fig. 12F) extends between dorsal and site of origin of muscle limited posteriorly by meta- ventral spiracular apodemes. Propodeo-second pleural ridge; these muscles insert on anterolateral abdominal tergal (T1-T2: cf. Fig. 34A–C, H) and margin of metacoxa. Metapleuro- second abdominal sterno-metacoxal (S2-cx3: cf. metatrochanteral muscle (pl3-tr3: Fig. 3C) arising Fig. 34A) muscles absent. exclusively from ventral surface of metapleural apodeme, site of origin of muscle not extending pos- terodorsally on propodeum; muscle inserting on meta- CERAPHRONOIDEA trochanteral apodeme. Median metafurco- Skeleton (Figs 36E, 44C, 45A, 49D, 54D, 55D, 56A, metacoxal muscle (fu3m-cx3: cf. Fig. 7E) arising 57D, 62A, 63A) partly from base of lateral metafurcal arm, partly Metathorax highly integrated with mesothorax, from metadiscrimenal lamella anterodorsal to site of metapectus fused with mesopectus along its entire origin of median metapleuro-metacoxal muscle, and anterior margin. Metanotum and ventral part of inserting on posterior margin of metacoxa. Lateral metapectus correspondingly reduced. metafurco-metacoxal muscle (fu3l-cx3: Fig. 3A, B) arises from submedian part of lateral metafurcal Pronotum: Pronotum greatly reduced posteromedial arm and is limited anteriorly by dorsal metafurcal to transverse pronotal sulcus. Internal anterolateral lamella and inserts on posterior margin of metacoxa. pronotal ridge (apr: Fig. 36E) well developed in Metafurco-metatrochanteral muscle (fu3-tr3: Ceraphron and Megaspilus, absent from Lagynodes. Fig. 3A, C) arising from lateral metafurcal arm and Dorsal pronotal margin with paired notches antero- inserting on metatrochanteral apodeme sharing laterally (Fig. 36E) accommodating anterolateral common tendon with metapleuro-metatrochanteral corners of mesonotum in Ceraphron and Megaspilus. muscle. Metafurco-second abdominal sternal Lagynodes with small lobe on dorsolateral corner of muscle (fu3-S2: Fig. 3B) arising from lateral part of pronotum just above anterior thoracic spiracle; dis- lateral metafurcal arm and inserting on anterior tinct notch in dorsal margin of pronotum present margin of S2. Site of origin of muscle extends to medial to lobe. Spiracle visible externally and sur- metapleural apodeme. Lateral metapleuro- rounded by sclerotized cuticle. Posterolateral inter- metabasalar (pl3l-ba3: cf. Figs 15E, 34F), nally concave area of pronotum separated by external metacoxo-metabasalar (cx3-ba3: cf. Figs 9B, 33F, sulcus corresponding to internal shallow ridge in 34C), intrinsic muscle of metapleuron (pl3-pl3: Megaspilus and Dendrocerus. Pronotum rigidly cf. Figs 34A, 35C), anterior and posterior attached to anterior margins of mesopleuron. Groove metapleuro-metafurcal (pl3a-fu3, pl3p-fu3: cf. extending parallel just anteriorly of straight postero- Fig. 33A), metapleuro-propodeal (pl3-T1: cf. lateral margin of pronotum for most of its length. Fig. 34H), lateral metapleuro-second abdominal Independent prepectus or posterior pronotal inflection sternal (pl3-S2l), metafurco-propodeal (fu3-T1: absent. Lateroventral corner of pronotum with dis- cf. Fig. 33C), metalaterophragmo-metafurcal tinct medioventral pronotal projection (mvp: (ph3-fu3:cf. Figs 9D, 13A, E, 33C), and metasterno- Fig. 36E) fused with anterior margin of mesopleuron; second abdominal sternal (s3-S2: cf. Fig. 29F) projections not meeting medially. Occlusor muscle muscles absent. apodeme of anterior thoracic spiracle (oma: Fig. 36E) located on ventral corner of pronotum dorsal to Propodeum: Metaphragmo-second abdominal medioventral pronotal projection. tergal muscle (ph3-T2: Fig. 3A–C) arising from pos- terior surface of metaphragma and from propodeum anterolateral to metaphragma and inserting laterally Propectus: Cervical prominence situated on anterolat- on median incised part of T2 (ph3-T2: cf. Fig. 23B–F). eral corner of propleuron in Ceraphron; cervical Propodeo-second abdominal sternal muscle (T1- apodeme weakly developed. Epicoxal lobe present. S2: Fig. 3B) arising posteroventral to site of origin of Prosternum only extending short distance anterior to metaphragmo-second abdominal tergal muscle, dorso- posterior margins of propleura. Anterior profurcal lateral to propodeal foramen; site of origin of muscle apodeme and profurcal bridge absent. not extended ventrally along metapleural ridge. Muscle inserting submedially on anterior margin of Fore leg: Procoxa reduced proximally, diameter of S2 (T1-S2: cf. Figs 18B, G, 23B, E, F). Dilator of proximal opening not exceeding half maximal width propodeal spiracle (dT1sp: Fig. 3C) arising from of procoxa. Basal transverse carina present on ventral part of propodeum posterior to lateral meta- procoxa of Megaspilidae. Posterior protibial apical coxal articulation and inserting on ventral spiracular spur present.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 32 L. VILHELMSEN ET AL.

Mesonotum and mesophragma: Prophragma very low scutellum adjacent to propodeal antecostal sulcus in Megaspilidae, weakly bilobed in Lagynodes, not medially in Ceraphron. Sclerotized strip might be subdivided in Megaspilus, only discernible medially homologous with metanotum, but no recognizable fea- in Ceraphron. Median mesoscutal sulcus (mms: tures (e.g. metascutellum, lateral metanotal carina) Fig. 44C) and corresponding internal median mesos- corroborate homology. Alternatively, strip might be cutal ridge (mmsr: cf. Fig. 44E) well developed. homologous with metapostnotum, as indicated by Anteroadmedian signum and notaulus only present in being continuous with metapleuron and propodeum. Megaspilus. Weakly developed parapsides present only in Lagynodes. Internal transscutal ridge (tsr: Metapectus: Boundary between meso- and metapleu- cf. Fig. 44E) present just posterior to transscutal ron indicated by narrow sulcus extending posteroven- articulation. Scutoscutellar sulcus angled medially; trally from mesopleural pit in Lagynodes and by dorsal axillar surfaces comparatively large (ax: foveolate groove in Megaspilus; no indication of the Fig. 45A). Axillar carina extended slightly posteriorly boundary in Ceraphron and Lagynodes (Fig. 55D). dorsally in Megaspilus. Scutoscutellar ridge antero- Boundary between metapleuron and propodeum indi- medially extending to transscutal ridge in cated by distinct longitudinal ridge just dorsal to Megaspilidae. Mesophragma with pair of short metapleural sulcus (mtps: Fig. 55D; absent from pseudophragmal lobes (ph2l: cf. Fig. 47E, F) on its Lagynodes). Metapleural pit not developed in Cera- anteromedian margin in Ceraphron and Megaspilus. phron; metapleural apodeme large. Ventrally, meta- Mesophragmal pockets only developed in Lagynodes. pleuron not developed anterior to metacoxal Mesolaterophragma subdivided into anterior slender foramina, meso- and metacoxal foramina separated apodeme and posterior short lobe. by narrow strip of sclerotized cuticle (Fig. 56A). Para- coxal sulcus and ridge absent. Lateral metacoxal Mesopectus: Posterior margin of mesopleuron fused articulation concealed (cx31a: Fig. 57D). Metafurcal with anterior margin of metapleuron from posterior to pit situated between metacoxal foramina. Metadiscri- mesopleural arm (Fig. 55D). Posterior thoracic spi- menal lamella continuous with mesodiscrimenal racle and supramesopleural sclerite not observed. lamella anteriorly, meso- and metafurca otherwise Mesepimeral ridge absent from Lagynodes, not prop- separate. Anterior metafurcal arm not developed; erly observed in any other taxa examined. Mesopleu- lateral metafurcal arm elongate but separate from ral pit present dorsally on lateral part of metapleural apodeme. mesopleuron, situated at dorsal end of mesometapleu- ral suture in Lagynodes. Internally, pit corresponding Propodeum: Antecostal sulcus shallow (ans: to well-developed mesopleural apodeme (mpa: (Fig. 54D). Metaphragma well developed in all taxa Fig. 49D). Prospinasternal apodeme absent from Cer- and continuous medially except in Ceraphron. Meta- aphron. Anterior transverse mesopleural carina phragma laterally continuous with metapleural absent; acetabular carina well developed. Subpleural apodeme in Lagynodes. Distinct propodeal projec- signum developed in Ceraphron and Megaspilus, con- tion (prp: (Fig. 54D) present anteromedially on pro- sisting of small mark in former. Longitudinal sulcus podeum just posterior to antecostal sulcus. Paired extending along boundary between lateral and lateral longitudinal carinae present (absent from ventral parts of mesopleuron in Ceraphron and Lagynodes). Propodeal spiracle rounded in Ceraphron Megaspilus, without corresponding internal ridge. (psp: (Fig. 54D) and Lagynodes, elongate in Megaspi- Mesocoxal foramina wide, separated from metacoxal lus; distinct projection present lateral to spiracle in foramina by narrow strips of cuticle. Median meso- Lagynodes. Transverse propodeal carina (tpc: coxal articulation situated on elongation. Mesofurcal Figs 54D, 62A) extending from median projection bridge absent; anterior mesofurcal arms (fu2aa: (when present) to just medial to spiracle in Ceraphron cf.Figs 32E, 52B) extending from mesofurca some dis- and Megaspilus; carina only developed laterally for tance from furcal base, being elongate in Lagynodes. short distance before reaching spiracle in Lagynodes. Propodeal foramen separated from metacoxal Mid leg: Proximal part of mesocoxa not reduced com- foramina by narrow sclerotized propodeal bridges pared to distal part. Trochantellus not developed in (T1b: Fig. 62A). Propodeal foramen situated on pos- Ceraphron. terior extension of propodeum in Lagynodes, its ventral margin incurved (Fig. 63A). Small propodeal Metanotum: Separate metanotum not developed. teeth developed only in Lagynodes. Narrow sclerotized strip laterally continuous with metapleuron and posteriorly with propodeum devel- Petiole: T2 and S2 fused anteriorly, boundary visible oped between mesoscutellum and antecostal sulcus as narrow line laterally in Ceraphron. Articulating (Fig. 54D: N3?) in Ceraphron and Megaspilus. Meso- condyle on T2 weakly developed. Anterior part of

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 33 petiole situated in depression circumscribed by trans- segmental membrane-mesobasalar, and median and verse carina (T2tc and S2tc: cf. Fig. 64D). Short lateral mesofurco-mesotrochanteral muscles absent. longitudinal carina (S2lc: cf. Fig. 66A, B) present just posterior to anterior margin of S2 in Lagynodes and Metanotum: Median metapleuro-metanotal muscle Megaspilus. (pl3m-t3: Fig. 5B, F, G) arising medial to metapleuro- metabasalar muscle (pl3a-ba3: Fig. 5B) and inserting Musculature (Figs 4A–F, 5A–G) on humeral sclerite (hmsc: Fig. 5F). Antero- and pos- Pronotum: Pronoto-prophragmal muscle (t1l-ph1: terolateral metapleuro-metanotal muscles (pl3l-t3: Fig. 4A) not subdivided, arising anteriorly from dorsal Fig. 5B, E) arise from dorsal surface of metapleural surface of anterolateral pronotal ridge (apr: Fig. 4A). apodeme medial to ventral metapleuro-third axillary Posterior pronoto-laterocervical muscle (t1p-cv: sclerite muscle (pl3v-3ax3: Fig. 5C). Metanoto- Fig. 4A) arising anteroventral to site of origin of metacoxal muscle (t3-cx3: Fig. 5E–G) inserting on dorsal pronoto-procoxal muscle. Pronoto-mesobasalar anterolateral margin of metacoxa anterior to site of muscle (t1-ba2: Fig. 4A) arising from posterior origin of lateral metapleuro-metacoxal (pl3l-cx3: concave area of pronotum anterodorsal to base of Fig. 5E) and posterior to median metapleuro- anteriorly orientated occlusor muscle apodeme (oma: metacoxal muscles and arising from humeral sclerite Fig. 4A). Median pronoto-prophragmal muscle not via tendon shared with median metapleuro-metanotal observed. muscle.

Propectus: Propleural arm-postoccipital muscle (ppa- Metapectus: Single anterior metapleuro-metabasalar poc: Fig. 4B, D) arising from anterior surface of muscle (pl3a-ba3: Fig. 5B, E) arising posterior to propleural arm and inserting on postocciput sharing ridge marking site of fusion of meso- and metapectus. common tendon with dorsal profurco-postoccipital Metapleuro-metasubalar muscle (pl3-sa3: Fig. 5D, F) muscle (fu1d-poc: Fig. 4D). Dorsal mesofurco- arising from lateral margin of metacoxal foramen profurcal muscle inserting lateral, ventral mesofurco- posterior to metapleural ridge. Lateral metapleuro- profurcal muscle inserting medial to profurcal metacoxal muscle arising exclusively from ventral lamella, site of origin of latter extending to base of surface of metapleural apodeme. Posterior profurca (fu2-fu1v: Fig. 4B); median profurco-procoxal metapleuro-metabasalar muscle absent. muscle (fu1m-cx1: Fig. 4C) arising medially from dorsal profurcal lamella, site of origin of muscle Propodeum: Metaphragmo-second abdominal tergal extending to ventral profurcal lamella, muscle insert- muscle (ph3-T2: Fig. 5E, F) arising exclusively from ing on posteromedian margin of procoxa. Lateral posterior surface of the metaphragma. Propodeo- propleuro-postoccipital muscle not observed; second abdominal sternal muscle not observed. mesofurco-propleural arm muscles absent.

Mesonotum: Mesonoto-mesolaterophragmal muscle CHALCIDOIDEA (t2-ph2: Fig. 4E, F) arising from dorsal axillar area Skeleton (Figs 38A, 39C, 40B, C, 42B, 43D, 44D, posterior to site of origin of posterior mesonoto- 45B, 46A, 47A, 48F, 49C, 50C, 51C, 52A, 55B, 56C, mesotrochanteral muscle (t2p-tr2: Fig. 4E). Anterior 57C, 58D, 59B, D, 63E, 64E, F, 65F, 66D–F) mesonoto-mesotrochanteral muscle (t2a-tr2: Fig. 4E) Pronotum: Pronotum not rigidly attached to mesono- arising posteriorly on mesoscutum just posterior to tum or mesopleura; external and internal surfaces site of origin of first mesopleuro-mesonotal muscle mostly devoid of prominent structures, except for (pl2-t2a: Fig. 4E). external sculpture. Pronotum subdivided by median longitudinal line in Gonatocerus. Transverse pronotal Mesopectus: Prospinasterno-procoxal muscle arising sulcus usually well developed, anterolateral pronotal medially from anterior margin of fused mesopectus ridge absent; distinct internal transverse ridge situ- and pronotum. Site of origin of mesopleuro- ated close to posterodorsal margin of pronotum in mesobasalar and single mesopleuro-third axillary Spalangia, not corresponding to transverse pronotal sclerite of fore wing muscles limited ventrally by sulcus. Pronotum variously developed anterior to oblique mesopleural ridge (pl2-ba2, pl2-3ax2b,c: sulcus, posteriorly always extensively developed, Fig. 4F). Second mesopleuro-mesonotal muscle sloping towards mesonotum. Weakly developed trans- arising exclusively from dorsal, mesopleuro- verse pronotal carina present laterally in Chalcis and mesocoxal muscle from ventral surface of mesopleural Eurytoma; carina delimiting anterior, weakly sculp- apodeme (Fig. 4F: pl2-t2b, pl2-cx2). Anterior tured area of pronotum accommodating head. Ante- mesopleuro-mesofurcal muscle arising from rior thoracic spiracle usually visible externally (not in mesopleuron posterior to mesopleural apodeme. Inter- Eurytoma), situated in incurvation between dorsal

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 34 L. VILHELMSEN ET AL. pronotal margin and lateral mesonotal margin, well line or sulcus separating anterior area and posterior anterior to dorsal part of prepectus; spiracle entirely frenum (fr: Fig. 45B), which usually differ in sculp- surrounded by pronotal cuticle in Gonatocerus. ture; when present, external frenal line usually indi- Prepectus (pre: Figs 48F, 50C) very large, exposed cated internally by faint line. Anteromedian margin of and expanded dorsally, fused with its counterpart mesophragma usually with well-developed pseudo- and/or anterior part of mesopleuron ventrally (pre: phragmal lobes. Mesophragmal pockets weakly devel- Fig. 38A) in most taxa. Prepectus usually with paired oped (Fig. 47A), with posterior margins straight and concavities accommodating procoxae. Occlusor muscle parallel to anterior margin of the mesophragma. apodeme of anterior thoracic spiracle situated Mesolaterophragmal lobe usually elongate apodeme. submedially, prospinasternal apodeme medially on prepectus. Mesopectus: Fore wing tegula anteriorly separate from posterodorsal corner of pronotum, mesoscutum Propectus: Cervical prominences with variable con- and mesopleuron abutting between them. Posterior figuration, situated at anterodorsal corner of propleu- thoracic spiracle not visible externally; suprame- ron (cf. Fig. 40B) or ventral to it, concealed or exposed sopleural sclerite absent. Mesepimeral ridge usually (cvpr: Fig. 40B). Cales and Cirrospilus with cervical absent, extending halfway to lateral mesocoxal apodeme reduced (cva: Fig. 40C). Acanthochalcis and articulation in Acanthochalcis, most of the way in Nasonia with small depression anteriorly on propec- Coccophagus. Mesopleural ridge (mpr: Fig. 49C) tus. Propleural arm short and extending horizontally between anterior margin of mesopleuron below along posterior surface of profurcal arm in Acantho- mesopleural arm and lateral mesocoxal articulation chalcis. All taxa except Spalangia with medioventral more or less distinctly developed in many taxa, margins of propectus diverging posteriorly, exposing including Coccophagus. Mesopleural pit and apodeme broad, rhomboid prosternum (s1: Fig. 39C); margins absent. Prospinasternal apodeme present in some hardly abutting at all in Cales and Coccophagus. taxa. Acetabular carina and acetabulum only devel- Independent katepisternum absent. Median posteri- oped in some taxa, not always occurring together. orly directed prosternal spine present in Cleonymus, Subpleural signum absent. Oblique mesopleural Nasonia, and Spalangia. Anterior profurcal apodeme sulcus and ridge absent. Transverse posterior variously developed. Profurcal bridge always absent. mesopleural carina (pmc: Fig. 51C) just anterior to mesocoxal foramen present. Mesocoxal foramen Fore leg: Proximal part of procoxa (pcx1: Fig. 42B) set reduced in size, usually widely open dorsally, some- off by distinct constriction, diameter of proximal times constricted by dorsal flange from posteroven- opening not exceeding half maximal width of procoxa. tral corner of mesopleuron (Gonatocerus), or even Basal transverse carina present on procoxa of Eury- entirely surrounded by sclerotized cuticle. Median toma and Spalangia. Probasitarsal notch and comb mesocoxal articulations not situated on elongate not developed in Cirrospilus. extensions. Mesofurcal pit situated anterior to meso- coxal foramina (fu2p: Figs 50C, 51C), anterior to Mesonotum and mesophragma: Prophragma extended transverse posterior mesopleural carina. Proximal laterally along anterior margin of mesoscutum at part of mesofurcal arms usually with distinct concav- least to notauli (ph1: Fig. 43D), not subdivided medi- ity dorsally. Mesofurcal bridge usually present, ally in Cales and Cleonymus. Anterior mesoscutal when present rarely with anteromedian projection sulcus at most weakly developed. Notauli well devel- (e.g. Acanthochalcis). oped (not: Fig. 44D); anteroadmedian signa and parapsides absent. Transscutal ridge present. Scu- Mid leg: Mesocoxa reduced proximal to transverse toscutellar sulcus angled medially, dorsal axillar sur- groove. Trochantellus not developed in some taxa. faces comparatively large in Acanthochalcis; sulcus small in all other taxa examined. Axillar carina Metanotum: Metanotum orientated vertically, over- absent from Cales. Internal axillar phragma (axph: lapped dorsally by posterior margin of mesoscutellum, Fig. 46A) extending anteriorly as flattened plate and placed at almost right angle to latter in Acan- below mesoscutum from anterolateral corners of thochalcis and Eurytoma. Metascutellum (‘dorsellum’ axilla. Scutoscutellar ridge extending to transscutal of many authors) usually well developed, but of ridge anteromedially (ssr: Fig. 46A). Internal septum various configurations. extending posteriorly from scutoscutellar ridge in Gonatocerus, merging with mesoscutellum less than Metapectus: Boundary between metapleuron and pro- halfway along it; septum with small fenestrum at its podeum indicated by distinct longitudinal carina in posterior end. Mesoscutellum in some taxa subdivided some taxa and usually by metapleural sulcus. Small, externally by transverse frenal line (frl: Fig. 45B), curved flexor apodeme (fa: Figs 7G, 58D) usually

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 35 present, situated dorsally on anterior margin of meta- condyle on T2 absent in Coccophagus (Fig. 64F). pleuron. Metapleural pit usually absent, metapleural Transverse carina on T2 developed in Eurytoma and apodeme well developed. Metepisternal depressions Megastigmus.InGonatocerus, T2 apparently developed in all taxa except Coccophagus, ventral encircles entire petiole, its lateral margins abutting lateral longitudinal carinae present or absent, median medioventrally (Fig. 66E). Medioventral part of S2 carina usually absent; transverse metepisternal ventral to sensillar patches membranous in Cirrospi- carina (tmc: Fig. 56C) usually present. Metapleuron lus, Coccophagus, Megastigmus (Fig. 66D), and separated from mesopectus ventrally. Paracoxal Nasonia. Transverse carina on S2 present in Coc- sulcus and ridge straight, usually not reaching meta- cophagus and Eurytoma; short longitudinal carina on pleural apodeme laterally. Low metapectal plate S2 present in Eurytoma and Spalangia. (mtpp: Fig. 58D) usually differentiated laterally on paracoxal ridge. Metapleuron reduced anterior to Musculature (Figs 6A–G, 7A–G) paracoxal ridge except in Coccophagus and Nasonia. Pronotum: Pronoto-postoccipital muscle (t1-poc: Median metacoxal articulation reduced except in Fig. 6A) arising from median part of pronotum (dis- Cales and Megastigmus, lateral articulation concealed tinctly ventral to dorsal margin). Oblique pronoto- (cx3la: Fig. 57C). Distinct notch present in metacoxal propleural and anterior pronoto-laterocervical foramen at lateral coxal articulation in Megastigmus muscles arise ventrolateral to site of origin of pronoto- and Nasonia. Metafurcal pit(s) situated close to ante- postoccipital muscle, site of origin of pronoto- rior margin of metapectus (fu3p: Fig. 56C) in all taxa propleural muscle extends along posterior transverse except Coccophagus. Two metafurcal pits situated ridge of pronotum in Spalangia (t1-pl1: Fig. 6A). side by side present in Eurytoma (fu3p: Fig. 56C), Pronoto-prophragmal muscle (T1-ph1: Fig. 6A, B) Gonatocerus, Nasonia,andSpalangia. Bases of arising submedially on pronotum. Anterior thoracic metafurcal arms often arise well lateral to metadis- spiracle occlusor muscle (sp1occ: Fig. 6D) arising sub- crimenal lamella (fu3a, dcl3: Fig. 58D); in Acantho- medially, prospinasterno-procoxal muscle medially chalcis, Cirrospilus, and Cleonymus, arms arising from anterior margin of prepectus. Pronoto- from metadiscrimen. Lateral metafurcal arms usually mesobasalar muscle absent. fused with metapleural apodeme posteriorly, sepa- rated by gap anteriorly that accommodates anterior Propectus: Lateral propleuro-postoccipital muscle and posterior metapleuro-metafurcal muscle. arising from dorsal margin of propleuron just poste- rior to dorsal incision of propleuron. Site of origin of Hind leg: Metacoxa elongate in Acanthochalcis and propleuro-procoxal muscle extending along dorsal Cleonymus; metafemur greatly swollen and with lon- margin of propleuron. Median profurco-procoxal gitudinal row of distinct spines ventrally (Fig. 59D) in muscle (fu1m-cx1: Fig. 6C) arising medially from Acanthochalcis. dorsal profurcal lamella, site of origin of muscle extending to ventral profurcal lamella, muscle insert- Propodeum: Antecostal sulcus narrow or broad; ing on posteromedian margin of procoxa. Propleural paired submedian projections extending anteriorly arm-protrochanteral muscle absent in Gonatocerus. and posteriorly across sulcus in Eurytoma and Dorsal mesofurco-profurcal and mesofurco-propleural Gonatocerus, lateral projections absent. Meta- arm muscles absent in all taxa examined. phragma developed only laterally when present (ph3: Fig. 58D), not reaching metapleural apodeme later- Mesonotum: Third mesopleuro-mesonotal muscle ally. Median and lateral longitudinal propodeal arising from process on anterolateral edge of mesos- carinae (lpc: cf. (Fig. 60A) present or absent. Pro- cutum lateral to prophragmal lobes. Posterior podeal spiracle usually rounded and exposed. Trans- mesonoto-mesotrochanteral muscle (t2p-tr2: Fig. 6G) verse propodeal carina present in Acanthochalcis and subdivided, anterior band arising from axillar Nasonia. Propodeal bridge present (T1b: (Fig. 63E); phragma and posterior from dorsal axillar area. Ante- propodeal foramen very broad in Cales. Propodeal rior mesofurco-mesolaterophragmal muscle (fu2a- foramen situated on posterior extension of propodeum ph2: Fig. 6F, G) arising along entire length of lateral or level with metacoxal foramina. Ventral margin of mesofurcal arm, site of origin of muscle corresponds propodeal foramen usually straight (incurved in Cir- medially with the proximal concavities; muscle insert- rospilus, Nasonia, and Spalangia). Propodeal teeth ing along length of mesolaterophragmal lobe (ph2a: not developed (Fig. 63E). Fig. 6F).

Petiole: T2 and S2 usually fused (Figs 65F, 66F). Mesopectus: Intersegmental membrane-mesobasalar Shape of petiole very variable, from narrow cylindri- muscle (ism1,2-ba2: Fig. 6E, F) arising from anterior cal to broadly expanded posteriorly. Articulating margin of mesopleuron. First mesopleuro-third axil-

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 36 L. VILHELMSEN ET AL. lary sclerite muscle arising anterodorsally from surface of metapectal plate (mtpp: Fig. 7D). In mesopleuron in Eupelmidae (Gibson, 1986). Ormyrus and Chalcis median metafurco-metacoxal Mesopleuro-mesobasalar muscle (pl2-ba2: Fig. 6E) muscle arising exclusively from along metadiscrime- arising dorsal to sites of origin of second and third nal lamella (fu3m-cx3, dcl3: Fig. 7G) and inserting mesopleuro-third axillary sclerite of fore wing posterolaterally on metacoxa, whereas lateral muscles. Mesopleuro-mesocoxal muscle (pl2-cx2: metafurco-metacoxal muscle arises exclusively from Fig. 6E) arising posterior to site of origin of third lateral metafurcal arm (fu3l-cx3: Fig. 7G) and inserts mesopleuro-third axillary sclerite of fore wing muscle posteromedially on metacoxa. Posterior metapleuro- and ventral to second mesopleuro-mesonotal muscle. metabasalar muscle absent. Metabasalar, ventral Third mesopleuro-mesonotal muscle arising from metapleuro-third axillary sclerite and metacoxo- acropleuron. Site of origin of anterior mesopleuro- metasubalar muscles. mesofurcal muscle (pl2a-fu2: Fig. 6G) limited posteri- orly by mesepimeral and anteriorly by mesopleural Propodeum: Metaphragmo-second abdominal tergal ridges, when present. Mesopleuro-third axillary scler- muscle (ph3-T2: Fig. 7G) arising exclusively from pos- ite of hind wing muscle (pl2-3ax3: Fig. 7G) arising terior surface of metaphragma. posteroventral to anterior mesopleuro-mesofurcal muscle. Mesopleuro-mesosubalar muscle (pl2-sa2: Fig. 6E, G) arising ventral to site of origin of CYNIPOIDEA mesopleuro-third axillary sclerite of hind wing Skeleton (Figs 36C, 37E, 38D, 40A, 41E, 42C, 45E, muscle. Lateral and median mesofurco- 46D, 47F, 48A, 49F, 50B, 51B, 54A, E, 55C, 58C, mesotrochanteral and Mesocoxo-mesosubalar muscles 62B, 65B) absent. Pronotum: Paired, admedian pronotal pits (adp: Fig. 36C) or depressions situated in transverse prono- Metanotum: Anterolateral metapleuro-metanotal tal sulcus in all taxa except Diplolepis. Internal ante- muscle arising from marginal metapleural apodeme rolateral pronotal ridge weakly developed. Pronotum in Gonatocerus and from dorsal surface of metapleu- weakly developed anteromedially to transverse prono- ral apodeme in other Chalcidoidea, posterolateral tal sulcus (N1s: Fig. 37E) in all taxa except Ibalia; metapleuro-metanotal muscle arising from metapleu- posteromedially, pronotum well developed and ral apodeme in Gonatocerus and from metapleuron approximately vertical in all taxa except Diplolepis. posterodorsal to metapleural ridge in other taxa (pl3l- Transverse pronotal carina present in Anacharis t3: Fig. 7A–C, G). Metanoto-metatrochanteral muscle (N1c: Fig. 37E), Ibalia, and Parnips. Anterior thoracic (t3-tr3: Fig. 7B, C) arising from humeral sclerite, spiracle always visible externally and usually situ- extending anterior to metapleural apodeme and ated in incurvation in posterior margin of pronotum inserting on metatrochanteral apodeme. (sp1: Figs 37E, 48A); margin straight in Ibalia. Pos- terior pronotal inflection situated posterior to spiracle Metapectus: Anterior metapleuro-metabasalar muscle and extending for most of length of posterolateral (pl3a-ba3: Fig. 7C) arising from anterior surface of pronotal margin; dorsally, inflection extending above metapectal plate, even when fused to metafurcal arm. spiracle to form notch together with dorsolateral Dorsal metapleuro-third axillary sclerite muscle corner of pronotum proper that accommodates ante- arising from marginal metapleural apodeme in rior part of fore wing tegula. Posterolateral pronotal Gonatocerus and from flexor apodeme in other margin and inflection (ppi: Fig. 38D) together form Chalcidoidea (pl3a-3ax3: Fig. 7G). Metapleuro- groove that articulates with anterior margin of metasubalar muscle (pl3-sa3: Fig. 7F) arising from mesopleuron, creating immovable connection. Inde- dorsal surface of metapleural apodeme in Gonato- pendent prepectus absent. Occlusor muscle apodeme cerus and from metapleuron posterior to site of origin of anterior thoracic spiracle situated midway along of posterior band of lateral metapleuro-metanotal pronotal inflection (oma: Fig. 38D). muscle in other taxa; posterior margin of site of origin of muscle limited by anterior margin of prespiracular Propectus: Longitudinal propleural carina (pl1c: sulcus. Metafurco-second abdominal sternal muscle Fig. 40A) developed along lateroventral margin of (fu3-S2: Fig. 7A) arising from along entire length of propleuron at least anteriorly in all taxa examined, lateral metafurcal arm. Median metapleuro- least developed in Ibalia. Independent katepisternum metacoxal muscle usually subdivided (pl3m-cx3: present in Periclistus as small sclerite situated at Fig. 7D), median band arising from metadiscrimenal lateral procoxal articulation. Unpaired median pro- lamella posteroventral to site of origin of median furcal pit situated ventrally on posterodorsal part of band of metafurco-metacoxal muscle (fu3m-cx3: prosternum (fu1p: Fig. 41E) in all taxa except Diplo- Fig. 7E), whereas lateral band arises from posterior lepis, prosternum extending as vertical flange for

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 37 some distance dorsal to base of profurcal arm; Diplol- oblique mesopleural sulcus and ridge otherwise epis with two profurcal pits situated at dorsolateral absent. Mesocoxal foramen reduced in width and corners of prosternum. Well-developed profurcal entirely surrounded by sclerotized mesopleural cuticle bridge present (fu1b: Fig. 41E) in all taxa examined. (cx2f: Figs 50B, 51B). Median mesocoxal articulation entirely absent. Mesofurcal bridge always present, Fore leg: Procoxa reduced proximally, diameter of usually curving anteriorly, often with anteromedian proximal opening not exceeding half maximal width projection. of procoxa. Distinct basal transverse carina encircles entire procoxa (Fig. 42C) in all taxa examined. Mid leg: Mesocoxa reduced proximal to transverse groove. Trochantellus not developed in Anacharis. Mesonotum and mesophragma: Prophragma well developed in all taxa except Diplolepis, not subdivided Metanotum: Metanotum orientated vertically, over- medially in Parnips and Periclistus. Median meso- lapped dorsally by posterior margin of mesoscutellum scutal sulcus developed only posteriorly in Ibalia and and placed at right angle to latter (N3: (Fig. 54A). Parnips, without corresponding internal ridge; sulcus Metascutellum well developed in all taxa except Peri- entirely absent in all other taxa examined. Anteroad- clistus, reaching anterior margin of metanotum (not median signum present in all taxa examined except in Anacharis). Metascutellum with distinct posterior Melanips. Notauli only fully developed externally and incurvation ((Fig. 54E). Humeral sclerite absent; internally as ridges in Diplolepis, at most developed anterior notal wing process located anteriorly on met- as faint grooves externally and low swellings inter- anotum on anterior supraalar area (asa: Fig. 9C, nally in other taxa. Parapsides present. Transscutal E; see Ronquist & Nordlander, 1989). ridge usually absent. Dorsal axillar surfaces small, widely separated by scutoscutellar sulcus medially. Metapectus: Lateral part of metapleuron in all taxa Scutoscutellar sulcus usually consists of two wide, low except Diplolepis subdivided by anterior extension of depressions with distinct pits at lateral ends (sss: propodeum extending almost to anterior margin of Fig. 45E), narrow transverse row of small depressions metapleuron (Fig. 55C), overlapping metapleural pit in Diplolepis. Scutoscutellar ridge well developed in (mtpi). Boundary between metapleuron and propo- Diplolepis and Ibalia, continuous with transscutal deum indicated by distinct longitudinal ridge (absent ridge; in other taxa, scutoscutellar ridge at most from Diplolepis). Metapleural pit absent from Diplo- developed laterally (ssr: Fig. 46D). Mesophragma ori- lepis and Ibalia. Ventral part of metapleuron with entated almost vertically for its entire length; pseudo- metepisternal depressions and median and lateral phragmal lobes present on its anteromedian margin longitudinal carinae present or absent, median carina (ph2l: Fig. 47F). Mesophragmal pockets weakly devel- usually absent. Metapleuron separated from mesopec- oped, with posterior margins straight and parallel to tus ventrally. Paracoxal sulcus and ridge straight; anterior margin of mesophragma; posterior margin ridge only well developed medially and not reaching corresponds to ventral flange of mesopostnotum of metapleural apodemes. Metapleuron reduced anterior Ronquist & Nordlander (1989). Mesolaterophragma to paracoxal ridge. Median metacoxal articulation consists of elongate apodeme and separate lobe, reduced, lateral articulation concealed. Anterior usually of equal length and lying parallel to each metafurcal arms reduced; lateral arms elongate, not other (ph2a: Fig. 47F). fusing with metapleural apodemes (fu3a, mtpa: Fig. 58C). Mesopectus: Posterior thoracic spiracle situated on posterodorsal corner of mesopleuron adjacent to Propodeum: Antecostal sulcus narrow; paired metapleural arm in Ibalia; not observed in any other median antecostal projections (map: cf. (Fig. 54C) taxa. Supramesopleural sclerite absent. Broad and lateral antecostal projections (lap: cf. mesepimeral ridge extending almost all way to lateral (Fig. 54C) extending anterior and posterior across mesocoxal articulation. Mesopleural pit absent; sulcus. Metaphragma developed only laterally (ph3: mesopleural apodeme often developed, continuous Fig. 58C) in all taxa except Diplolepis, not extending with mesepimeral ridge approximately halfway down to metapleural apodeme laterally. Median longitudi- ridge. Depressed mesopleural triangle (pl2t: nal propodeal carina present only in Ibalia, lateral Fig. 49F) situated ventral to mesopleural arm and longitudinal carinae often present. Propodeal spiracle tapering towards posterodorsal corner of mesopleuron variable in shape, always covered laterally by sclero- where mesopleural pit is usually situated; triangle tized flap. Propodeal foramen separated from meta- present in all taxa examined. Prospinasternal coxal foramina by sclerotized propodeal bridges apodeme absent. Longitudinal sulcus present ven- (Fig. 62B: T1b). Propodeal foramen situated on pos- trally on lateral part of mesopleuron in Diplolepis, terior extension of propodeum, with ventral margin

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 38 L. VILHELMSEN ET AL. incurved in all taxa except Diplolepis. Propodeal teeth margin of site of origin of second mesopleuro- absent. mesonotal muscle (pl2-ba2, pl2-t2b: Fig. 8E) in Diplol- epis; sites of origin correspond to oblique mesopleural Petiole: T2 and S2 fused anteriorly (Fig. 65B). In ridge (omr: Fig. 8E). Second and third mesopleuro- Anacharis, T2 and S2 form elongate, narrow cylinder third axillary sclerite of fore wing muscles (pl2- connected to remainder of metasoma; in Ibalia, short 3ax2b,c: Fig. 8E) arise dorsal to site of origin of cylinder present; petiole short and embedded in mesopleuro-mesobasalar muscle. Ventral margin of remainder of metasoma (Fig. 65B) in other taxa. Most site of origin of second and third mesopleuro-third taxa with distinct transverse carina on T2 overhang- axillary sclerite muscles of fore wing in line with ing anterior part of petiole; ventrally on S2, much less ventral margin of site of origin of second mesopleuro- developed transverse carina present, laterally con- mesonotal muscle in Andricus, mesopleuro- tinuous with carina on T2. mesobasalar muscle arising more ventrally on mesopleuron (pl2-ba2: Fig. 8F). Intersegmental Musculature (Figs 8A–F, 9A–E) membrane-mesobasalar muscle absent. Pronotum: Pronoto-prophragmal muscle not subdi- vided and arising between sites of origin of anterior Metanotum: Median metapleuro-metanotal muscle and posterior pronoto-laterocervical muscles (t1-ph1: arising anterior to paracoxal ridge medial to site of Fig. 8B). Posterior pronoto-laterocervical muscle (t1p- origin of anterior metapleuro-metabasalar muscle cv: Fig. 8B) arising medially from dorsal margin of (pl3m-t3, pl3a-ba3: Fig. 9A) and inserting on anterior pronotum dorsal to site of origin of dorsal pronoto- supraalar area of metanotum. Anterolateral procoxal muscle (t1s-cx1: Fig. 8B); latter arising metapleuro-metanotal muscle arising from dorsal medially from pronotum, distinctly ventral to dorsal surface of metapleural apodeme, posterolateral margin. Anterior thoracic spiracle occlusor muscle muscle (pl3l-t3: Fig. 9B, E) arising partly from pos- (Fig. 8B) rod-like and arising from occlusor muscle teroventral part of metapleural ridge and partly from apodeme. Pronoto-mesobasalar muscle absent. metapleuron posterodorsal to ridge. Metanoto- metatrochanteral muscle (t3-tr3: Fig. 9A, C) arising Propectus: Lateral propleuro-postoccipital muscle from anterior supraalar area (asa: Fig. 9C) sharing arising from dorsal margin of propleuron posterior to tendon with median metapleuro-metanotal muscle dorsal incision of propleuron. Posterior propleuro- and inserting on metatrochanteral apodeme sharing postoccipital muscle arising from posterior inflected tendon with metafurco-metatrochanteral muscle margin of propleuron medial to propleuro- (pl3m-t3, fu3-tr3: Fig. 9B, C). protrochanteral muscle and inserting on postocciput, sharing common tendon with ventral profurco- Metapectus: Metacoxo-metabasalar muscle (cx3-ba3: postoccipital muscle. Site of origin of propleuro- Fig. 9B) present only in Diplolepis and posterior procoxal muscle extending along dorsal margin of the metapleuro-metabasalar muscle only in Ibalia. propleuron. Propleural arm-procoxal muscle arising Ventral metapleuro-third axillary sclerite muscles from apex of propleural arm and inserting to poste- arise from dorsal surface of metapleural apodeme. rolateral margin of procoxa sharing common tendon Metapleuro-metasubalar muscle arising from meta- with dorsal profurco-procoxal muscle (ppa-cx1, fu1d- pleuron posterior to site of origin of posterior band of cx1: Fig. 8A, C). Median profurco-procoxal muscle lateral metapleuro-metanotal muscle. Metafurco- (fu1m-cx1: Fig. 8C) arising medially from dorsal pro- second abdominal sternal muscle (fu3-S2: Fig. 9E) furcal lamella, site of origin of muscle extending to arising from along entire length of lateral metafurcal ventral profurcal lamella, muscle inserting on pos- arm. Metalaterophragmo-metafurcal muscle (ph3-fu3: teromedian margin of procoxa. Fig. 9D, E) arising from metaphragma and inserting on posterolateral projection of lateral metafurcal Mesonotum: Mesonoto-mesolaterophragmal muscle arm. Metalaterophragmo-metanotal muscle (t3-ph3: arising from dorsal axillar area and inserting on Fig. 9E) arising lateral to site of origin of tendon of anterior mesofurco-mesolaterophragmal metaphragmo-second phragmal muscle and inserting muscle (fu2a-ph2: Fig. 8D, E); third mesopleuro- on posterior surface of apodeme arising laterally from mesonotal muscle arising from cup-shaped apodeme metanotum. on lateral margin of mesoscutum and inserting on mesopleural arm. Propodeum: Metaphragmo-second abdominal tergal muscle (ph3-S2: Fig. 9A, B, D, E) arising exclusively Mesopectus: Ventral margin of site of origin of from posterior surface of metaphragma. Propodeo- mesopleuro-mesobasalare muscle in line with ventral second abdominal sternal muscle absent.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 39

EVANIOIDEA in all taxa examined except Pristaulacus. Profurcal Skeleton (Figs 36B, 37B, 39B, D, 40E, 41D, 43C, bridge present in Gasteruption (fu1b: Fig. 41D) and 44B, 45F, 47E, 48C, 51A, 53A, 57B, 58B, 60C, D, Evaniidae. 63F, 65E, 66C) Pronotum: Anteromedian part of pronotum anterior Fore leg: Procoxa broad basally, with lateral proximal to transverse pronotal sulcus developed only in extension for lateral procoxal articulation in Aul- Aulacus and Evania; posteromedially, pronotum well acidae and Gasteruptiidae; procoxa reduced proxi- developed and orientated vertically in Aulacus and mally in Evaniidae, diameter of proximal opening not Evaniidae. Anterolateral pronotal ridge present in exceeding half maximal width of procoxa. Transverse Aulacidae and Gasteruptiidae. Transverse pronotal carina situated laterally on procoxa close to its base carina present dorsal to transverse pronotal sulcus in in Evania and Evaniella. Brachygaster and Evaniella (N1c: Fig. 36B). Anterior thoracic spiracle visible externally in Pristaulacus, Mesonotum and mesophragma: Prophragma very situated in triangular notch on posterolateral margin reduced in Gasteruptiidae (Fig. 43C). Notauli well of pronotum; in all other taxa examined, spiracle developed, merging well anterior to the transscutal concealed behind distinct pronotal lobe (N1l: articulation in Gasteruptiidae to form V-shaped Figs 37B, 48C). Independent prepectus absent, prono- (Pseudofoenus; not: Fig. 44B) or U-shaped (Gasterup- tum rigidly attached to mesopleura. Posterior prono- tion) sulcus on mesoscutum. Parapsides absent from tal inflection extending posteriorly and dorsal to Brachygaster and Evaniella. Transscutal ridge absent anterior thoracic spiracle in Evaniidae, spiracle sur- from Aulacus and Evaniidae. Dorsal axillar surfaces rounded by sclerotized cuticle; ventrally, inflection small, widely separated medially by straight scu- tapers towards lateroventral corner of pronotum; toscutellar sulcus. Scutoscutellar ridge not reaching inflection hardly developed ventrally in Evania. Pos- transscutal articulation anteromedially in Aulacus. terior pronotal inflection not observed in Aulacidae Raised median part of mesoscutellum in Gasterupti- and Gasteruptiidae, spiracle not surrounded by scle- idae subdivided by pair of longitudinal sulci converg- rotized cuticle. Occlusor muscle apodeme of anterior ing posteriorly (Fig. 45F). Distinct ventral thoracic spiracle not observed. mesophragmal longitudinal ridge extends medially along entire length of mesophragma (ph2r: Fig. 47E) in Aulacidae and Gasteruptiidae. Pseudophragmal Propectus: In Pseudofoenus, cervical apodeme curving lobes well developed in all taxa except Brachygaster. laterally at its posterior end to fuse with inner side of Mesophragmal pockets reduced, with straight poste- propectus. Anterodorsal margins of propleuron abut- rior margins in Gasteruptiidae and Brachygaster. ting medially for approximately half their length Mesolaterophragmal lobes slender, medially pointing (Fig. 40E: pl1) in Aulacidae and Gasteruptiidae. apodemes. In Gasteruptiidae, distinct anterolateral Propleural arms elongate and orientated horizontally, flange extending from mesophragma (Fig. 47E). extending posterior to profurcal arms (ppa, fu1a: Figs 40E, 41D) in all taxa examined except Evania. Mesopectus: Internal part of mesobasalare distally Oblique internal propleural ridge extending expanded into broad apodeme in Aulacidae and anteroventrally from base of propleural arm in Prist- Gasteruption. Posterior thoracic spiracle observed in aulacus and Pseudofoenus, corresponding externally Evania and Evaniella, partly covered by suprame- to more or less well-developed sulcus; sulcus more sopleural sclerite (sms: Fig. 48C) in Evaniella; sclerite distinct in Pristaulacus. Longitudinal propleural absent from all other taxa examined. Anterior carina along lateroventral margin ventral to smooth mesopleural apodeme (ama: cf. Fig. 29B; Duncan, dorsal area of propleuron developed along most of 1939) located anteriorly on mesopectus separating length of propleuron in Evaniidae. Epicoxal lobe anterolateral area of mesopectus in Pristaulacus and present (epl: Fig. 39B). Independent katepisternum Pseudofoenus. Mesepimeral ridge present, extending present as small sclerite lying at lateral procoxal approximately halfway to lateral mesocoxal articula- articulation in all taxa examined. Anterior part of tion. Mesopleural apodeme separated from mesepime- prosternum concealed by medioventral margins of ral ridge in Aulacus and Pristaulacus; apodeme propleuron and extending considerable distance ante- continuous with mesepimeral ridge in Pseudofoenus; rior to posterior margin of the propleuron. Median mesopleural apodeme absent from remaining taxa posteriorly directed prosternal spine present in Eva- examined. Internal ridge marking anterior margin of niidae. Weakly defined laterosternal sclerites (lss) speculum extending from mesopleural wing articula- situated between posterolateral margins of proster- tion, diminishing ventrally just above anterior end of num and procoxal bases in Aulacidae and Gasterup- mesopleural apodeme in Pseudofoenus. Prospinaster- tion (Fig. 39D). Anterior profurcal apodeme developed nal apodeme absent from Brachygaster. Subpleural

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 40 L. VILHELMSEN ET AL. signum absent from Evaniella. Internal oblique especially elongate in Pseudofoenus. Metaphragma mesopleural ridge present laterally on mesopleuron laterally continuous with metapleural apodeme in in Pristaulacus. Meso- and metapleura extensively Evaniidae and Gasteruptiidae. Low median longitu- fused ventrally in Evaniidae, mesocoxal foramina dinal propodeal carina present in Gasteruption. Pro- closed dorsally by metapleural cuticle. Median meso- podeal spiracle narrow, exposed slit, ventrally coxal articulation situated on elongation (cx2ma: abutting boundary between propodeum and meta- Figs 51A, 53A). Anteromedian projection on mesofur- pleuron in Evaniidae and Gasteruption. Transverse cal bridge present only in Gasteruption. propodeal carina situated dorsal to propodeal foramen in Aulacidae. Propodeal foramen separated from metacoxal foramina by considerable expanse of scle- Mid leg: Proximal part of mesocoxa not reduced rotized cuticle (Fig. 60C, D); propodeal foramen adja- (Fig. 53A). In Evaniidae, proximal part of mesotro- cent to antecostal sulcus in Gasteruptiidae (pdf, ans: chanter compressed into flattened disk firmly gripped Fig. 60D). Lateral margins of propodeal foramen dis- by stout distal extensions of mesocoxa, forming hinge- tinctly raised in Aulacidae and Gasteruptiidae; dis- like articulation. tinct shelf ventral to propodeal foramen projecting into lumen of body in Evaniidae (Fig. 63F). Small Metanotum: Metascutellum well developed in all propodeal teeth developed only in Evaniidae (T1t: taxa except Brachygaster and Evaniella; metascutel- (Fig. 63F). lum reaching anterior margin of metanotum, when developed. Petiole: Evaniidae: Petiole elongate cylinder connect- ing propodeum with remainder of metasoma. T2 and Metapectus: Boundary between metapleuron and pro- S2 entirely fused. Distinct articulating condyle in podeum indicated by distinct longitudinal ridge in depressed area anteriorly on T2 present. Attachment Pristaulacus. Metapleural pit not developed in line for membranous cuticle curving posteriorly Brachygaster. Metepisternal depressions very distinct between sensillar patches anteroventrally on S2 and usually delimited by median and lateral longitu- present; distinct transverse carina present posterior dinal metepisternal carinae (mlmc, llmc: Fig. 58B). to line. Aulacidae and Gasteruptiidae: T2 and S2 Median carina replaced by broad raised area between fused in Gasteruptiidae (Fig. 65E); in Gasteruption, metepisternal depressions in Evania and Evaniella, T2 apparently envelopes S2 except for small anterior and lateral carinae absent. All Evanioidea have para- part accommodating sensillar patches, lateral coxal sulcus and ridge developed, in Pristaulacus, margins of T2 fusing along ventral midline of petiole; Evania, and Evaniella with posterior branch of para- T2 and S2 only fused anterolaterally in Pseudofoenus. coxal ridge (ppcr: Fig. 13D, E) extending towards T2 and S2 separated by distinct longitudinal lines in metacoxal foramina. Anterior branch of paracoxal Aulacidae. T2/S2 expands posteriorly in Pseudofoenus ridge extending to metapleural apodeme in Evani- and Aulacidae. Articulating condyle undifferentiated idae, extending anterior to retracted metapleural dorsal swelling on T2 with shallow lateral depres- apodeme to merge with marginal metapleural sions (arc?: Fig. 65E). Transverse and longitudinal apodeme in Aulacidae and Gasteruptiidae. Median carinae not developed on T2 and on S2 only in Eva- metacoxal articulation elongate and articulates some niidae (S2tc: Fig. 66C). distance down metacoxa; median articulation dis- placed laterally to position almost ventral to lateral Musculature (Figs 10A–F, 11A–H, 12A–F, 13A–E) metacoxal articulation in Evania, metacoxa moving in Pronotum: Dorsal pronoto-procoxal muscle arising almost horizontal plane. Lateral metacoxal articula- from along dorsal margin of pronotum in Pristaulacus tion concealed. Distinct articular notch (arn: and Pseudofoenus (t1d-cx1: Fig. 11H); muscle arising Figs 57B, 60C, D) present in rim of metacoxal medially on pronotum in Evaniidae, just ventral to foramen at lateral coxal articulation in Aulacidae and site of origin of posterior pronoto-laterocervical Gasteruptiidae. Lateral metafurcal arm fused with muscle (t1p-cv: Fig. 10A, D). Anterior thoracic spi- metapleural apodeme (fu3a, mtpa: Fig. 58B). racle occlusor muscle and pronoto-mesobasalar muscle fan-shaped and arise distinctly anterior to Propodeum: Propodeal antecostal sulcus broad in Aul- posterior pronotal inflection in Pristaulacus and acidae, narrow in other families; sulcus compressed Pseudofoenus (sp1occ, t1-ba2: Fig. 11H), muscles rod- medially in Gasteruptiidae by anterior displacement like and arise from posterior pronotal inflection in of propodeal foramen. Metaphragma well developed Evaniella and Brachygaster (Fig. 10F). Posterior and continuous medially; metalaterophragmal pronoto-laterocervical muscle absent in Pristaulacus; lobes (ph3l: Fig. 58B) developed in Gasteruptiidae, pronoto-mesobasalar muscle absent in Evania.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 41

Propectus: Lateral propleuro-postoccipital muscle terolateral muscle arising from dorsal surface of arising from dorsal, propleuro-procoxal muscle metapleural apodeme in Pseudofoenus (pl3la-t3, arising from ventral surface of anteriorly orientated pl3lp-t3: Fig. 13C); in other taxa both muscles arise ridge of propleuron in Pristaulacus and Pseudofoenus from dorsal surface of fused metapleural apodeme (pl1l-poc, pl1-cx1: Fig. 11G). Muscle arising from and paracoxal ridge (Figs 12A, C, D, 13E). anterior surface of base of lateral profurcal arm in Metalaterophragmo-metafurcal muscle (ph3-fu3: Evania (Fig. 10C), muscle inserting on posteromedian Fig. 13A, B, E) arising from metanotum posterior to margin of procoxa. Propleural arm-procoxal muscle lateral metanotal apodeme and inserting on lateral arising from apex of propleural arm and inserting on part of metafurca in Pristaulacus and Pseudofoenus; posterolateral margin of procoxa sharing common muscle absent in Evaniidae. tendon with dorsal profurco-procoxal muscle (ppa-cx1, fu1d-cx1: Fig. 11A). Propleural arm-protrochanteral Metapectus: Anterior metapleuro-metabasalar muscle muscle absent in Evania. absent in Pseudofoenus (Fig. 13C), present in other taxa examined. Metacoxo-metabasalar muscle Mesonotum: Site of origin of mesophragmo- present in Evaniidae. Site of origin of metapleuro- metaphragmal muscle extending to anterolateral metatrochanteral muscle extending to propodeum flange of mesophragma in Pseudofoenus. posterodorsal to metapleural apodeme in Evaniidae (pl3-tr3: Fig. 12B, E). Metapleuro-metasubalar Mesopectus: Prospinasterno-procoxal muscle arising muscle (pl3-sa3: Fig. 12C) arising from marginal from prospinasternal apodeme (sps1-cx1: Fig. 11D) metapleural apodeme and from wall of metapleuron when present; if apodeme absent muscle arising posterior to apodeme, dorsal to site of origin of pos- medially from anterior margin of mesopectus. Site of terolateral metapleuro-metanotal muscle. Lateral origin of intersegmental membrane-mesobasalar metapleuro-metacoxal muscle absent in Pseudofoenus muscle limited by anterior mesopleural apodeme in (Fig. 13C). Metafurco-second abdominal sternal Pristaulacus and Pseudofoenus (ism1,2-ba2, ama: muscle arising from lateral part of lateral metafurcal Fig. 11H). Second and third mesopleuro-third axillary arm in Evaniidae (fu3-S2: Fig. 12A, B), from along sclerite muscles not distinctly separated in all taxa entire length of lateral metafurcal arm in Pristaula- examined (pl2-3ax2b,c: Figs 10D, F, 11C, E). Ventral cus and Pseudofoenus (Fig. 13A). site of origin of second and third mesopleuro-third axillary sclerite of fore wing muscles limited ventrally Propodeum: Median mesophragmo-metaphragmal by low oblique mesopleural ridge (ompr: Fig. 11C); muscle inserting dorsal to metaphragma in Pristaula- second mesopleuro-mesonotal and mesopleuro- cus (ph2m-ph3: Fig. 13B, E), ventral margin of site of mesocoxal muscles arise partly from mesopleural insertion of muscle corresponds to broad antecostal apodeme (pl2-t2b, pl2-cx2: Fig. 11C, E) in Pseudofoe- sulcus. Propodeo-second abdominal sternal muscle nus and Pristaulacus. Site of origin of anterior arising from ventral part of propodeum, ventral to mesopleuro-mesofurcal muscle delimited anteriorly propodeal foramen in Pseudofoenus (T1-S2: Fig. 13C). by internal ridge corresponding to anterior margin of Site of origin of metaphragmo-second abdominal speculum in Pseudofoenus. Mesofurco-mesocoxal tergal muscle (ph3-T2: Fig. 13E) extending ventrally muscle arising exclusively from mesodiscrimen dorsal to metacoxal foramen along metapleural ridge in Pris- to site of origin of mesosterno-mesocoxal muscle in all taulacus. Dilator of propodeal spiracle arising from taxa examined (fu2-cx2, s2-cx2: Fig. 11F). Lateral metapleural apodeme in Pristaulacus and Pseudofoe- mesofurco-mesotrochanteral muscle arising from nus (dT1sp: Figs 12F, 13E). Site of origin of dilator anterior (internal) surface of anteriorly bending and muscle located just posterior to site of origin of pro- weakly sclerotized lateral end of lateral mesofurcal podeal bands of posteriorly extended metapleuro- arm in Evaniidae (fu2l-tr2: Fig. 10E, F). Intersegmen- metatrochanteral muscle in Evaniidae (pl3-tr3: tal membrane-mesobasalar muscle absent in Fig. 12E). Evaniella and Brachygaster.

Metanotum: Median metapleuro-metanotal muscle (pl3m-t3: Figs 12A, B, 13A, B, D) arising posterior to ICHNEUMONOIDEA anterior paracoxal ridge and inserting on humeral Skeleton (Figs 38C, 40F, 41C, 47D, 49A, E, 54B, C, sclerite; site of origin of muscle limited posteriorly by 55A, 56E, 61B, 64B, 65D, 66B) posterior branch of paracoxal ridge (ppcr: Fig. 13E). Pronotum: Pronotum usually protruding anterome- Anterolateral metapleuro-metanotal muscle arising dial to and reduced posterior to transverse pronotal partly from marginal metapleural apodeme and sulcus; sulcus not observed in Aleiodes. Internal ante- partly from metapleuron posterior to apodeme, pos- rolateral pronotal ridge not developed in most taxa.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 42 L. VILHELMSEN ET AL.

Aleiodes and Rhysipolis with short transverse hori- smooth in dorsal view. Distinct ventral longitudinal zontal shelf posteromedially on pronotum accommo- ridge extending medially along entire length of meso- dating prophragma. Braconidae with extended lobe phragma in some Braconidae. Pseudophragmal lobes developed posterodorsally on pronotum, which not developed in a few Ichneumonidae. Mesolatero- usually covers anterior thoracic spiracle; spiracle phragmal lobe comparatively short in most Bra- usually externally visible in Ichneumonidae, accom- conidae, elongate in all Ichneumonidae. modated in incurvation on posterolateral margin of pronotum. Spiracle situated at laterodorsal corner of Mesopectus: Internal part of mesobasalare distally pronotum; distinct projection from posterior margin expanded into broad basalar apodeme (baa: cf. of pronotum delimiting spiracle ventrally (sp1: Fig. 48E). Posterior thoracic spiracle not visible exter- Fig. 38B), continuous with narrow internal ridge nally, supramesopleural sclerite absent. Broad extending ventrally along posterolateral margin of mesepimeral ridge (mepr: Fig. 49A, E) extending pronotum. Pronotum firmly attached to mesopleura. almost all the way to lateral mesocoxal articulation. Independent prepectus or distinct posterior pronotal Mesopleural pit and corresponding apodeme present inflection not developed. Occlusor muscle apodeme of in most taxa examined; apodeme dorsally continuous anterior thoracic spiracle situated midway along pos- with mesepimeral ridge (mpa: Fig. 49E) when present terolateral margin of pronotum. in most Braconidae, usually separate in Ichneu- monidae. Prospinasternal apodeme sometimes Propectus: Most Ichneumonidae with distinct longitu- absent. Subpleural signa absent. Sternaular sulcus dinal lateroventral carina developed anteriorly on present in many taxa; corresponding internal ridge propleuron. Epicoxal lobe present; longitudinal groove only developed in Rhysipolis and Zagryphus. Trans- extending anteriorly from lobe accommodating poster- verse posterior mesopleural carina just anterior of oventral corner of pronotum in Braconidae and mesocoxal foramen present in Dusona and Urosigal- Dusona. All Braconidae and Labena with small, inde- phus. Mesocoxal foramen narrow, usually widely open pendent katepisternum. Anterior part of prosternum dorsally, constricted by dorsal mesopleural flange in a variously developed, extending anterior to posterior few taxa or even entirely surrounded by mesopleural margins of propectus in some Braconidae and all cuticle. Median mesocoxal articulation usually situ- Ichneumonidae. Median posteriorly directed proster- ated on short projection. Mesofurcal bridge always nal spine present in some Braconidae and most Ich- present and with distinct anteromedian projection. neumonidae. Well-developed anterior profurcal apodemes present in some Braconidae and most Mid leg: Proximal part of mesocoxa highly reduced Ichneumonidae; profurcal bridge absent from all proximal to transverse groove. Ichneumonoidea. Metanotum: Metascutellum weakly developed in Uro- Fore leg: Procoxa reduced proximally, diameter of sigalphus. Metascutellum sometimes extending to proximal opening not exceeding half maximal width anterior margin of metanotum. Metascutellum with of procoxa. Basal transverse carina absent. incurvation posteriorly in Aleiodes.

Mesonotum and mesophragma: Prophragma not sub- Metapectus: Boundary between metapleuron and pro- divided medially in Dusona. Anterior mesoscutal podeum usually indicated by distinct longitudinal groove medially deflected downward onto basal part carina (Fig. 55A; absent from Orgilus) just dorsal to of prophragma in some Ichneumonidae. Median metapleural sulcus. Metapleuron fused ventrally with mesoscutal sulcus and anteroadmedian signa absent. mesopleuron in Doryctes. Median longitudinal Notauli reduced in Ichneumonidae, present exter- metepisternal carina often present; lateral longitudi- nally in Braconidae, also when notaular ridges not nal metepisternal carina usually developed into dis- developed; notauli converging posteriorly to merge tinct lateral metepisternal projection (lmp: prior to reaching the transscutal articulation. Parap- Fig. 56E) partly overlapping mesocoxa laterally (low sides absent. Transscutal ridge absent from Bra- carina present in Dusona and Lymeon). Transverse conidae, transscutal articulation also absent from metepisternal carina developed in some taxa. Para- Ichneumonidae. Dorsal axillar surfaces small in most coxal sulcus and ridge present; laterally, ridge usually taxa, widely separated medially by straight scutoscu- reaches metapleural apodeme. Metapleuron well tellar sulcus. Axillar carina developed into distinct developed anterior to paracoxal ridge in Braconidae projection dorsally in some taxa. Scutoscutellar ridge and Dusona. In most taxa examined, metabasalar continuous medially, usually reaches transscutal apodeme situated ventrally on anterior metapleural articulation anteromedially in Braconidae. Most Bra- margin, anterior to paracoxal ridge. Median meta- conidae with mesoscutellar arms flattened and coxal articulation reduced in some Braconidae, lateral

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 43 metacoxal articulation concealed. Articular notch Doryctes, muscle arising partly from apodeme of ante- present in Aleiodes, Dusona, and Lymeon. Metafurcal rior thoracic spiracle occlusor muscle and partly from pit closer to anterior margin of metapleuron than to anterior to apodeme in Urosigalphus (t1d-cx1: metacoxal foramina in most Ichneumonidae (not in Fig. 14C). Pronoto-anterior thoracic spiracle muscle Labena). Lateral metafurcal arm fused with meta- arising exclusively from occlusor muscle apodeme pleural apodeme in Wroughtonia, Dusona, Labena, (oma: Fig. 14C). Anterior pronoto-laterocervical and Lymeon. muscle present in Urosigalphus (t1a-cv: Fig. 14C), muscle not observed in Doryctes. Pronoto- Hind leg: Wroughtonia with distinct spine ventrally prophragmal muscle not observed. on metafemur. Propectus: Lateral propleuro-postoccipital muscle Propodeum: Antecostal sulcus narrow. Median and/or arising from dorsal, propleuro-procoxal muscle paired submedian antecostal projections usually arising from ventral surface of anteriorly orientated extending anteriorly and posteriorly across sulcus; ridge of propleuron in Urosigalphus (pl1l-poc, pl1-cx1: lateral antecostal projections only present in Fig. 14B). Median profurco-procoxal muscle arising Doryctes, Dusona, and Zagryphus (map, lap: from anterior surface of ventral profurcal lamella. (Fig. 54C). Metaphragma usually continuous medially Dorsal mesofurco-profurcal muscle inserting laterally (developed laterally only in Orgilus) and sometimes on lateral profurcal arm. Anterior profurco-procoxal continuous with metapleural apodeme laterally. muscle (fu1a-cx1: Fig. 14A) arising anteriorly from Median longitudinal propodeal carina present in lateral profurcal arm and inserting laterally on many Braconidae (absent from Orgilus and Urosigal- procoxa, sharing common tendon with propleuro- phus); lateral longitudinal propodeal carinae often procoxal muscle in Doryctes. Profurco-protrochanteral present (absent from Aleiodes, Orgilus, Lymeon, and muscle (fu1-tr1: Fig. 14A) arising from ventral pro- Pimpla). Propodeal spiracle situated at boundary furcal lamella and inserting on protrochanteral between metapleuron and propodeum in some Bra- apodeme. Anterior profurco-procoxal muscle not conidae (psp: Fig. 61B); spiracle rounded in Bra- observed in Urosigalphus. Lateral propleuro- conidae, Pimpla, and Zagryphus, always exposed postoccipital muscle absent in Doryctes, mesofurco- (Figs 55A, 61B). Transverse propodeal carina present propleural arm muscles absent in all taxa examined. in Rhysipolis, Urosigalphus, Lymeon, and Zagryphus. Propodeal bridges present in Ichneumonidae, Urosi- galphus,andWroughtonia. Propodeal foramen situ- Mesonotum: Anterior mesonoto-metanotal muscle ated on posterior extension of propodeum in Dusona; (t2a-t3: Fig. 15D) arising from posterior mesoscutum ventral margin of propodeal foramen incurved in in Urosigalphus, muscle absent in Doryctes. Dusona and Lymeon. Propodeal teeth large and well Mesonoto-mesobasalar muscle present in Doryctes developed. (t2-ba2: Fig. 14E), muscle not observed in Urosigal- phus. Prophragmo-postoccipital muscle not observed. Petiole: T2 and S2 usually separate (Figs 65D, 66B; fused for most of their length laterally in Urosigal- Mesopectus: Site of origin of mesopleuro-mesobasalar phus, Dusona, and Lymeon), T2 slightly overlapping muscle (pl2-ba2: Fig. 14E) limited ventrally by inter- S2. Petiole in Dusona elongate cylinder; in other taxa, nal shallow ridge corresponding to sternaulus. T2 and S2 expand considerably posteriorly. Articulat- Mesopleuro-mesocoxal and second mesopleuro- ing condyle well developed (arc: Fig. 64B); anterior mesonotal muscle arise partly from mesopleural margin of T2 extended laterally at least three times apodeme, partly from wall of mesopleuron anterior to as wide as condyle (not in Labena). Transverse carina apodeme (pl2-cx2, pl2-t2b: Figs 14E, F, 15C). Site of anteriorly on T2 is present in Aleiodes, Rhysipolis origin of mesofurco-mesocoxal muscle (fu2-cx2: (T2tc: Fig. 64B), and Urosigalphus. Short longitudinal Fig. 14D) extending submedially to lateral mesofurcal carina anteriorly on S2 is present in Aleiodes, arm. Mesopleuro-third axillary sclerite of hind wing Doryctes (S2lc: Fig. 66B), and Dusona. Posterior half and mesopleuro-metanotal muscles arising posterior of S2 usually membranous; S2 sclerotized for most of to mesepimeral ridge (pl2-3ax3: Figs 14F, 15C). Inter- its length in Dusona and Lymeon, with only compara- segmental membrane-mesobasalar muscle absent. tively shallow membranous incurvation posteriorly.

Musculature (Figs 14A–F, 15A–G) Metanotum: Posterior mesonoto-metanotal muscle Pronotum: Posterior pronoto-laterocervical muscle inserting medially on metanotum sharing common absent in Doryctes. Dorsal pronoto-procoxal muscle tendon with anterior mesonoto-metanotal muscle arising from along dorsal margin of pronotum in (t2p-t3, t2a-t3: Fig. 15D).

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 44 L. VILHELMSEN ET AL.

Metapectus: Rod-like lateral metapleuro-metabasalar Mesonotum and mesophragma: Median mesoscutal muscle arising from metabasalar apodeme (pl3l-ba3, sulcus and corresponding internal ridge well devel- baa: Fig. 15E). Anterior metapleuro-metanotal muscle oped (mmsr: Fig. 44E), latter terminating in trans- (pl3la-t3: Fig. 15E, F) arising ventral to anterior verse ridge just anterior to transscutal articulation. margin of metapectus lateral to metabasalar apodeme Notauli absent. Parapsides present in Dinapsis, in Doryctes. Metapleuro-metasubalar muscle arising absent from Megalyra. Transscutal ridge posterior to from posterodorsal surface of oblique metapleural transscutal articulation present (tsr: Fig. 44E); addi- apodeme; in Urosigalphus apodeme slanted backward tional transverse ridge present anterior to transscutal and covers site of origin of metapleuro-metasubalar articulation. Scutoscutellar sulcus angled medially; muscle. Metafurco-second abdominal sternal muscle dorsal axillar surfaces comparatively large. Scutoscu- arising from along entire length of lateral metafurcal tellar ridge reaching transscutal ridge anteromedially arm (fu3-S2: Fig. 15G). Lateral metapleuro-metacoxal (ssr, tsr: Fig. 44E). Pseudophragmal lobes well devel- muscle (pl3l-cx3: Fig. 15B, C) arising from metapleu- oped on anterior margin of mesophragma. Meso- ral apodeme and from metapleuron ventral to meta- phragmal pockets weakly developed, with straight pleural apodeme and from posterior surface of lateral posterior margins. part of metaphragma in Urosigalphus and Doryctes; muscle arising exclusively from metapleuron in Cam- Mesopectus: Posterior thoracic spiracle not observed, popleginae and Paxylomma. Posterior metapleuro- supramesopleural sclerite absent. Mesepimeral ridge metabasalar muscle absent. extending approximately halfway to lateral mesocoxal articulation observed in Megalyra, not in Dinapsis. Mesopleural pit and large mesopleural apodeme well MEGALYROIDEA developed. Prospinasternal apodeme present. Skeleton (Figs 37C, 41B, 44E, 66A) Acetabulum present in Dinapsis; acetabular carina Pronotum: Pronotum very narrow medially, reduced absent from all taxa examined. Internal oblique both anterior and posterior to transverse pronotal mesopleural ridge absent. Mesocoxal foramen broad; sulcus (N1s: Fig. 37C). Internal anterolateral prono- meso- and metapleura extensively fused ventrally, tal ridge well developed anterolaterally; in Dinapsis, mesocoxal foramina closed dorsally by metapleural ridge medially developed into shelf accommodating cuticle. Median mesocoxal articulation on elongation. prophragma. Posterodorsal corner of pronotum with Mesofurcal bridge present, with anterior projection in distinct notch accommodating anterior part of fore Megalyra. wing tegula (Fig. 37C). Pronotum firmly attached to mesopleura. Posterolateral margin of pronotum Mid leg: Proximal part of mesocoxa not reduced. straight. Anterior thoracic spiracle visible externally, entirely surrounded by pronotal cuticle (sp1: Metanotum: Metascutellum broad, reaches anterior Fig. 37C). Independent prepectus or posterior prono- margin of metanotum only in Dinapsis. tal inflection absent. Posteroventral corner of prono- tum with short median inflection accommodated in Metapectus: Boundary between metapleuron and pro- depression on anterior margin of mesopleura. podeum indicated by longitudinal ridge. Metapleuron fused with mesopleuron ventrally and lateroventrally Propectus: Epicoxal lobe present. Longitudinal groove approximately to level of metapleural pit. Metapleu- extends along posterior part of lateral margin of ron developed anterior to metacoxal foramina. Lateral dorsal smooth part of propleuron; groove accommo- longitudinal metepisternal carina absent from Dinap- dates anteroventral margin of pronotum. Indepen- sis. Paracoxal sulcus and ridge straight, not reaching dent katepisternum present in Megalyra. Prosternum metapleural apodeme laterally. Median metacoxal with distinct anteromedian projection concealed by articulations well developed, situated on extension medioventral margins of propleuron and extending posterior to metafurcal pit. Lateral metacoxal articu- considerable distance anterior to posterior margin of lation exposed. Lateral metafurcal arms fused with propleuron. Anterior profurcal apodemes not devel- metapleural apodemes only in Megalyra. oped (Fig. 41B). Profurcal bridge prominent, deflected posterodorsally for some distance to form distinct Propodeum: Antecostal sulcus narrow. Metaphragma posterior projection (fu1b: Fig. 41B). continuous medially, not reaching metapleural apodeme in Megalyra (not observed in Dinapsis). Fore leg: Procoxa reduced proximally in Dinapsis, Three pairs of lateral longitudinal propodeal carinae diameter of proximal opening not exceeding half present in Dinapsis, absent from Megalyra. Inter- maximal width of procoxa; procoxa not reduced proxi- nally, median longitudinal ridge extends across most mally in Megalyra. of propodeum in Megalyra. Propodeal spiracle

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 45 elongate, exposed slit. Transverse propodeal carina single mesopleuro-third axillary sclerite of fore wing present in Megalyra. Propodeal foramen continuous muscle (pl2-ba2, pl2-3ax2b,c: Fig. 17B). Mesopleuro- with metacoxal foramina, foramina separated dor- mesocoxal muscle arising partly, second mesopleuro- sally by triangular projection. Small propodeal teeth mesonotal muscle exclusively from mesopleural present in Dinapsis, not in Megalyra. apodeme (pl2-cx2, pl2-t2b: Fig. 17C). Site of origin of anterior mesopleuro-mesofurcal muscle (pl2a-fu2: Petiole: T2 and S2 separated, T2 broadly overlapping Fig. 17C) limited anteriorly by shallow internal S2 laterally. Articulating condyle well developed and swelling. broad. S2 with short but distinct median longitudinal carina (S2lc: Fig. 66A). Metapectus: Lateral metapleuro-metanotal muscle (pl3l-t3: Fig. 18B) not subdivided and arising from Musculature (Figs 16A–F, 17A–F, 18A–G) along anterior margin of metapectus and from dorsal Pronotum: Pronoto-propleural muscle arising lateral surface of metapleural apodeme. Anterior to site of origin of pronoto-postoccipital muscle (t1-pl1, metapleuro-metabasalar muscle (pl3a-ba3: Fig. 18E) t1-poc: Fig. 17F). Pronoto-prophragmal muscle not arising from wall of fused meso- and metapectus. subdivided; site of origin of muscle limited ventrally by Metapleuro-metasubalar muscle (pl3-sa3: Fig. 18E) anterolateral pronotal ridge (t1-ph1, apr: Figs 16C, arising from metapleuron dorsal to metapleural 17F). Pronoto-profurcal muscle arising ventral to ante- apodeme and dorsal to site of origin of lateral rolateral pronotal ridge just anterior to site of origin of metapleuro-metanotal muscle. Metafurco-second pronoto-propleural arm muscle and inserting on pos- abdominal sternal muscle arising from along entire teriormost point of dorsal profurcal lamella. (t1-fu1, length of lateral metafurcal arm (fu3-S2: Fig. 18G). t1-ppa: Figs 16A, 17F). Anterior thoracic spiracle Lateral metapleuro-metacoxal muscle (pl3l-cx3: occlusor muscle fan-shaped and arising just posterior Fig. 18B) arising from metapleuron ventral to meta- to site of origin of dorsal pronoto-procoxal muscle pleural apodeme. Posterior metapleuro-metabasalar (sp1occ, t1d-cx1: Fig. 17B). Pronoto-mesobasalar muscle absent. muscle (t1-ba2: Fig. 17B) arising posteroventral to site of origin of anterior thoracic spiracle occlusor muscle. Propodeum: Metapleuro-metatrochanteral muscle arising partly from propodeum posterodorsal to meta- Propectus: Site of insertion of pronoto-propleural pleural apodeme (pl3-tr3: Fig. 18A). Propodeo-second muscle extending along dorsal margin of propleuron abdominal sternal muscle subdivided; median band (t1-pl1: Fig. 16D). Median profurco-procoxal muscle arising from posterior surface of metaphragma, arising from posterior surface of dorsal profurcal whereas lateral band arises from propodeum poste- lamella ventral to site of origin of dorsal profurco- rior to propodeal spiracle (T1-S2: Fig. 18B, F, G). procoxal muscle (fu1m-cx1, fu1d-cx1: Fig. 16E, F). Metaphragmo-second abdominal tergal muscle (ph3- Dorsal mesofurco-profurcal muscle (fu2-fu1d: T2: Fig. 18B, D) arising ventral to site of origin of Fig. 17C, F) inserting laterally on dorsal margin of propodeo-second abdominal sternal muscle, posterior dorsal profurcal lamella. Mesofurco-propleural arm, margin of site of origin of muscle corresponds to lateral propleuro-postoccipital and propleural arm- transverse propodeal carina; medially site of origin of protrochanteral muscles absent. muscle limited by median longitudinal propodeal carina. Mesonotum: Third mesopleuro-mesonotal muscle inserting on knob-like apodeme located posteriorly on lateral margin of mesoscutum; muscle arising just MYMAROMMATOIDEA dorsal to dorsal end of anterior mesopleural apodeme The information presented for this superfamily is (ama: Fig. 17B). Anterior mesonoto-mesotrochanteral based on the detailed description of the mesosomal muscle arising posterior to site of origin of first and petiolar anatomy of Mymaromma anomalum pro- mesopleuro-mesonotal muscle, whereas posterior vided by Vilhelmsen & Krogmann (2006). The mus- mesonoto-mesotrochanteral muscle arises from dorsal culature was not examined. axillar area (t2a-tr2, t2p-tr2: Fig. 17E). Pronotum: Pronotum very narrow medially, hardly Mesopectus: Prospinasterno-procoxal muscle arising developed anterior to transverse pronotal sulcus and anteriorly from mesodiscrimenal lamella (sps1-cx1: very short posterior to it; short, vertical carina Fig. 17D). Intersegmental membrane-mesobasalar present submedially. Posterolateral margin of prono- muscle arising from anterior surface of anterior tum straight except for small notch one-third from its mesopleural apodeme (ism1,2-ba2, ama: Fig. 17B). dorsal end; anterior thoracic spiracle and its occlusor Mesopleuro-mesobasalar muscle arising ventral to muscle apodeme not observed. Pronotum firmly

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 46 L. VILHELMSEN ET AL. attached to mesopleura. Independent prepectus scutellum and lateral metanotal carina not developed. absent; narrow, elongate posterior pronotal inflection Metanotum fused with metapleuron laterally. present. Metapectus: Boundaries between mesopleuron and Propectus: Cervical prominence situated at anterodor- metapleuron, and metapleuron and propodeum indi- sal corner of propleuron and its base not retracted. cated only by shallow grooves. Metapleural pit small Propleural arm fused with lateral end of profurcal but distinct; metapleural apodeme developed only as arm. Medioventral part of propleura extensively fused low internal swelling. Transverse metepisternal with anterior part of prosternum. Epicoxal lobe carina developed posterior to metepisternal depres- present; longitudinal groove extending anteriorly sions. Paracoxal ridge low transverse swelling extend- from lobe accommodates posteroventral corner of ing to metapleural apodeme. Median metacoxal pronotum. Only one median, unpaired profurcal pit articulation reduced, lateral concealed. Narrow slit present. Anterior profurcal apodeme and profurcal present in metacoxal foramen adjacent to lateral bridge absent. coxal articulation. Metafurcal pit shallow, metadiscri- men low longitudinal swelling. Metafurcal arms Fore leg: Procoxa reduced proximally, diameter of entirely absent. proximal opening not exceeding half maximal width of procoxa. Basal transverse carina absent. Calcar not Hind leg: Only scattered hairs on metatibia, no dense observed. tibial brush developed on its inner side. Mesonotum and mesophragma: Prophragma not sub- divided medially; pair of slender cylindrical rods situ- Propodeum: Antecostal sulcus narrow; pair of subme- ated submedially on anterior surface of prophragma. dian antecostal projections extend anteriorly and pos- Median mesoscutal sulcus, anteroadmedian signa, teriorly across sulcus. Metaphragma not observed notauli, notaular ridges, and parapsides entirely properly medially, laterally represented by low swell- absent. Transscutal articulation and ridge present, ing extending to internal circular rim surrounding latter connecting a pair of anteriorly projecting, rod- propodeal spiracle. Propodeal spiracle circular and like axillar phragmata. Scutoscutellar sulcus absent; situated in lateral end of antecostal sulcus, partly scutoscutellar ridge only developed laterally. Meso- concealed by rims of sulcus. Distinct transverse pro- scutellum ventrally closed off by extensive septum podeal carina extends dorsally and lateral to pro- with small fenestrum in middle. Transverse external podeal foramen. Propodeal foramen with raised rim and internal frenal lines present. Pseudophragmal and situated posterior to metacoxal foramina, lobes absent; unable to decide if mesophragmal propodeal bridges present. Propodeal teeth not pockets present. developed.

Mesopectus: Fore wing tegula absent; mesobasalare Petiole: T2 and S2 entirely fused, forming elongate not observed externally or internally. Posterior tho- cylinder. Anterior, constricted articulating part racic spiracle not observed, supramesopleural sclerite encircled by transverse carina. Articulating condyle absent. Mesopleuron fused to metapleuron ventrally not developed; anterior margin of petiole forming and laterally almost to hind wing base. Mesopleural subcircular, swollen rim. T2 apparently envelopes S2 ridge, pit, and corresponding apodeme not developed. for most of its length, lateral margins of T2 fusing Prospinasternal apodeme absent. Acetabular carina ventrally as indicated by elongate longitudinal carina. and concavities for procoxae not developed. Subpleu- Anteroventrally, two pairs of sensilla representing ral signum and oblique mesopleural ridge absent. sensillar patches indicate presence of S2. Transverse posterior mesopleural carina present just anterior to mesocoxal foramen; foramen narrow, dor- sally closed off by metapleural sclerotized cuticle. PLATYGASTROIDEA Median mesocoxal articulation not developed. Meso- Skeleton (Figs 36D, 41F, 52D, 60B, 63C, 64C, D) furcal bridge and anterior arms absent. Pronotum: Pronotum protruding anteromedial to transverse pronotal sulcus; in Archaeoteleia and Mid leg: Mesocoxa highly reduced proximal to trans- Sparasion anterior protrusion with pair of longitudi- verse groove. Trochantellus not developed. nal lateral carinae ventrally articulating with propec- tus. Internal anterolateral pronotal ridge not Metanotum: Metanotum reduced to narrow trans- developed. Pronotum elongate and vertical posterior verse strip entirely overlapped by posterior margin of to transverse sulcus in most taxa examined, short in mesoscutellum except for lateralmost parts. Meta- Telenomus. Transverse pronotal carina present close

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 47 to posterodorsal margin of pronotum in Isostasius, downward onto basal part of prophragma. Pro- Archaeoteleia, and Sparasion; carina most developed phragma virtually absent in all other taxa examined. in latter two taxa, extending towards posterolateral Anteroadmedian signum absent from Sparasion. margin of pronotum. All three taxa with sublateral Notauli and parapsides only developed in Platyga- epomial carina (epc: Fig. 36D; Mikó et al., 2007) stridae and Archaeoteleia. Transscutal ridge absent. extending from transverse pronotal carina towards Dorsal axillar surfaces small, widely separated medi- anteroventral margin of pronotum. Anterior thoracic ally by straight scutoscutellar sulcus. Axillar carina spiracle always visible externally and situated in developed into distinct projection dorsally in Platyga- incurvation in posterior margin of pronotum in Tele- stridae. Scutoscutellar sulcus consists of one or two nomus; margin straight in other taxa examined. Pos- broad transverse depressions with small pits laterally terior pronotal inflection situated posterior to spiracle in all Platygastridae examined. Scutoscutellar ridge and extending for most of length of posterolateral well developed, not reaching transscutal articulation pronotal margin; dorsally, inflection extending above anteromedially. Mesoscutellum posteriorly delimited spiracle to form notch together with laterodorsal by transverse row of small pits in Scelionidae. corner of pronotum accommodating anterior part of Pseudophragmal lobes at most weakly developed in fore wing tegula. Posterolateral pronotal margin and Scelionidae. Mesophragmal pockets weakly developed inflection together form groove articulating with ante- in all taxa examined. Mesolaterophragmal lobes rior margin of mesopleuron, creating firm connection. elongate apodemes in Platygastridae, reduced in Independent prepectus absent. Oblique netrion Scelionidae. sulcus, corresponding to internal ridge (netrion apodeme), developed lateroventrally on pronotum in Mesopectus: Posterior thoracic spiracle not visible Archaeoteleia; in this taxon, apodeme of anterior spi- externally, supramesopleural sclerite absent. Broad racular occlusor muscle situated just anterior to mesepimeral ridge extending almost to lateral meso- netrion apodeme; apodeme not observed in any other coxal articulation. Mesopleural pit and apodeme only taxa examined. Posteroventral corners of pronotum developed in some taxa; apodeme might or might not connected by ventral pronotal bridge (N1b: be continuous with mesepimeral ridge. Mesopleural Fig. 36D), entire pronotum forming continuous scle- apodeme fused with apodeme corresponding to ante- rotized ring around propectus. rior margin of speculum in Telenomus. Prospinaster- nal apodeme not observed in any taxa examined. Oblique mesopleural sulcus and ridge absent. Sub- Propectus: Cervical prominence situated at anterodor- pleural signum observed only in Archaeoteleia and sal corner of propleuron in Isostasius, ventral to Proplatygaster. Transverse posterior mesopleural corner in all other taxa examined. Propleural arm carina ( ventral mesopleural carina of Mikó et al., short, slender, extending obliquely posterior to pro- = 2007) present. Mesocoxal foramen narrow, closed off furcal arm in Archaeoteleia and Scelio, reduced and dorsally by mesopleural sclerotized cuticle in all taxa tubercle-like in Sparasion; propleural arm not except Archaeoteleia, where foramen constricted dor- observed in any other taxa examined. Platygastridae sally by mesopleural flange. Median mesocoxal articu- with distinct longitudinal lateroventral carina on lation not observed. Mesofurcal bridge only developed propleuron. Epicoxal lobe present. Median posteriorly in Scelionidae (fu2b: Fig. 52D); anteromedian projec- directed prosternal spine present. In Scelionidae, pos- tion present on bridge only in Baryconus. Proplaty- terodorsal part of prosternum transversely subdi- gaster with well-developed anterior mesofurcal arms vided by prosternal incisions (s1i: Fig. 41F) converging medially. extending medially from just ventral to profurcal pits to lateral margins of prosternum. Anterior profurcal apodeme well developed, profurcal bridge absent. Mid leg: Proximal part of mesocoxa highly reduced proximal to transverse groove. Trochantellus not developed in Sparasion. Fore leg: Procoxa reduced proximally, diameter of proximal opening not exceeding half maximal width Metanotum: Metascutellum reaching anterior margin of procoxa. Basal transverse carina developed later- of metanotum in Isostasius and Telenomus;inIsosta- ally in Telenomus. sius, metascutellum with slight, bilobed incurvation in its posterior margin. Mesonotum and mesophragma: Prophragma most developed and bilobed in Sparasion, low and not Metapectus: Meso- and metapleura separated ven- subdivided medially in Archaeoteleia; in both these trally. Distinct longitudinal carina ventral to pro- taxa, anterior mesoscutal sulcus medially deflected podeal spiracle extending towards lateral metacoxal

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 48 L. VILHELMSEN ET AL. articulation in all taxa; metapleural sulcus situated extended laterally relative to width of condyle. Spara- some distance ventral to the carina in Archaeoteleia sion with short longitudinal carina immediately pos- and Isostasius, indicating that these taxa have carina terior to anterior margin of S2. situated in propodeum rather than on metapleural- propodeal boundary. Metepisternal depressions not developed in Isostasius and Proplatygaster. Median Musculature (Fig. 22A, Mikó et al., 2007) longitudinal metepisternal carina only present in Pronotum: Pronoto-propleural muscle arising lateral Sparasion; lateral longitudinal metepisternal carina to site of origin of pronoto-postoccipital muscle. developed into distinct projections anteriorly in Latter muscle erroneously reported by Mikó et al. Sparasion; lateral carina entirely absent from Pro- (2007), who confused median band of posterior platygaster. Transverse metepisternal carina present pronoto-laterocervical muscle with pronoto- in Archaeoteleia, Sparasion, and Telenomus. Only postoccipital muscle (Figs 3, 4, Mikó et al., 2007). anterior branch of paracoxal ridge developed, extend- Pronoto-propleural arm muscle arising from along ing to metapleural apodeme in Archaeoteleia and ventral, pronoto-profurcal muscle from along dorsal Sparasion; ridge terminating in low metapectal plate part of anteromedian margin of pronotum, former in Isostasius. Metapleuron not developed anterior to inserting on reduced propleural arm, latter on pos- paracoxal ridge. Median metacoxal articulation point teriormost point of dorsal profurcal lamella; site of developed only in Archaeoteleia and Sparasion; origin of pronoto-profurcal muscle extending dorsally lateral articulation concealed. Metafurcal pit situated to submedian part of pronotum. Pronoto- close to anterior margin of metapleuron in prophragmal muscle not subdivided and arising pos- Archaeoteleia and Proplatygaster. Base of metafurcal terodorsally from site of origin of profurco-pronotal arms widely separated in Archaeoteleia. Short ante- and dorsal to site of origin of propleural arm-pronotal rior metafurcal arm (fu3aa: cf. Fig. 58E) developed muscles; site of origin of muscle usually delimited in Telenomus. Metafurcal arms fused with metapleu- anteriorly by sublateral median ridge. Site of origin ral apodemes in all taxa examined. of posterior pronoto-laterocervical muscle extending along almost entire length of dorsal margin of prono- tum, corresponding externally to dorsal pronotal area Propodeum: Antecostal sulcus narrow (Fig. 60B: ans), and limited anteriorly by transverse carina. Dorsal pair of submedian antecostal projections extend ante- pronoto-procoxal muscle usually arising from along rior and posterior across sulcus in Isostasius and dorsal margin of pronotum, just posterior to site of Proplatygaster; lateral antecostal projections absent origin of posterior pronoto-laterocervical muscle; from all taxa examined. Metaphragma continuous muscle arising ventral to anterior thoracic spiracle in medially in Isostasius, not in Archaeoteleia; not Sparasion. Anterior thoracic spiracle occlusor muscle observed medially in other taxa. Metaphragma not fan-shaped and arising just anterior to posterior reaching metapleural apodeme. Longitudinal pro- pronotal inflection in Sparasion and posterodorsal to podeal carinae of various extents are present in Iso- site of origin of pronoto-third axillary sclerite of fore stasius, Proplatygaster, and Sparasion (Fig. 60B). wing muscle in Telenomus; muscle rod-like and Propodeal spiracle rounded in Isostasius, elongate in arising from occlusor muscle apodeme in other taxa examined, always covered laterally by Archaeoteleia. Pronoto-third axillary sclerite of fore cuticular flap or projection. Spiracle situated in wing muscle arising posterior to posterior pronotal lateral end of antecostal sulcus in Telenomus, ven- inflection in Sparasion and on netrion apodeme in trally abutting ventral propodeal margin. Transverse/ Archaeoteleia and Telenomus. Pronoto-mesobasalar oblique propodeal carinae present in all taxa muscle arising laterally from ventral bridge of prono- examined. Propodeal bridge present (T1b: (Fig. 63C). tum in Archaeoteleia; muscle absent in Telenomus Propodeal foramen situated posterior to metacoxal and Sparasion. foramina in Isostasius and Proplatygaster. Propodeal teeth well developed in Archaeoteleia, Proplatygaster, and Sparasion (T1t: (Fig. 63C). Propectus: Median profurco-procoxal muscle arising from posterior surface of dorsal profurcal lamella Petiole: T2 and S2 fused anteriorly in Isostasius, ventral to site of origin of dorsal profurco-procoxal separated in other taxa examined. Anterior articulat- muscle, site of origin of muscle extending dorsally to ing part of petiole situated in wide, smooth area dorsal profurcal lamella. Mesofurco-profurcal muscle delimited by transverse carinae on T2 and S2 (T2tc, inserting laterally on dorsal margin of dorsal profur- S2tc: Fig. 64C, D). Articulating condyle well devel- cal lamella. Mesofurco-propleural arm, lateral oped in Archaeoteleia, Proplatygaster, and Sparasion. propleuro-postoccipital, and propleural arm- In Sparasion, anterior margin of T2 considerably protrochanteral muscles absent.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 49

Mesonotum: Third mesopleuro-mesonotal muscle Petiole: Median longitudinal carina on anterior part of inserting on knob-like apodeme located posteriorly on S2 corresponding to site of origin of intersternal lateral margin of mesoscutum in Telenomus and muscle between S2 and S3 in Sparasion. Archaeoteleia; muscle not observed in Sparasion.

PROCTOTRUPOIDEA Mesopectus: Prospinasterno-procoxal muscle arising Skeleton (Figs 36F, 37D, F, 40D, 43A, B, 45C, D, anteriorly on mesodiscrimen. Third mesopleuro- 46B, 47C, 50D, 51D, 52B, 53B, D, 56B, D, 58F, mesonotal muscle arising from acropleural apodeme 59A, 60B, 61D, 63B) located on mesopleural arm. Mesopleuro-mesobasalar Pronotum: Pronotum protruding anteromedial to muscle arising ventral to site of origin of second and transverse pronotal sulcus (N1s: Fig. 37D, F) in all third mesopleuro-third axillary sclerite of fore wing taxa examined except Maaminga;inPoecilospilus muscles. Mesopleuro-mesocoxal and second anterior protrusion with pair of longitudinal lateral mesopleuro-mesonotal muscles usually arise at least carinae ventrally. Paired, admedian pits or depres- partly from mesopleural apodeme; second sions situated on transverse pronotal sulcus in Belyta mesopleuro-mesonotal muscles arising from dorsal and Pantolytomia; sulcus without distinct correspond- surface of fused mesopleural apodeme and apodeme ing internal ridge in any taxa examined. Pronotum corresponding to anterior margin of speculum in Tele- elongate and vertical posterior to transverse pronotal nomus. Site of origin of anterior mesopleuro- sulcus in most taxa examined (Fig. 37F), oblique in mesofurcal muscle limited anteriorly by apodeme Monomachus (Fig. 37D). External transverse and/or corresponding to anterior margin of speculum. Site of vertical carinae variously developed in some taxa. origin of mesofurco-mesocoxal muscle extending Paired submedian pronotal apodemes (N1a: almost two-thirds of lateral mesofurcal arm. Fig. 36F) present on median part of pronotum in Mesopleuro-third axillary sclerite of hind wing muscle Helorus, Vanhornia, and Proctotrupidae, least devel- arising posteriorly along mesepimeral ridge. Median oped in Helorus and Vanhornia. All taxa with anterior mesofurco-mesotrochanteral muscle absent in taxa thoracic spiracle externally visible (sp1: Fig. 37D, F), examined in present study, but present in Nixonia surrounded by pronotal cuticle in Pelecinus, Phaenos- (Mikó et al., 2007). erphus, and Proctotrupes. Spiracle sometimes accom- modated in incurvation in posterolateral pronotal margin. Pronotum rigidly attached to mesopleuron in Metanotum: Metanoto-metatrochanteral muscle most taxa. Pronotum with extended posterodorsal arising from humeral sclerite and inserting on meta- lobe (N1l: Fig. 37D) and movable relative to trochanteral apodeme sharing common tendon with mesopleuron in Monomachus; independent, concealed metafurco-metatrochanteral muscle; muscle absent in prepectus present in this taxon and in Pantolytomia Sparasion. and Ropronia. Posterior pronotal inflection situated posterior to spiracle and extending for most of length of posterolateral pronotal margin (ppi: Fig. 37F) in all Metapectus: Anterolateral and posterolateral other taxa; dorsally, inflection extending above spi- metapleuro-metanotal muscles arise from dorsal racle to form notch together with laterodorsal corner surface of metapleural apodeme. Ventral of pronotum proper accommodating anterior part of metapleuro-third axillary sclerite muscle arising fore wing tegula. Posterolateral pronotal margin and from along anterior margin of metapleuron. inflection together form groove articulating with ante- Metapleuro-metasubalar muscle usually arising rior margin of mesopleuron. Anterior thoracic spiracle from dorsal surface of metapleural apodeme, from occlusor muscle apodeme situated midway on or close ventral part of metapleuron posterior to metapleural to posterolateral margin of pronotum in most taxa ridge in Baryconus. Median metapleuro-metacoxal where observed; apodeme located on anterior margin muscle subdivided, lateral band arising from para- of prepectus in Monomachus. Lateroventral corner of coxal ridge (pl2m-cx3: Fig. 22A). Lateral metapleuro- pronotum with projection and abutting anterior metacoxal muscle arising from ventral surface of margin of mesopleura in many taxa; ventral pronotal metapleural apodeme, from metapleuron ventral to bridge (N1b: Fig. 36F) present in Pelecinus and Proc- metapleural apodeme and from posterior surface of totrupidae. Prospinasternal apodeme (psa: Fig. 36F) paracoxal ridge. Metapleuro-metatrochanteral situated posteriorly on bridge in Phaenoserphus and muscle arising from metapleural apodeme and from Proctotrupes. wall of metapleuron anteroventral to apodeme (pl3- tr3: Fig. 22A). Posterior metapleuro-metabasalar Propectus: Base of cervical prominence not retracted muscle absent. relative to anterodorsal corner of propleuron and no

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 50 L. VILHELMSEN ET AL. differentiation between sculpture on dorsolateral and developed. Mesophragmal pockets indistinct in ventromedial part of propleuron in Maaminga. Dor- Diapriidae and Helorus. Mesolaterophragmal lobes solateral, smooth part of propleuron absent from Pan- often subdivided into two processes of various extent. tolytomia. Independent propleural arm not observed in Belyta and Pantolytomia. Distinct longitudinal lat- Mesopectus: Posterior thoracic spiracle not visible eroventral carina on propleuron present in some taxa. externally, supramesopleural sclerite absent. Broad Epicoxal lobe present in all taxa examined except mesepimeral ridge extending almost to lateral meso- Maaminga. Independent katepisternum occurs in coxal articulation in most taxa; ridge only weakly some taxa. Median posteriorly directed prosternal developed in Belyta and Pantolytomia. Mesopleural spine present in some taxa. Maaminga with single pit and corresponding apodeme not developed in most unpaired profurcal pit. Anterior profurcal apodeme taxa; apodeme might be continuous with mesepimeral usually present; profurcal bridge always absent ridge. Triangular mesopleural depression developed (Fig. 40D). ventral to mesopleural arm in Belyta and Pantolyto- mia, extending to posterodorsal corner of mesopleu- ron in Belyta. Prospinasternal apodeme present Fore leg: Procoxa reduced proximally, diameter of anteroventrally on mesopectus in Helorus and proximal opening not exceeding half maximal width Maaminga (psa: Fig. 52B). Anterior extension located of procoxa. Basal transverse carina developed in Aus- ventromedially on anterior margin of mesopectus and troserphus and Phaenoserphus. continuous with lateroventral projections of pronotum in Vanhornia. Acetabular carina and acetabulum absent from some taxa (Fig. 50D). Subpleural signum Mesonotum and mesophragma: Prophragma virtually usually present. Oblique mesopleural ridge developed absent in Maaminga, sometimes subdivided in other in few taxa. Transverse posterior mesopleural carina taxa. Anterior mesoscutal sulcus medially deflected present in few taxa. Mesocoxal foramina narrow; downward onto basal part of prophragma (Fig. 43B: might be widely open (only Maaminga and Monoma- ams, ph1), except in Monomachus (Fig. 43A) and most chus), constricted (cx2f: Fig. 51D) or entirely sur- Diapriidae. Anterior mesoscutal sulcus not developed rounded by sclerotized cuticle (only Pelecinus) in Monomachus and Ropronia. Median mesoscutal dorsally. Median mesocoxal articulation usually situ- sulcus absent; anteroadmedian signum variously ated on extension. Mesofurcal bridge present in all developed. Monomachus with external transverse taxa examined except Maaminga and Pelecinus, with carina anteriorly on mesoscutum accommodating pos- anteromedian projection in all except Diapriidae. terodorsal margin of pronotum. Notauli usually well Anterior mesofurcal arms elongate, lateral mesofurcal developed, normally converging, not merging posteri- arms comparatively short (Fig. 52B) in Maaminga, orly. Parapsides often present. Parascutal carina terminating some distance from posterodorsal absent in Belyta. Transscutal articulation absent in mesopleural margins. Phaenoserphus and Proctotrupes. Transscutal ridge only present in Maaminga (tsr: Fig. 46B). Dorsal Mid leg: Mesocoxa reduced proximal to transverse axillar surfaces small in most taxa examined, widely groove ((Fig. 53B). Trochantellus not developed in separated medially by straight scutoscutellar sulcus. Helorus, Vanhornia, and Proctotrupidae ((Fig. 53D). Axillar carina developed into distinct projection dor- sally in most taxa (axc: Fig. 45C). Scutoscutellar Metanotum: Metascutellum reduced in Maaminga, sulcus consists of single, wide depression in most reaching anterior margin of metanotum in Proc- Diapriidae; depression with small pits laterally in totrupidae and Belyta (scl3: Fig. 60A), incurvation Belyta and Poecilospilus. Scutoscutellar ridge not present in posterior margin of metascutellum in Aus- developed medially in Phaenoserphus, only reaching troserphus and Phaenoserphus. transscutal articulation anteromedially in Monoma- chus and most Diapriidae. Mesoscutellum subdivided Metapectus: Flexor apodeme present dorsally on ante- by transverse line on posterior part (frl?: Figs 45D, rior margin of metapleuron in Pelecinus, Vanhornia, 46B) in Maaminga. Maaminga with mesoscutellum and Belyta. Meso- and metapleura separate ventrally. ventrally closed off by extensive septum with fenes- Distinct longitudinal carina present ventral to pro- trum in middle and transverse internal line subdivid- podeal spiracle extending towards lateral metacoxal ing mesoscutellum (Fig. 46B). Mesoscutellum articulation in Diapriidae, Phaenoserphus, and Rop- posteriorly delimited by transverse row of small pits ronia. Metapleural pit absent from Helorus, Monoma- extending between bases of mesoscutellar arms in chus, Pelecinus, Ropronia,andVanhornia. many taxa; arms often flattened and smooth in dorsal Metepisternal depression not developed in Maaminga view (msa: Fig. 45C). Pseudophragmal lobes variously (Fig. 56D) and Pelecinus. Median and lateral longitu-

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 51 dinal metepisternal carinae sometimes present, Musculature (Figs 19A–F, 20A–F, 21A–E, 22B–G, transverse metepisternal carina present in Proc- 23A–I, 24A, B) totrupidae (tmc: Fig. 56B), Pelecinus, and Vanhornia. Pronotum: Anterior pronoto-laterocervical muscle Only anterior branch of paracoxal ridge developed, arising ventral to pronoto-propleural muscle (t1a-cv, extending to metapleural apodeme in all taxa. Meta- t1-pl1: Figs 19A, B, D, 20A, B). Pronoto-prophragmal pleuron not developed anterior to paracoxal ridge in muscle subdivided in Pelecinus, Helorus, Vanhornia, Maaminga and Pelecinus. Median metacoxal articu- and Proctotrupes (t1-ph1: Fig. 19A, B, C), not subdi- lation point variously developed; lateral metacoxal vided in Monomachus (Fig. 20A) and Ropronia. articulation concealed. Incurvation present in meta- Pronoto-propleural, anterior pronoto-laterocervical , coxal foramen adjacent to lateral coxal articulation in pronoto-postoccipital, and median pronoto- Austroserphus and Ropronia. Metafurcal pit situated prophragmal muscles arise from submedian apodeme close to anterior margin of metapleuron in Maaminga of pronotum exclusively in Proctotrupes and Helorus (Fig. 56D: fu3p) and Monomachus. Bases of metafur- and partly in Vanhornia (t1-pl1, t1a-cv, t1-poc, t1m- cal arms widely separate in Maaminga. Elongate ph1, N1a: Fig. 19B, F). Site of origin of posterior anterior metafurcal arms present in Proctotrupidae. pronoto-laterocervical muscle extending posteriorly Lateral metafurcal arms are fused with metapleural along dorsal margin of pronotum in all taxa (t1p-cv: apodemes in Helorus, Phaenoserphus, and Proc- Fig. 19A–D, F) except Monomachus, where muscle totrupes. Paracoxal ridge, metapleural apodeme, and arises ventral to dorsal margin (Fig. 20A, B). Dorsal metafurca merged into single, vertical sheet in Pan- pronoto-procoxal muscle arising exclusively from wall tolytomia (fu3a+mtpa+pcr: Fig. 58F). of pronotum ventral to site of origin of posterior pronoto-laterocervical muscle in most taxa examined Propodeum: Antecostal sulcus variously developed. (t1d-cx1, t1p-cv: Figs 19D, F, 20A, B); muscle arising Median/submedian and lateral antecostal projections partly from apodeme of anterior thoracic spiracle absent from Maaminga, median/submedian projec- occlusor muscle in Vanhornia, Belyta, and Helorus tions only from Ropronia; both projections present in (Figs 19B, C, 21B). Anterior thoracic spiracle occlusor all other taxa (map, lap: Fig. 60A). Metaphragma muscle fan-shaped and arising posteriorly from wall continuous medially (Fig. 58F: ph3) in all taxa except of pronotum in Ropronia (sp1occ: Fig. 19D), rod-like Monomachus, Phaenoserphus, and Ropronia, continu- and arising from apodeme (Figs 19B, C, 21A, B) in ous with metapleural apodeme in Diapriidae. Median Pelecinus, Proctotrupes, Vanhornia, Poecilospilus, propodeal carina present in Phaenoserphus, Proc- Belyta, and Helorus. Pronoto-third axillary sclerite totrupes,andVanhornia; lateral longitudinal carinae muscle of fore wing muscle arising posterior to variously developed. Propodeal spiracle rounded in netrion apodeme in Vanhornia (t1-3ax2: Fig. 19C) and Diapriidae (Fig. 61D), Maaminga, and Ropronia, posterior to posterior pronotal inflection in Pelecinus exposed in Maaminga, Monomachus, and Ropronia. (Fig. 21A). Prospinasterno-procoxal muscle arising Spiracle ventrally abutting ventral margin of the pro- from ventral bridge of pronotum in Proctotrupes podeum in Pantolytomia. Transverse propodeal carina (sps1-cx1: Fig. 19F) and Pelecinus. Pronoto- present in Pantolytomia, Poecilospilus, and Phaenos- mesobasalar muscle absent in all taxa examined. erphus. Propodeal bridge present. Propodeal foramen Propectus: Median profurco-procoxal muscle arising situated on posterior extension of propodeum in all from posterior surfaces of lateral profurcal arm and taxa examined (Fig. 63B) except for Helorus and ventral profurcal lamella, inserting on posteromedian Maaminga, its ventral margin incurved in some taxa. margin of procoxa in all taxa examined (fu1m-cx1: Propodeal teeth not developed in Diapriidae, Fig. 20C, E). Profurco-protrochanteral muscle, if Maaminga, and Monomachus. present, arising laterally from posterior surface of dorsal profurcal lamella and inserting on protrochant- Petiole: T2 and S2 fused anteriorly forming cylinder of eral apodeme sharing common tendon with propleuro- various lengths in all taxa examined except Vanhor- protrochanteral and propleural arm-protrochanteral nia. Articulating condyle on T2 weakly developed and muscles (fu1-tr1, pl1-tr1, ppa-tr1: Fig. 20C). lateral depressions absent in Maaminga. Transverse Mesofurco-profurcal muscle present only in Vanhor- carina present on T2 in all taxa except Maaminga nia. Profurco-protrochanteral muscle not observed in and Austroserphus, when present often delimiting, Ropronia. Mesofurco-propleural arm muscle absent in usually together with corresponding carina on S2, all taxa examined. Lateral propleuro-postoccipital smooth area anteriorly on petiole accommodating muscle absent in Poecilospilus. articulating part. Transverse carina on S2 absent from Helorus, Maaminga, and Ropronia. Short longi- Mesonotum: Mesonoto-mesolaterophragmal muscle tudinal carina just posterior to anterior margin of S2 arising from dorsal axillar area in Vanhornia, Mono- present in Vanhornia. machus, Poecilospilus, Belyta (t2-ph2: Fig. 19E), and

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 52 L. VILHELMSEN ET AL.

Psilus. Anterior mesonoto-metanotal muscle arising Metapectus: Posterolateral metapleuro-metanotal medial to notauli from posterior part of mesoscutum muscle arising from dorsal surface of metapleural and inserting medially on metanotum sharing apodeme in Psilus, Belyta, Poecilospilus, and Mono- common tendon with posterior mesonoto-metanotal machus (pl3lp-t3: Fig. 22D, E), and posterior to meta- muscle in Monomachus (t2a-t3, t2p-t3: Fig. 22C), pleural apodeme in other taxa (Fig. 22F, G). Ventral Proctotrupes, and Helorus. Posterior mesonoto- metapleuro-third axillary sclerite muscle arising from mesotrochanteral muscle (t2p-tr2: Fig. 19E) present along anterior margin of metapleuron (pl3v-3ax3: in Belyta, Poecilospilus, and Psilus. Third Fig. 22B, D). Metapleuro-metasubalar muscle usually mesopleuro-mesonotal muscle inserting on knob-like arising from along ventral margin of metapleuron apodeme located posteriorly on lateral margin of posterior to site of origin of posterior band of lateral mesoscutum in Diapriidae; muscle not observed in metapleuro-metanotal muscle (pl3-sa3, pl3lp-t3: other taxa examined. Figs 22F, G, 24A, B), in Monomachus muscle arising from level of metapleural apodeme (Fig. 22D, E). Mesopectus: Anterior thoracic spiracle occlusor Metafurco-mesofurcal muscle arising from lateral muscle arising from apodeme located on anterior part of lateral metafurcal arm or from anterior margin of prepectus in Monomachus. Prospinasterno- metafurcal arm. Median metapleuro-metacoxal procoxal muscle arising ventromedially from muscle subdivided; lateral band arising from para- mesopectus in Diapriidae, Ropronia, Vanhornia, and coxal ridge. Lateral metapleuro-metacoxal muscle Helorus. Mesopleuro-mesocoxal and second usually arising from ventral surface of metapleural mesopleuro-mesonotal muscles usually arise from apodeme, from wall of metapleuron ventral to wall of mesopleuron and partly from mesopleural apodeme, and from posterior surface of paracoxal apodeme in Belyta and from oblique mesopleural ridge (pl3l-cx3: Fig. 22D, E); in Pelecinus, Proc- ridge in Poecilospilus. Site of origin of mesofurco- totrupes (pl3l-cx3: Fig. 23A), and Vanhornia muscle mesocoxal muscle extending submedially to lateral arising exclusively from paracoxal ridge. Metafurco- mesofurcal arm in all taxa (fu2-cx2: Fig. 21C, D) metatrochanteral muscle usually arising from lateral except Monomachus, in which muscle arising poste- part of metafurcal arm (Fig. 23A: fu3-tr3), muscle riorly from mesodiscrimen (Fig. 21E). Median absent in Belyta and Monomachus. Metapleuro- mesofurco-mesotrochanteral muscle arising from base metatrochanteral muscle arising usually from meta- of mesofurcal bridge in Monomachus (fu2m-tr2: pleural apodeme and from metapleuron ventral to Fig. 21E) and Diapriidae and from mesofurcal arm metapleural apodeme. Metafurco-second abdominal lateral to site of origin of mesofurco-mesocoxal muscle sternal muscle arising from along entire length of in other taxa examined (Fig. 21C). Lateral mesofurco- lateral metafurcal arm and partly from metapleural mesotrochanteral muscle (fu2l-tr2: Fig. 21B, C) apodeme in Pelecinus, Poecilospilus, and Psilus (fu3- arising from anterior (internal) surface of lateral end S2: Fig. 24A), from lateral part of lateral metafurcal of lateral mesofurcal arm in Helorus, Pelecinus, Proc- arm in Proctotrupes (Fig. 23A), Helorus, Vanhornia, totrupes, Ropronia, and Vanhornia. Mesopleuro-third and Ropronia, and from metapleural apodeme in axillary sclerite of hind wing muscle arising posterior Belyta and Monomachus (Fig. 22E). Posterior to mesepimeral ridge. Mesopleuro-mesobasalar metapleuro-metabasalar muscle absent. muscle absent in Vanhornia; intersegmental mem- brane mesobasalar muscle absent in Pelecinus. Propodeum: Metaphragmo-second abdominal tergal muscle subdivided for median and lateral band in Metanotum: Median metapleuro-metanotal muscle Proctotrupes (ph3-T2: Fig. 23A–E). arising anterior to paracoxal ridge in Helorus (pl3m- t3: Fig. 22B), Ropronia, and Monomachus; muscle absent in other taxa. Metanoto-metatrochanteral STEPHANOIDEA muscle usually arising from humeral sclerite (t3-tr3, Skeleton (Figs 37A, 41A, 44A, 48E, 52C, 57A, 58A, hmsc: Fig. 23G, H) and inserting on metatrochanteral 59C, 61A, 65A) apodeme sharing common tendon with metafurco- Pronotum: Pronotum well developed medially both metatrochanteral and metapleuro-metatrochanteral anteriorly and posteriorly to transverse pronotal muscles (pl3-tr3: Fig. 23I), muscle absent in Psilus, sulcus (N1s: Fig. 37A); internally, anterolateral Poecilospilus, and Monomachus. Metalaterophragmo- pronotal ridge not conspicuously developed. Anterior metanotal muscle arising lateral to site of origin of part of pronotum very elongate, delimited by trans- metaphragmo-second phragmal muscle and inserting verse carina anterior to transverse sulcus in Megis- on metanotum posterior to apodeme arising laterally chus; pair of longitudinal lateral carinae situated from metanotum in Belyta; muscle absent in other ventrally on anterior protrusion, delimiting raised taxa. median area. In Schlettererius, distinct transverse

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 53 pronotal carina present posterior to transverse prono- supramesopleural sclerite absent. Mesepimeral ridge tal sulcus (N1c: Fig. 37A). Pronotum slanted obliquely absent. Mesopleural pit and apodeme absent. Pros- posteromedially to transverse sulcus in Megischus, pinasternal apodeme present. Acetabular carina and vertical in Schlettererius (Fig. 37A); transverse carina acetabulum not conspicuously developed. Oblique present medially lying adjacent to posterodorsal mesopleural ridge absent. Mesocoxal foramina broad margin of pronotum in Schlettererius. Laterodorsal and widely open dorsally. Transverse posterior corner of pronotum extended into distinct lobe cover- mesopleural carina present in Megischus. Median ing anterior thoracic spiracle; incurvation present mesocoxal articulation situated on short projection, dorsally on lobe accommodates fore wing tegula. articulating close to base of mesocoxa. Short, erect Pronotum movable relative to mesopleura. Indepen- mesospinasternal apodeme (msap: Fig. 52C) dent, large prepectus present (pre: Fig. 37A), con- medially on mesodiscrimen in Schlettererius, between cealed by posterolateral margin of pronotum; anterior bases of mesofurcal arms. Mesofurcal bridge present, thoracic spiracle occlusor muscle apodeme situated on curved anteriorly, with anteromedian projection prepectus. (Fig. 52C).

Propectus: Propleuron very elongate, cervical Mid leg: Proximal part of mesocoxa not reduced. apodeme curves laterally at posterior end to fuse with inner side of propleuron in Megischus. Epicoxal lobe present in Megischus. Independent katepisternum Metanotum: Metanotum reduced medially, meta- present. Prosternum with distinct anteromedian pro- scutellum absent. jection concealed by medioventral margins of propleu- ron and extending considerable distance anterior to Metapectus: Boundary between metapleuron and pro- posterior margin of propleuron. Anterior profurcal podeum not well demarcated. Metapleuron not fused apodeme present (apa: Fig. 41A); profurcal bridge with mesopleuron ventrally. Posterolateral part of absent. metapleuron swollen, especially in Schlettererius. Transverse metepisternal carina present posterior to Fore leg: Procoxa broad basally, with lateral proximal metepisternal depressions in Megischus. Paracoxal extension for lateral procoxal articulation. Transverse sulcus and ridge distinct, ridge not extending to meta- carina situated medially on procoxa close to its base pleural apodemes. Metapleuron well developed ante- in Megischus. rior to paracoxal ridge. Median metacoxal articulation with distinct knob, knob displaced laterally to posi- Mesonotum and mesophragma: Anterior mesoscutal tion ventral to lateral metacoxal articulation (cx3ma: sulcus absent from Schlettererius. Anteriormost part Fig. 57A), metacoxa moving in horizontal plane. of mesoscutum smooth, covered by posterodorsal part Lateral metacoxal articulation exposed (cx3la: of pronotum. Median mesoscutal sulcus and corre- Fig. 57A). Anterior metafurcal arm elongate, lateral sponding internal ridge extending almost to trans- metafurcal arm short and not fused with metapleural scutal articulation in Schlettererius (tsa: Fig. 44A), apodeme in Schlettererius; arm and apodeme are only developed anteriorly in Megischus. Anteroadme- fused (fu3a, mtpa: Fig. 58A) in Megischus. dian signum absent from Schlettererius. Notauli and corresponding internal notaular ridges well devel- oped, (Fig. 44A: not) converging to meet in midline Hind leg: Metacoxa elongate, subequal in length to anterior to transscutal sulcus in Schlettererius. metafemur ((Fig. 59C). Metafemur with distinct Parapsides absent from Megischus. Transscutal ridge cuticular spines ventrally. is present. Scutoscutellar sulcus angled or U-shaped (Schlettererius) medially, dorsal axillar surfaces com- Propodeum: Antecostal sulcus broad (ans: Fig. 61A). paratively large. Scutoscutellar ridge not reaching Metaphragma high and continuous medially (ph3: transscutal ridge anteromedially. Distinct ventral Fig. 58A), laterally continuous with metapleural apo- mesophragmal longitudinal ridge extending medially demes. Distinct metalaterophragmal lobes present along entire length of mesophragma. Pseudophrag- submedially (Fig. 58A: ph3l). Longitudinal and trans- mal lobes well developed. Mesolaterophragmal lobes verse propodeal carinae absent. Propodeal spiracle elongate apodemes extending posteromedially. situated close to propodeal foramen (psp: Fig. 61A); spiracle an exposed slit. Propodeal foramen continu- Mesopectus: External part of mesobasalare enlarged, ous with metacoxal foramina (Fig. 57A), foramina extending below anterior thoracic spiracle (Fig. 48E); separated dorsally by small triangular projection. internal part distally expanded into broad apodeme. Propodeal teeth not developed, only low swellings Posterior thoracic spiracle not visible externally, present at articulation with petiole.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 54 L. VILHELMSEN ET AL.

Petiole: T2 and S2 entirely separated in Schlettere- muscle arising from ventral surface of metapleural rius, totally fused in Megischus (Fig. 65A). Petiole apodeme and from metapleuron ventral to metapleu- comparatively short, slightly posteriorly expanded ral apodeme, site of origin of muscle extending dor- cylinder in Schlettererius, very elongate in Megischus. sally on propodeum attaching to posterior surface of Articulating condyle well developed in Megischus, metaphragma and anteriorly on metapleuron reach- lower and less distinct in Schlettererius. Transverse ing anterior margin of metapleuron (pl3l-cx3: carina separates anterior part with condyle from rest Fig. 25C). Metanoto-metatrochanteral, metapleuro- of T2 (T2tc, arc: Fig. 65A). In Schlettererius,S2 metatrochanteral muscles not observed. Posterior slightly angled medially, forming low longitudinal metapleuro-metabasalar muscle absent. carina.

APOIDEA Musculature (Figs 24C–G, 25A–C) Pronotum: Posterior pronoto-laterocervical muscle Skeleton (Figs 47B, 48B) arising distinctly ventral to dorsal margin of prono- Pronotum: Pronotum well developed medially both tum, anterior to site of origin of dorsal pronoto- anteriorly and posterior to pronotal transverse sulcus; procoxal muscle, which arises from dorsal margin of internally, anterolateral pronotal ridge developed only pronotum. Anterior thoracic spiracle occlusor muscle in Stangeella. Pronotum oblique posteromedially in arising from prepectus. Pronoto-mesobasalar muscle Ampulex and Pison, vertical in Stangeella. Paired absent. short anterolateral carinae present close to postero- dorsal margin, being especially developed in Pison. Propectus: Profurco-protrochanteral muscle arising Pronotal lobes present (N1l: Fig. 48B). Lateroventral from anterior surface of ventral profurcal lamella and corners of pronotum with elongate median projections inserting on protrochanteral apodeme sharing abutting anteroventral margin of mesopleura. Prono- common tendon with propleuro-protrochanteral tum immovable relative to mesopleura. Neither inde- muscle (fu1-tr1, pl1-tr1: Fig. 24C). Median profurco- pendent prepectus nor posterior pronotal inflection procoxal muscle (fu1m-cx1: Fig. 24D) arising from present. Anterior thoracic spiracle occlusor muscle posterior surface of dorsal profurcal lamella and apodeme located sublaterally on anterior margin of inserting on posteromedian margin of procoxa. mesopectus in Pison. Lateral propleuro-postoccipital muscle not observed. Propleural arm-protrochanteral muscle absent. Propectus: Epicoxal lobe present in Ampulex and Pison; in latter taxon, longitudinal groove extending Mesonotum: Posterior mesonoto-mesotrochanteral anteriorly from corner accommodates posteroventral muscle arising from dorsal axillar area. corner of pronotum. Prosternum with distinct antero- median projection concealed by medioventral margins Mesopectus: Intersegmental membrane-mesobasalar of propleuron and extending considerable distance muscle arising from small area of mesopectus delim- anterior to posterior margin of propleuron. Median ited posteriorly by anterior mesopleural apodeme posteriorly directed prosternal spine present in all (ism1,2-ba2: Fig. 24F); muscle inserting on anterior taxa examined, especially prominent in Ampulex and margin of expanded internal part of mesobasalare. Stangeella. Anterior profurcal apodeme present; pro- Site of origin of mesopleuro-mesobasalar muscle furcal bridge developed only in Stangeella. extending along ventral margin of mesopectus to mesocoxal foramen (pl2-ba2: Fig. 24F). Second and Fore leg: Procoxa broad basally in Ampulex and Stan- third mesopleuro-third axillary sclerite of fore wing geella; coxa reduced proximally in Pison, diameter of muscles not distinctly separated (pl2-3ax2: Fig. 24G). proximal opening not exceeding half maximal width Site of origin of mesopleuro-mesocoxal muscle extend- of procoxa. Transverse carina encircles most of ing dorsally along site of origin of anterior procoxa close to its base in Ampulex and also partly mesopleuro-mesofurcal muscle almost reaching dorsal developed in Pison. margin of mesopectus (pl2-cx2, pl2a-fu2: Fig. 24G). Median mesofurco-mesotrochanteral muscle absent. Mesonotum and mesophragma: Notauli well devel- oped only in Ampulex, widely separated posteriorly, Metapectus: Metapleuro-metasubalar muscle arising notaular ridges absent; other taxa examined with from posterior surface of fused metafurca and meta- only short remnants of notauli anteriorly. Trans- pleural ridge. Relative positions of metafurco-second scutal sulcus absent from Ampulex. Dorsal axillar abdominal sternal, metafurco-metacoxal, metafurco- surfaces small, widely separated medially by straight metatrochanteral, and median metapleuro-metacoxal scutoscutellar sulcus. Scutoscutellar ridge not reach- muscles unclear. Lateral metapleuro-metacoxal ing transscutal articulation anteromedially in

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 55

Ampulex. Anterolateral projections on mesophragma metacoxal articulation concealed. Metafurcal pit situ- very elongate; anterior margin of mesophragma ated closer to anterior margin of metapleuron than to displaced well posterior to posterior margin of meso- metacoxal foramina in Ampulex because of ventral scutellum (ph2: Fig. 47B). Distinct ventral meso- displacement of propodeal foramen. Lateral metafur- phragmal longitudinal ridge extends medially along cal arms fused with metapleural apodeme in all taxa entire length of mesophragma in Ampulex and Stan- examined. geella.InAmpulex, pseudophragmal lobes not devel- oped. Mesophragmal lobe elongate, medially pointing Propodeum: Antecostal sulcus broad in Ampulex and apodeme. Pison, narrow in Stangeella. Metaphragma continu- ous medially in Stangeella. Metaphragma continuous Mesopectus: Fore wing tegula separate from postero- with metapleural apodeme laterally in all taxa exam- dorsal corner of pronotum, mesoscutum and ined. Propodeum subdivided in lateral view by trans- mesopleuron abutting between them (N2, pl2: verse propodeal carina into anterior, horizontal Fig. 48B). Posterior thoracic spiracle not visible exter- surface and posterior, vertical surface in Ampulex; nally; supramesopleural sclerite present in Ampulex differentiation between anterior and posterior parts of and Stangeella. Mesepimeral ridge present in propodeum less pronounced in Pison and Stangeella. Ampulex and Stangeella, extending approximately Median longitudinal internal ridge extending on pro- halfway to lateral mesocoxal articulation. Mesopleu- podeum corresponding to external smooth line in ral pit and apodeme present; apodeme separated from Pison. Median and two pairs of lateral longitudinal mesepimeral ridge. Prospinasternal apodeme devel- propodeal carinae present on anterior part of propo- oped only in Stangeella. Shallow acetabulum present deum in Ampulex. Propodeal spiracle elongate in all in Ampulex; acetabular carina absent from all taxa taxa examined and exposed in Ampulex, concealed in examined. Oblique mesopleural ridge present in Pison and Stangeella;inAmpulex, ventrally abutting Pison and Stangeella. Transverse posterior mesopleu- dorsal longitudinal carina on metapleuron. Propodeal ral carina present in Ampulex. Mesopleuron fused to foramen continuous with metacoxal foramina in metapleuron ventrally in Pison and Stangeella and Pison, separated by propodeal bridges in Ampulex also laterally in Ampulex. Mesocoxal foramina narrow and Stangeella. Stangeella and especially Ampulex in Ampulex; dorsally, foramina closed off by metapleu- with ventral margin of propodeal foramen deeply ral cuticle. Median mesocoxal articulation situated on incurved. Propodeal foramen situated slightly poste- short projection, articulating close to base of meso- rior to metacoxal foramina in Stangeella;inAmpulex, coxa. Mesofurcal pit situated anterior to mesocoxal foramina level in lateral view, propodeal foramen foramina in Ampulex and Stangeella. Mesofurcal situated below metacoxal foramina in posterior view. bridge present and with anteromedian projection; in Distinct propodeal teeth present. Pison and Stangeella mesofurcal arms posteriorly fused with metafurcal arms for some distance. Petiole: T2 and S2 separate in Pison, fused for most of their length in Ampulex and Stangeella; petiole Mid leg: Proximal part of mesocoxa reduced proximal narrow cylinder in Stangeella. Anterior margin of T2 to transverse groove in Ampulex. expanded laterally relative to well-developed articu- lating condyle. Longitudinal sulcus and corresponding Metanotum: Metascutellum reaches anterior margin internal ridge present in posterior part of T2 in of metanotum; metascutellum broad in Pison and Ampulex and Pison. Ampulex and Stangeella with Stangeella, less so in Ampulex. transverse carina anterior on S2. Metapectus: Longitudinal ridge present ventral to propodeal spiracle in Ampulex. Median and lateral Musculature (Figs 25D–H, 26A–F) longitudinal metepisternal carinae well developed; in Pronotum: Pronoto-prophragmal muscle not subdi- Pison and Stangeella lateral carina anteriorly devel- vided. Posterior pronoto-laterocervical and dorsal oped into distinct projection. Paracoxal sulcus and pronoto-procoxal muscles arising from ventral surface ridge straight; ridge fusing with metapleural of well-developed anterolateral pronotal ridge. apodeme. Median metacoxal articulations well devel- Pronoto-mesobasalar muscle absent. oped, situated proximally on median projection pos- terior to metafurcal pit; projection subdivided by Propectus: Ventral profurco-postoccipital muscle ventral margin of propodeal foramen in Ampulex, arising from anterior surface of dorsal profurcal median articulation displaced laterally to position lamella, ventral to site of origin of dorsal profurco- almost ventral to lateral metacoxal articulation, postoccipital muscle (fu1v-poc, fu1d-poc: Fig. 25E). metacoxa moving in almost horizontal plane. Lateral Profurco-protrochanteral muscle arising from anterior

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 56 L. VILHELMSEN ET AL. surface of ventral profurcal lamella (fu1-tr1: Fig. 25D, sternal muscle (T1-S2: Fig. 26D) arising anterodorsal F). Mesofurco-propleural arm muscle not observed. to site of origin of metaphragmo-second abdominal tergal muscle, site of origin of muscle extending dor- Mesopectus: Anterior thoracic spiracle occlusor sally posterior to propodeal spiracle. Metaphragmo- muscle arising from apodeme located on anterior second abdominal tergal muscle arising from margin of mesopectus. Intersegmental membrane- horizontal part of propodeum in Pison posterior to mesobasalar muscle arising from mesopleuron ante- metaphragma (ph3-T2: Fig. 26A). rior to anterior mesopleural apodeme; site of origin of muscle extending dorsally on internal surface of pos- CHRYSIDOIDEA teriorly bending apodeme (ism1,2-ba2: Fig. 25G). Mesopleuro-mesobasalar and first and second Skeleton (Figs 39A, 53C, 54F, 56F, 62C, 64A) mesopleuro-third axillary sclerite of fore wing Pronotum: Pronotum anterior to transverse pronotal muscles arising posterior to anterior mesopleural sulcus protruding in Cephalonomia and Chrysis, ridge and anterior to oblique mesopleural ridge (pl2- reduced in Plumarius and Ycaploca; internal antero- ba2, pl2-3ax2b: Fig. 25G). Third mesopleuro-third lateral pronotal ridge well developed only in Plu- axillary sclerite muscle arising posterior to oblique marius. Chrysis with pair of small pits situated mesopleural ridge (pl2-3ax2c: Fig. 25G). Second submedially in transverse sulcus. Pronotum oriented mesopleuro-mesonotal muscle arising partly from vertically posterior to sulcus in Plumarius, oblique in wall of mesopleuron dorsal to site of origin of second other taxa examined. Weakly developed external mesopleuro-third axillary sclerite muscle, partly from transverse carina situated dorsal to transverse sulcus mesopleural apodeme, mesopleuro-mesocoxal muscle in Chrysis, most developed laterally; area between arising partly from mesopleural apodeme (pl2-t2b, sulcus and carina slightly concave. Dorsolateral corner pl2-cx2: Fig. 25G). Lateral mesofurco- of pronotum forms distinct lobe covering anterior mesotrochanteral muscle arising from anterolateral thoracic spiracle laterally. Pronotum movable relative end of lateral mesofurcal arm. to mesopleura. Large independent prepectus present in all taxa examined, concealed by posterolateral Metanotum: Posterior mesonoto-metanotal muscle margin of pronotum; prepectus extending dorsal to inserting laterally on anterior margin of metanotum spiracle in all taxa except Cephalonomia. Prepecti (t2p-t3: cf. Fig. 29G). Anterolateral metapleuro- medioventrally abut in Plumarius; fused ventrally into metanotal muscle arising from metapleural apodeme continuous, U-shaped sclerite in Cephalonomia. (pl3la-t3: Fig. 26A). Propectus: Cervical apodeme short in Ycaploca and Metapectus: Dorsal metapleuro-third axillary sclerite Plumarius. Anterodorsal margins of propleura abut- muscle arising from flexor apodeme (pl3d-3ax3: ting dorsally to encircle cervical prominences anteri- Figs 25A, 26C). Lateral metapleuro-metacoxal muscle orly in Plumarius; anterodorsal margins of arising from ventral surface of metapleural apodeme propleuron abutting for approximately half their and from metapleuron ventral to metapleural length in Ycaploca, diverging in anteriormost part. apodeme; site of origin of muscle extending posteri- Propleural arm extending horizontally posterior to orly to propodeum and extending dorsally anterior to lateral profurcal arm in Cephalonomia. Distinct lon- propodeal spiracle reaching lateral part of meta- gitudinal lateroventral carina present anteriorly on phragma (pl3l-cx3: Fig. 26D). Metalaterophragmo- propleuron in Chrysis. Medioventral margins of metafurcal muscle arising from inflected lateral part propleuron abut for most of their length in Cephalo- of metanotum and inserting through long tendon on nomia and Plumarius;inChrysis and Ycaploca posterolateral projection of lateral metafurcal arm margins diverge posteriorly, exposing prosternum (s1: (ph3-fu3: Fig. 26A). Metafurco-second abdominal Fig. 39A). Epicoxal lobe present in all taxa examined sternal muscle arising from along entire length of except Ycaploca; this taxon with groove on postero- lateral metafurcal arm. Metasterno-second abdominal lateral margin of propleuron accommodating lat- sternal muscle arising from metadiscrimenal lamella eroventral part of pronotum. Katepisternum present dorsal to site of origin of median metafurco-metacoxal in Chrysis and Ycaploca. Prosternum with distinct muscle (s3-S2, fu3m-cx3: cf. Fig. 29F). Posterior anteromedian projection in Plumarius, projection con- metapleuro-metabasalar muscle absent. cealed by medioventral margins of propleuron and extending considerable distance anterior to posterior Propodeum: Mesophragmo-metaphragmal muscle margin of propleuron. Median posteriorly directed arising from median apodeme of propodeum in prosternal spine present in all taxa examined except Apis (T1a: Fig. 26E, F) and from along median ridge Ycaploca. Anterior profurcal apodeme only developed of propodeum in Pison. Propodeo-second abdominal in Chrysis, profurcal bridge absent from all taxa

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 57 examined. Anteroventral profurcal apodeme Mid leg: Proximal part of mesocoxa highly reduced (ava: Fig. 27E) present submedially on profurcal arm proximal to transverse groove ((Fig. 53C) in Cephalo- in Plumarius. nomia and Plumarius. Trochantellus not developed in Chrysis. Fore leg: Procoxa reduced proximally, diameter of proximal opening not exceeding half maximal width Metanotum: Metascutellum not developed in Cepha- of procoxa in all taxa examined except Chrysis. Proxi- lonomia and Ycaploca ((Fig. 54F), reaching anterior mal transverse carina on procoxa absent. margin of metanotum in Chrysis, not in Plumarius. Metanotum medially fused with propodeum in Chrysis. Mesonotum and mesophragma: Prophragma not sub- divided medially and laterally expanded past anterior ends of notauli in Cephalonomia. Anterior and Metapectus: Metapleuron ventrally fused with median mesoscutal sulci at most weakly developed. mesopleuron in Chrysis. Longitudinal carina present Notauli only fully developed in Chrysis and Ycaploca, ventral to propodeal spiracle in Ycaploca. Metapleu- reaching transscutal articulation and separate poste- ral apodemes not developed in Cephalonomia. riorly. Parascutal carina only developed in Chrysis. Metepisternal depressions and longitudinal carinae Transscutal ridge absent. Dorsal axillar surfaces absent from Plumarius;inCephalonomia, depres- small, widely separated medially by straight scu- sions separated medially by elevated triangular area toscutellar sulcus. Axillar carina developed in Chrysis (Fig. 56F); lateral longitudinal and transverse carinae and Plumarius, with distinct projection dorsally in absent from Ycaploca. Paracoxal ridge extending lat- Chrysis. Scutoscutellar ridge well developed, reaching erally in Cephalonomia and Ycaploca, reaching meta- transscutal articulation anteromedially in Chrysis. pleural apodeme in Ycaploca. Metapleuron developed Anterior margin of mesophragma displaced well pos- anterior to paracoxal ridge in Ycaploca. Median meta- terior to posterior margin of mesoscutellum in Cepha- coxal articulation distinct and slightly displaced lat- lonomia. Pseudophragmal lobes only developed in erally in Cephalonomia; median articulations Plumarius. Mesolaterophragmal pockets displaced separated medially in Ycaploca, not displaced as far laterally in Chrysis and mesolaterophragmal lobes lateral as lateral articulations. Lateral metacoxal short. articulation concealed in all taxa examined. Metafur- cal pit situated close to anterior margin of metapleu- ron in Cephalonomia, Chrysis, and Plumarius. Mesopectus: Fore wing tegula separate from postero- Origins of metafurcal arms widely separated ven- dorsal corner of pronotum in Chrysis, mesoscutum trally in Cephalonomia. Lateral metafurcal arms and mesopleuron abutting between them. Internal elongate, not fused with metapleural apodemes. part of mesobasalare distally expanded into broad apodeme in Plumarius. Posterior thoracic spiracle visible above posterodorsal mesopleural margin in Hind leg: Dense metatibial brush absent from Cepha- Ycaploca. Supramesopleural sclerite absent from lonomia, only scattered setae present. Cephalonomia. Mesepimeral ridge extending approxi- mately halfway to lateral mesocoxal articulation in Propodeum: Antecostal sulcus narrow in Chrysis, Chrysis, absent from all other taxa examined. broad in other taxa examined (ans: (Fig. 54F). Propo- Mesopleural pit absent from Chrysis; mesopleural deum dorsal to spiracle expanded laterally into two apodeme present in all taxa examined, continuous distinct flanges subdivided by antecostal sulcus in with mesopleural ridge in Chrysis. Prospinasternal Chrysis. Metaphragma weakly developed in Cephalo- apodeme absent. Acetabular carina and acetabulum nomia and only laterally in other taxa examined; inconspicuous. Mesocoxal foramina broad and widely metaphragma reaching metapleural apodemes later- open dorsally in Chrysis and Ycaploca, narrow and ally in Chrysis and Ycaploca. Lateral longitudinal constricted dorsally by lateral mesopleural inflections propodeal carinae present in Cephalonomia and in Cephalonomia and Plumarius. Median mesocoxal Chrysis. Propodeal spiracle exposed in all taxa exam- articulation situated on short projection, articulating ined, rounded only in Cephalonomia. Propodeum sub- close to base of mesocoxa. Mesofurcal pit situated divided in lateral view by transverse propodeal carina anterior to mesocoxal foramina in all taxa examined into anterior, horizontal surface and posterior, steeply except Ycaploca. Anteriorly orientated submedian slanted surface in Cephalonomia. Propodeal foramen apodeme developed on lateral mesofurcal arm in situated at level with metacoxal foramina in lateral Chrysis. Posteroventral mesopleural apodeme devel- view in all taxa examined; narrow propodeal bridges oped in Plumarius. Mesofurcal bridge present, with present in Cephalonomia and Plumarius. Propodeal anteromedian projection. teeth well developed (T1t: Fig. 62C).

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 58 L. VILHELMSEN ET AL.

Petiole: T2 and S2 separated and posteriorly lation in Chrysis, site of origin of muscle extending to expanded laterally. Anterior margin of T2 is expanded posteroventral mesopleural apodeme in Plumarius laterally relative to well-developed articulating (pl2-sa2: Fig. 28B). Posterior mesopleuro-mesofurcal condyle (arc: Fig. 64A). Longitudinal sulcus and cor- muscle not observed in Chrysis. Mesocoxo- responding internal ridge present in posterior part of mesosubalar muscle not observed in any taxa exam- T2 (Fig. 64A) in all taxa examined except for Chrysis. ined. Lateral mesofurco-mesotrochanteral and Median longitudinal carina weakly developed for intersegmental membrane-mesobasalar muscles most of length of S2 in Ycaploca. absent in Chrysis.

Musculature (Figs 27A–F, 28A–H) Metanotum: Median metapleuro-metanotal muscle Pronotum: Pronoto-propleural muscle arising lat- arising anterior to paracoxal ridge and inserting on eroventral to site of origin of Pronoto-postoccipital humeral sclerite in Bethylus and Plumarius (pl3m-t3: muscle in Chrysis (t1-pl1, t1-poc: Fig. 27A); muscle Fig. 28D, G). Anterolateral metapleuro-metanotal arising medially from inflected dorsal margin of muscle arising dorsally from marginal metapleural pronotum in Plumarius (Fig. 27B). Pronoto- apodeme (pl3la-t3: Fig. 28G, H). prophragmal muscle not subdivided (t1m,l-ph1: Fig. 27A); muscle arising from dorsal surface of ante- Metapectus: Metacoxo-metabasalar muscle (cx3-ba3: rolateral pronotal ridge in Plumarius (Fig. 27B). Pos- Fig. 28E) present in Bethylus and Plumarius, absent terior pronoto-laterocervical muscle, if present, in Chrysis. Dorsal metapleuro-third axillary sclerite arising ventral to site of origin of dorsal pronoto- muscle arising from flexor apodeme. Lateral procoxal muscle, which arises laterally from dorsal metapleuro-metacoxal muscle arising from ventral inflected margin of pronotum (t1p-cv, t1d-cx1: surface of metapleural apodeme and from metapleuron Fig. 27A). Anterior thoracic spiracle occlusor muscle ventral to metapleural apodeme, site of origin of arising submedially from prepectus in all taxa exam- muscle extending dorsally anterior to propodeal spi- ined (sp1occ: Fig. 27B, C). Prospinasterno-procoxal racle reaching lateral part of metaphragma (pl3l-cx3: muscle arising medially from the anterior margin of Fig. 28C). Metalaterophragmo-metafurcal muscle prepectus, prepecto-mesobasalar muscle arising from arising from inflected lateral part of metanotum, pos- posterior part of prepectus in Chrysis (pre-ba2: terior to humeral sclerite, and inserting through long Fig. 27B, C). Posterior pronoto-laterocervical muscle tendon on posterolateral projection of lateral metafur- not observed in Plumarius. Pronoto-mesobasalar cal arm (ph3-fu3: Fig. 28F). Metafurco-second abdomi- muscle absent in all taxa examined. nal sternal muscle arising from along entire length of lateral metafurcal arm. Metasterno-second abdominal Propectus: Ventral profurco-postoccipital muscle sternal muscle arising from metadiscrimenal lamella arising partly from anteroventral profurcal apodeme dorsal to site of origin of median metafurco-metacoxal in Plumarius (fu1v-poc: Fig. 27E). Median profurco- muscle (s3-S2: Fig. 28D). Median metapleuro- procoxal muscle arising from posterior surface of metanotal muscle absent in Chrysis. dorsal profurcal lamella (fu1m-cx1: Fig. 27D, F). Propleural arm-protrochanteral muscle absent. Propodeum: Propodeo-second abdominal sternal muscle arising anterodorsal to site of origin of Mesopectus: Intersegmental membrane-mesobasalar metaphragmo-second abdominal tergal muscle in Plu- muscle arising from anterior margin of mesopleuron marius and Bethylus (T1-S2, ph3-T2: Fig. 28D). in Plumarius. Mesopleuro-mesocoxal and second mesopleuro-mesonotal muscles arising partly from mesopleural apodeme (pl2-cx2, pl2-t2b: Fig. 27C). Site VESPOIDEA of origin of median mesopleuro-mesotrochanteral Skeleton (Figs 36A, 42D, 46C, 48D, 50A, 58E, 61C, muscle extending to anteriorly orientated submedian 63D) apodeme of mesofurca in Chrysis. Lateral mesofurco- Pronotum: Pronotum protrudes anteromedial to mesotrochanteral muscle arising from anterolateral transverse pronotal sulcus; internal anterolateral end of lateral mesofurcal arm in Plumarius (fu2l-tr2: pronotal ridge well developed only in Rhopalosoma. Fig. 28A). Posterior mesopleuro-mesofurcal muscle Pronotum medially short posterior to transverse arising submedially from ventral surface of lateral pronotal sulcus in Metapolybia, elongate and oblique mesofurcal arm and inserting on posteroventral in other taxa examined. Weakly developed external mesopleural apodeme (pma: Fig. 28B) close to transverse pronotal carina situated dorsal to trans- lateral mesocoxal articulation in Plumarius. verse pronotal sulcus in Sapyga); area between sulcus Mesopleuro-mesosubalar muscle arising from and carina slightly concave. Distinct pronotal lobe mesopleuron just dorsal to lateral mesocoxal articu- present, covering anterior thoracic spiracle laterally.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 59

Pronotum movable relative to mesopleura in Aporus Sapyga, extending approximately halfway to lateral and Sapyga, rigidly attached in Metapolybia and Rho- mesocoxal articulation. Mesopleural pit and apodeme palosoma. Slender prepectus present only in Rhopalo- present, continuous with mesepimeral ridge in soma, concealed by posterolateral margin of Sapyga. Prospinasternal apodeme only present in pronotum; posterior pronotal inflection not observed Sapyga. Acetabular carina and acetabulum incon- in any taxa examined. Anterior thoracic spiracle spicuous. Oblique mesopleural ridge present in occlusor muscle apodeme situated in middle of poste- Aporus (ompr: Fig. 50A), extending to mesopleural rolateral margin of pronotum in Metapolybia, on ante- pit. Transverse posterior mesopleural carina present rior margin of mesopleuron in Sapyga, not observed in Aporus, medially extending into posteriorly in other taxa examined. directed flanges overlapping mesocoxae ventrally; medial flanges also present in Rhopalosoma. Meso- Propectus: Cervical apodeme short in Aporus, with coxal foramina widely open dorsally. Median meso- distinct longitudinal lateroventral carina anteriorly coxal articulation situated on short projection, on propleuron. Epicoxal lobe present in Aporus. articulating close to base of mesocoxa. Short, erect Katepisternum present in Metapolybia and Sapyga. mesospinasternal apodeme situated medially on Prosternum with distinct anteromedian projection mesodiscrimen, between bases of mesofurcal arms in concealed by medioventral margins of propleura and all taxa examined except Metapolybia. Mesofurcal extending considerable distance anterior to posterior bridge present, having median anterior projection margin of propleuron. Median posteriorly directed only in Rhopalosoma and Vespula. Posteroventral prosternal spine present in Aporus and Rhopalosoma. mesopleural apodeme developed in Sapyga. Anterior profurcal apodeme not developed in Aporus, profurcal bridge with distinct posterior projection Mid leg: Mesocoxa reduced proximal to transverse present in Aporus and Rhopalosoma. groove in Aporus and Rhopalosoma. Trochantellus not developed in Rhopalosoma. Fore leg: Procoxa reduced proximally, diameter of proximal opening not exceeding half maximal width Metanotum: Metascutellum broad and reaching ante- of procoxa in all taxa examined except Metapolybia. rior margin of metanotum. Lateral longitudinal Transverse carina developed for short distance proxi- carina on metanotum absent from Sapyga. mally on procoxa in Rhopalosoma. Metapectus: Metapleuron ventrally fused with Mesonotum and mesophragma: Anterior mesoscutal mesopleuron in Metapolybia. Metepisternal depres- sulci only weakly developed in Aporus and Sapyga. sions well developed. Lateral longitudinal metepister- Anterior mesoscutal sulcus medially deflected down- nal carinae developed into distinct projections ward onto basal part of prophragma in Metapolybia. anteriorly in Aporus and Metapolybia; carinae absent Notauli at most developed anteriorly. Parascutal in Sapyga. Transverse metepisternal carina present carina not developed in Rhopalosoma and Sapyga. in Aporus. Both anterior and posterior branches of Dorsal axillar surfaces small, widely separated medi- paracoxal sulcus and ridge developed in Sapyga; ante- ally by straight scutoscutellar sulcus. Axillar carina rior branch not reaching metapleural apodeme. Only not developed in Rhopalosoma and Sapyga. Scutoscu- anterior branch of paracoxal ridge present in Aporus tellar ridge well developed, reaching transscutal and Metapolybia, extending to metapleural apodeme articulation anteromedially (ssr: Fig. 46C) in all taxa laterally. Metapleuron not developed anterior to para- except Rhopalosoma. Short median longitudinal scu- coxal ridge. Median metacoxal articulations well toscutellar ridge extending posteriorly inside mesos- developed, slightly separated in Sapyga, widely sepa- cutellum from scutoscutellar ridge in Metapolybia rated in Aporus and displaced laterally to position (Fig. 46C) and Sapyga. Pseudophragmal lobes only close to ventral to lateral metacoxal articulation, developed in Aporus. Mesophragmal pockets weakly metacoxa moving in almost horizontal plane. Lateral developed in Metapolybia and Rhopalosoma. Distinct metacoxal articulation concealed. Anterior metafurcal anterolateral flange extending from mesophragma in arm well developed in Aporus and Sapyga (fu3aa: Rhopalosoma. Fig. 58E); dorsal sclerotized bridge between metafur- cal arms present in Aporus. Lateral metafurcal arms Mesopectus: Fore wing tegula separate from postero- fused with metapleural apodemes in all taxa exam- dorsal corner of pronotum in Aporus, mesoscutum ined. and mesopleuron abutting between them. Posterior thoracic spiracle not visible externally; suprame- Propodeum: Antecostal sulcus broad in Aporus, sopleural sclerite present (sms: Fig. 48D:). Mesepime- narrow in other taxa examined. Metaphragma well ral ridge present in Aporus (mepr: Fig. 50A) and developed, continuous medially and laterally extend-

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 60 L. VILHELMSEN ET AL. ing to metapleural apodeme (ph3: Fig. 58E) in all taxa posteroventral mesopleural apodeme (pl2p-fu2, pma: examined; metaphragma with distinct lobe medially Fig. 29A). Site of origin of mesopleuro-mesosubalar subdivided by short median longitudinal ridge in muscle extending to posteroventral mesopleural Aporus. Antecostal projections and longitudinal pro- apodeme (pl2-sa2: Fig. 29A). Mesocoxo-mesosubalar podeal carina absent from all taxa examined. Pro- muscle not observed. podeal spiracle elongate slit (Fig. 61C), covered laterally by sclerotized flap in Metapolybia. Propodeal Metanotum: Posterior mesonoto-metanotal muscle foramen continuous with metacoxal foramina; distinct inserting laterally on anterior margin of metanotum propodeal teeth present (T1t: (Fig. 63D). (t2p-t3: Fig. 29G). Median metapleuro-metanotal muscle arising anterior to paracoxal ridge in Sapyga Petiole: T2 and S2 separated and expanded posteri- (pl3m-t3: Fig. 29D), absent from Vespula. Anterolat- orly in Aporus and Sapyga, fused for most of their eral and posterior metapleuro-metanotal muscles length and less expanded in Metapolybia; lateroven- arise from metapleural apodeme (pl3la,p-t3: tral parts of T2 ventral to spiracle separated as tri- Fig. 29E). Metanoto-metalaterophragmal muscle angular sclerites in Sapyga. Anterior margin of T2 arising from metaphragma, lateral to site of origin of expanded laterally relative to well-developed articu- mesophragmo-metaphragmal muscle, and inserting lating condyle. Longitudinal sulcus and corresponding on inflected lateral part of metanotum (t3-ph3: internal ridge present in posterior part of T2 in Fig. 29E). Metapolybia and Sapyga. Transverse carina posterior to sensillar patches on S2 present in Aporus and Metapectus: Dorsal metapleuro-third axillary sclerite Sapyga, short median longitudinal carina present muscle arising from marginal metapleural apodeme only in Aporus. (mma: Fig. 29D). Lateral metapleuro-metacoxal muscle arising from ventral surface of metapleural Musculature (Fig. 29A–G) apodeme and from metapleuron ventral to metapleu- Pronotum: Pronoto-propleural muscle arising lat- ral apodeme; site of origin of muscle extending dor- eroventral to site of origin of pronoto-postoccipital sally anterior to propodeal spiracle reaching lateral muscle. Lateral and median pronoto-prophragmal part of metaphragma. Metalaterophragmo-metafurcal and anterior pronoto-laterocervical muscles arise muscle arising from inflected lateral part of metano- from dorsal part of pronotum between anterolateral tum and inserting through long tendon on posterolat- pronotal ridge and line corresponding to external eral projection of lateral metafurcal arm (ph3-fu3: transverse pronotal carina. Posterior pronoto- Fig. 29E). Metafurco-second abdominal sternal laterocervical and dorsal pronoto-procoxal muscles muscle arising from along entire length of lateral arise from posterodorsal horizontal area of pronotum metafurcal arm (fu3-S2: Fig. 29E). Metasterno-second delimited anteriorly by external transverse pronotal abdominal sternal muscle arising from metadiscrime- carina. Pronoto-mesobasalar muscle absent. nal lamella dorsal to site of origin of median metafurco-metacoxal muscle (s3-S2, fu3m-cx3: Propectus: Profurco-protrochanteral muscle arising Fig. 29F). from ventral profurcal lamella, inserting on protro- chanteral apodeme sharing common tendon with Propodeum: Propodeo-second abdominal sternal propleuro-protrochanteral muscle. muscle arising anterodorsal to site of origin of metaphragmo-second abdominal tergal muscle (T1- Mesopectus: Intersegmental membrane-mesobasalar S2, ph3-T2: Fig. 29E). muscle arising anterior to anterior mesopleural apodeme partly from occlusor muscle apodeme of RESULTS – CHARACTER LIST anterior thoracic spiracle just posterior to site of origin of anterior thoracic spiracle occlusor muscle For more than a decade, analyses of higher-level (ism1,2-ba2: Fig. 29B). Mesopleuro-mesobasalar hymenopteran relationships have been undertaken in muscle arising posterior to anterior mesopleural a numerical cladistic context. As data sets have accu- apodeme (pl2-ba2: Fig. 29B). Mesopleuro-mesocoxal mulated, been analysed and reanalysed, character and second mesopleuro-mesonotal muscles arise definitions and scorings have been refined and cor- partly from mesopleural apodeme, partly from wall of rected in the iterative process necessary to progress mesopleuron (pl2-cx2, pl2-t2b: Fig. 29B). Median with any phylogenetic problem. This progress has mesofurco-mesotrochanteral muscle arising from also obscured the initial sources of many of the char- lateral end of mesofurcal bridge. Posterior acters now considered relevant. Rather than pains- mesopleuro-mesofurcal muscle arising from ventral takingly retrace the path of each individual character surface of lateral mesofurcal arm and inserting on from where it was first formulated in a phylogenetic

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 61 context to its present interpretation, we here list (1) short dorsal to transverse pronotal sulcus (N1s: what we perceive to be the most important studies Fig. 37B, C) that have contributed to the mesosomal data set This character is apparently highly variable both analysed presently: Rasnitsyn (1969, 1980, 1988); within and amongst superfamilies. State 0 is probably Königsmann (1976, 1977, 1978a, b); Shcherbakov the ground plan feature for Hymenoptera and (1980, 1981); Gibson (1985, 1986, 1993, 1999); perhaps also for Apocrita. Johnson (1988); Whitfield et al. (1989); Heraty et al. (1994); Basibuyuk & Quicke (1995); Ronquist et al. 5. Pronotum, orientation (1999); Vilhelmsen (1997, 2000a, b, 2001); Schulmeis- (0) pronotum posterior to transverse pronotal sulcus ter (2003b, c); Krogmann & Vilhelmsen (2006). Many oblique (N1s: Fig. 37D) of these sources will be cited again in the following (1) pronotum posterior to transverse pronotal sulcus when discussing individual characters. vertical (N1s: Fig. 37A, E) The scorings of the characters defined here are Scored as inapplicable when the pronotum is short listed in a character matrix in Appendix 5. This dorsal to the transverse pronotal sulcus (previous matrix is available from the senior author on request. character). The pronotum is vertical in Tenthredi- noidea, Siricidae, Orussidae, Cynipoidea, Evaniidae, PRONOTUM Platygastroidea, and most Proctotrupoidea as well as occasional taxa in other apocritan superfamilies. 1. Pronotum, anteromedially (0) protruding (Fig. 37A, D) 6. Pronotum, transverse carina (1) reduced (Fig. 37B, E) (0) absent (Figs 36C, 37B) The area referred to is the anteromedian part of the (1) present, traversing pronotum dorsal to transverse pronotum situated anterior to the transverse pronotal pronotal sulcus (N1c: Figs 36B, D, 37A, D, E) sulcus (N1s: Fig. 37A, C–F) and its corresponding A transverse carina, laterally extended more or less internal ridge. This sulcus is not to be confused with vertically, is present in Mymarommatidae, some Cyn- another sulcus extending along the anteromedian ipoidea, Evaniidae, Platygastroidea, Proctotrupoidea, margin of the pronotum in many taxa, ventrally cor- and Stephanidae, as well as a few more scattered responding to an inflection. This character is appar- taxa. The carina has been scored as present even if it ently highly variable both within and amongst is not continuous medially. superfamilies. State 0 is probably the ground plan feature for Apocrita. 7. Pronotum, anterior surface 2. Pronotum, anteroventral longitudinal carinae (0) convex or straight, not accommodating head (0) absent (Fig. 36B, C, D) (1) two parallel carinae with concave area in between (1) concave, smooth, delimited by lateral projections, present accommodating head (Fig. 36A) Scored as inapplicable when the pronotum is not State 1 is an autapomorphy of Siricidae; it is paral- developed anteriorly (see previous character). State 1 leled in a few Aculeata. is present only in a couple of Platygastroidea, Poecil- ospilus (Diapriidae) and Megischus (Stephanidae). At 8. Pronotum, dorsomedially least in Platygastroidea, the longitudinal carina (0) without shelf (Fig. 36E, F) articulates with the dorsal part of the propectus. (1) with smooth shelf accommodating prophragma State 1 is observed in some braconids and in Dinapsis 3. Pronotum, admedian pronotal pits (Megalyridae). (0) absent (Fig. 36A, B, D) (1) pits corresponding to internal concavities present 9. Pronotum, submedian apodeme (adp: Fig. 36C) (0) absent (Fig. 36E) Distinct pits are situated submedially close to the (1) present (N1a: Fig. 36F) transverse pronotal sulcus in all Cynipoidea except These apodemes, when present, are situated on the Diplolepis; less distinct pits are present in some interior surface of the pronotum dorsal to the position Diapriidae. Internally, a corresponding set of small of the transverse pronotal sulcus externally. They pits is situated just lateral to the position of the serve as sites of attachment for the pronoto- external pits. propleural, anterior pronoto-laterocervical , pronoto- postoccipital and median pronoto-prophragmal 4. Pronotum, length muscles (Fig. 19B). The apodemes are present in (0) long dorsal to transverse pronotal sulcus (N1s: Helorus, Vanhornia, and Proctotrupidae, being espe- Fig. 37A, D, E) cially well developed in the latter.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 62 L. VILHELMSEN ET AL.

10. Pronotum, anterolateral corners (2) visible, surrounded by continuous cuticle (sp1: (0) rounded (Fig. 36F) Fig. 37C) (1) with distinct notch accommodating anterolateral A concealed anterior thoracic spiracle (state 1) is corner of mesoscutum (Fig. 36E: notch) observed in Orussidae and many Apocrita, often being The notch, best seen in dorsal view, is present in correlated with the presence of a pronotal lobe. Ceraphron and Megaspilus, but not Lagynodes;itis Having the spiracle surrounded by pronotal cuticle thus uncertain if it is an autapomorphy of the Cer- that cannot convincingly be inferred to derive from a aphronoidea. prepectus (e.g. a pronotal inflection, see below) is only observed in Megalyroidea, some Ceraphronoidea and 11. Pronotum, internal anterolateral ridge Proctotrupidae, Pelecinus, and Gonatocerus (0) absent or weakly developed (Fig. 36F) (Mymaridae). (1) distinct transverse ridge present anterolaterally (apr: Fig. 36E) 15. Pronotum, mesopleural attachment The ridge is best seen in dorsal view as a paired (0) movable relative to mesopleuron, or not abutting horizontal structure at the anterolateral corners of (1) rigidly attached to mesopleuron the pronotum. The paired ridges are usually not con- This character has been retained, even though the tinuous medially. This trait is perhaps an autapomor- presence of a pronotum rigidly attached to the phy of the Evaniomorpha (with reversals in mesopleuron is obviously correlated with the fusion of Evaniidae), but has also evolved independently in a the prepectus to the pronotum (see below). The few other apocritan taxa. immovable pronotum occurs in only a few non- apocritan wasps (e.g. Tenthredinoidea), but most Apo- 12. Pronotum, posterodorsal corner crita display this feature (exceptions: Stephanidae, (0) without notch (Fig. 38B) Chalcidoidea, Monomachus, and some Aculeata). (1) with notch above anterior spiracle, accommodat- However, it is unlikely to be a ground plan feature of ing tegula (notch: Fig. 37C, F) Apocrita, and according to Gibson (1985, 1999), the A distinct notch in the posterodorsal corner of the close association between the pronotum and the pronotum is observed in Tenthredinoidea, Cynipoidea, mesopleuron evolved several times independently Megalyroidea, Platygastroidea, Stephanoidea, and within the group. many Proctotrupoidea. The presence of the notch is probably correlated with the presence of a dorsally 16. Pronotum, lateroventral corners (ORDERED) extended pronotal inflection in the taxa that have the (0) not projecting medially (Fig. 36A–C) inflection (see characters 19 and 20). (1) with medioventral projections abutting mesopleu- ron (mvp: Fig. 36E) 13. Pronotum, posterolateral margin (UNORDERED) (2) fused, forming bridge behind procoxae (N1b: (0) with incurvation accommodating anterior spiracle Fig. 36D, F) (sp1: Figs 37E, F, 48A) Medioventral projections on the lateroventral corners (1) straight (Fig. 37C) of the pronotum seem to be a likely intermediate step (2) with extended lobe (N1l: Figs 37B, D, 48B) prior to the formation of a continuous ventral prono- The configuration of the anterior thoracic spiracle in tal sclerotization. We did not observe a continuous relation to the posterior margin of the pronotum is sclerotization in Vanhornia as reported by Gibson dealt with in this and the following character in order (1985, 1999). Vanhornia has a pair of broad median to maximize the information content of this feature. projections that articulate with the lateral margins of However, it also has the effect of making the charac- an anterior projection on the ventral part of the ters more variable. The pronotal lobe (state 2) is mesopleuron, but the pronotal structures are not observed in Syntexis, Lagynodes, Orussidae, fused medially. The prospinasterno-procoxal muscle Stephanidae, Trigonalidae, Braconidae, Aculeata, arises from the anterior projection of the mesopleuron most Evanioidea, and a few Proctotrupoidea; it does and therefore the projection could be homologous with not always cover the spiracle. The variation in the the prospinasternum, which probably secondarily occurrence of the other two states of this character fused with the anterior margin of the mesopleuron. In within superfamilies is even higher. Proctotrupidae and Pelecinus the prospinasterno- procoxal muscle arises from the ventral pronotal scle- 14. Pronotum, anterior spiracle (UNORDERED) rotization (psa: Figs 19F, 36F), whereas in (0) visible, posterior to posterolateral margin of Platygastroidea the muscle arises from the anterior pronotum (sp1: Figs 37D, E, 38C, 48A) margin of the mesopleuron. It is possible that the (1) covered by posterolateral margin of pronotum pronotal bridge developed by the fusion of the median (Figs 37B, 48B) projections and the prospinasternum in Proctotrupi-

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 63 dae and Pelecinus, but by the fusion of the median break down the prepectus character complex into projections only in Platygastroidea, where the pro- more topologically restricted, observable features that spinasternum is fused to the mesopectus like in most can be scored without building too many assumptions other apocritans. Besides Platygastroidea and most of into the coding. the Proctotrupoidea not having a continuous pronotal sclerotization, the median projections are observed in 18. Prepectus, externally Apoidea, Ceraphronoidea, and Megalyridae. (0) exposed (pre: Fig. 38A) (1) concealed (pre: Fig. 37A) This character has been scored as inapplicable when PREPECTUS an independent prepectus is absent (see previous 17. Prepectus character). The exposed prepectus is only observed in (0) absent (Figs 37F, 38B, D) some ‘Symphyta’ and in Chalcidoidea. (1) independent sclerite present (pre: Figs 37A, 38A) The prepectus is present as an independent sclerite in 19. Prepectus, posterior pronotal inflection most non-apocritan wasps but only in Stephanidae, (0) absent (Fig. 36E) Chalcidoidea, some Aculeata (Chrysidoidea), and a (1) present (ppi: Figs 37F, 38B, D) few Proctotrupoidea amongst the Apocrita; in at least Gibson (1985, 1999) suggested the posterior pronotal the Chalcidoidea, the presence of an independent, inflection to be homologous with the prepectus. exposed (see following character) prepectus is likely to Accepting this, this character has been scored as be a reversal (Gibson, 1985, 1999). Gibson (1985, inapplicable when an independent prepectus is 1999) hypothesized detailed transformation series for present. Here, the posterior pronotal inflection has the different configurations of the prepectus and its been scored as present whenever a distinctly inflected putative homologues in Hymenoptera. His evidence ridge posteriorly on the lateral pronotal margin is for fusion of the prepectus with the pronotum is based observed, not just when a tongue-and-groove mecha- partly on the presence and position of the occlusor nism is developed; hence, the feature is present in muscle apodeme, which are hypothesized to indicate more taxa than mentioned by Gibson (1985, 1999). the fate of the prepectus. However, sites of insertion The inflection has been observed in Cynipoidea, Eva- of muscles are easily transferred from one sclerite to niidae, Mymarommatidae, Platygastroidea, Trigona- another (Mikó et al., 2007). Furthermore, the lidae, and most Proctotrupoidea. apodeme is absent in many taxa that have a fan- shaped occlusor muscle. The intersegmental 20. Prepectus/posterior pronotal inflection, dorsal membrane-mesobasalar muscle arises from the inter- extent segmental membrane anterior to the prepectus just (0) not extending dorsal to anterior spiracle ventral to the site of origin of the occlusor muscle of (1) extending dorsal to anterior spiracle (ppi, sp1: the anterior thoracic spiracle in many Hymenoptera. Figs 37F, 38B, D) The muscle was not observed in Athalia, Xiphydria, Scored as inapplicable when neither independent and Orussus;inMacroxyela, it arises from the ante- prepectus nor posterior pronotal inflection could be rior margin of the prepectus; in Onycholyda, it arises identified, or if an anterior thoracic spiracle could not from an apodeme on the anterior margin of the be observed (Mymarommatidae). State 1 is observed mesopectus that also serves as the site of origin of the in Cynipoidea, Evaniidae, Platygastroidea, Trigona- anterior thoracic spiracle occlusor muscle. It seems lidae, and most Proctotrupoidea and Chrysidoidea. that in the ‘Symphyta’ where it is present the inter- segmental membrane-mesobasalar muscle corrobo- 21. Prepectus/posterior pronotal inflection, ventral rates the identity of the prepectus as indicated by the configuration (ORDERED) attachment of the anterior thoracic spiracle occlusor (0) separate or at most slightly abutting (ppi: muscle; however, this is rarely the case within the Figs 37F, 38D) Apocrita. In some Apocrita both muscles arise at least (1) broadly abutting partly from the pronotum or in some Vespoidea from (2) fused together or fused with prospinasternum the anterior margin of the mesopectus, but in most (pre: Fig. 38A) cases the occlusor muscle arises from the pronotum or Scored as inapplicable when neither independent from the prepectus, whereas the intersegmental prepectus nor posterior pronotal inflection could be membrane-mesobasalar muscle arises from the ante- identified. The fused prepecti occur in many Chalci- rior margin of the mesopectus. The latter situation doidea, but only rarely outside this superfamily. occurs in Ropronia, although this taxon has an inde- pendent prepectus (Fig. 19D). Because of the above- 22. Position of anterior thoracic spiracle occlusor discussed uncertainties, it has been attempted to muscle apodeme

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 64 L. VILHELMSEN ET AL.

(0) midway on posterolateral pronotal margin (oma: (0) at anterodorsal corners of propleura (cvpr: Fig. 38D) Fig. 40B) (1) ventrally on posterolateral pronotal margin (oma: (1) ventral to anterodorsal corners of propleura (cvpr: Fig. 36E) Fig. 40A) The presence of a spiracular occlusor apodeme ven- Pamphiliidae, Cephidae, Xiphydriidae, Orussidae, trally on the pronotum is observed only in Trigona- and most Apocrita have the cervical prominences situ- lidae and some Ceraphronoidea. This character has ated ventral to the anterodorsal corners of the propec- been scored as inapplicable when the occlusor muscle tus. This character is possibly correlated with the apodeme is absent (e.g. Evanioidea), or when it is previous one, and the reversals within Apocrita again located on the anterior margin of the mesopleuron correlated with small body size. (e.g. Vespoidea, Onycholyda) or on the prepectus (e.g. Chrysis). 27. Propleuron, cervical apodeme (ORDERED) (0) entirely absent 23. Position, anterior thoracic spiracle (ORDERED) (1) short, inconspicuous (cva: Fig. 40C) (0) more than one spiracular diameter from postero- (2) well developed, distinct (cva: Fig. 40F) dorsal corner of pronotum (sp1: Figs 37E, F, 48A) A well-developed cervical apodeme is present in most (1) at posterodorsal corner of pronotum (sp1: Hymenoptera. The most notable exception is Fig. 38C) Xyelidae, where only a small apodeme is present, but (2) dorsally between pronotum and mesoscutum the condition in this family has been interpreted as a The position of the anterior thoracic spiracle at the precursor to the fully developed apodeme in other posterodorsal corner of the pronotum (state 1) is Hymenoptera (Vilhelmsen, 2000b). A few, usually observed only in a few Aculeata and all Ichneu- small apocritans have the apodeme reduced or even monoidea, probably being an autapomorphy for the absent, but these instances are obviously secondary latter. Having the anterior thoracic spiracle situated reversals. dorsally between the laterodorsal pronotal margin and the lateral margin of the mesonotum (state 2) is 28. Propleuron, cervical apodeme configuration an autapomorphy for Chalcidoidea. (0) separate from propleura posteriorly (cva: Fig. 40F) 24. Projection ventral to anterior spiracle (1) curves laterally to fuse with propleura posteriorly (0) absent (Fig. 37D) Having the cervical apodeme posteriorly connected to (1) narrow projection ventral to spiracle present the propleuron is only observed in Orussidae and a (Fig. 38C) few Apocrita [Pseudofoenus (Gasteruptiidae) and This character has been scored as inapplicable when Megischus (Stephanidae)]. This character has been the prepectus/pronotal inflection extends dorsal to the scored as inapplicable when the apodeme is weakly anterior thoracic spiracle. The projection ventral to developed or absent. the spiracle is present in most Ichneumonoidea and is probably an autapomorphy for this superfamily. 29. Propleuron, cervical lines (ORDERED) (0) laterocervicalia and propleuron at most articulating CERVICALIA, PROPLEURA (1) laterocervicalia and propleuron partly fused, cer- 25. Propleura, cervical prominences vical line present (0) not retracted, cervical swellings exposed (cvpr: (2) laterocervicalia and propleuron completely fused, Fig. 40B) cervical line absent (1) retracted, swellings concealed (cvpr: Fig. 40A) The laterocervicalia are at least partly fused with the The cervical prominences articulate with the occipital propleura in the hymenopteran ground plan (Vilhelm- condyles on the head capsule, the cervical swellings sen, 2000b). The incomplete fusion (state 1) is only accommodating the sensillae monitoring the position observed in Xyelidae and Blasticotomidae (not of the head. The retracted prominences observed in included in the present study); this state is considered some Orussidae and most Apocrita make for a tighter intermediate between entirely separate cervical scle- articulation between the head and propectus. Some rites in the outgroup and the total fusion observed apocritan taxa (Maaminga, Mymaromma, some Chal- in most Hymenoptera, hence the ordering of this cidoidea) have the cervical swellings exposed; these character. cases are evidently secondary reversals, perhaps cor- related with small body size. 30. Propleura, dorsal part (0) not inflected, sculpture similar to rest of 26. Propleura, position of cervical prominences propleura

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 65

(1) inflected with smooth or shagreened sculpture (2) abutting for most of their length, prosternum (Fig. 40C) partly concealed (pl1, s1: Fig. 39B) The presence of an inflected smooth area dorsally on Most non-apocritan Hymenoptera have the medioven- the propleuron articulating with the pronotum is a tral propleural margins abutting for most of their synapomorphy of the Orussidae and Apocrita that has length, a putative synapomorphy of all Hymenoptera only been reversed in Maaminga.InPantolytomyia except Xyelidae and Tenthredinoidea. Within Apo- (Diapriidae), the dorsal part of the propleuron has crita, Chalcidoidea have the margins diverging pos- been reduced, making this character inapplicable. teriorly, a possible autapomorphy of the superfamily (Krogmann & Vilhelmsen, 2006); this condition is also 31. Dorsal margins of propleura observed in a few Chrysidoidea. Mymaromma could (0) widely separated for most of their length not be scored for this character because the proster- (Fig. 40D, F) num is entirely fused with the propleura (Vilhelmsen (1) abutting for at least half of their length (pl1: & Krogmann, 2006); other Mymarommatidae have Fig. 40E) state 2 (Gibson, Read & Huber, 2007). Having the dorsal margins of the propleura abutting for a considerable length is a synapomorphy of the 36. Propleura, epicoxal lobe Aulacidae and Gasteruptiidae; it is paralleled in (0) posterolateral corner of propleuron not extended Scolebythidae. (Fig. 39A, C) (1) extended as epicoxal lobe, covering procoxa proxi- 32. Propleuron, propleural arm mally (epl: Fig. 39B) (0) absent The epicoxal lobes are found in Evaniidae, Ichneu- (1) present (ppa: Fig. 41A–F) monoidea, Megalyridae, Mymarommatidae, Trigonal- The propleural arm is present in the hymenopteran idae, Platygastroidea, most Proctotrupoidea, and ground plan, but also observed in some outgroup taxa. some Stephanidae and Aculeata. They are secondarily absent in Pantolytomyia 37. Propleura, posterolateral groove (Diapriidae) and most Platygastroidea; in the latter, (0) absent (Fig. 41D) the muscles usually attaching to the propleural arm (1) distinct groove dorsally on corners, articulating have been transferred to the profurca (Mikó et al., with pronotum (epl: Fig. 41C) 2007). A posterolateral groove on the propleuron articulating with the posteroventral corners of the pronotum is 33. Configuration, propleural arms found in Orussidae, Megalyridae, Mymarommatidae, (0) erect, not abutting profurca posteriorly (ppa: Braconidae, and a few Ichneumonidae and Aculeata. Fig. 41C, E) (1) horizontal, extending medially posterior to pro- 38. Propleura, prothoracic katepisterna furca (ppa: Fig. 41D, F) (0) absent The propleural arms are extending horizontally pos- (1) present terior to the profurcal arms in Xiphydriidae, most A katepisternum is present in most non-apocritan Evanioidea, and a few additional Apocrita. This char- wasps, being a small exposed sclerite lying in the acter has been scored as inapplicable when the membrane close to the lateral procoxal articulation; it propleural arms are absent. is sometimes subdivided (see Vilhelmsen, 2000b). In Apocrita, the katepisternum when present is usually 34. Propleura, lateroventral carina a small sclerite concealed at the base of the procoxa. (0) absent (Fig. 40B) It is absent from Orussidae, Ceraphronoidea, Chalci- (1) longitudinal carina on lateroventral margin of doidea, most Cynipoidea, most Ichneumonidae, some propleuron present (pl1c: Fig. 40A) Megalyridae, Platygastroidea, many Proctotrupoidea, A longitudinal carina is present at least anteriorly on Trigonalidae, and most Aculeata. In the taxa that the lateral part of the propleuron close to the cervical have the katepisternum absent, a small inflection is prominences in Evaniidae and Cynipoidea, but also often observed on the posterior propleural margin at occurs in some representatives of a number of other the lateral procoxal articulation; this inflection might superfamilies. be homologous with the katepisternum.

35. Propleura, median margins (ORDERED) 39. Propleuron, katepisternum configuration (0) widely separate for their entire length (pl1: (0) abutting propleuron at articulation with procoxa Fig. 39C) (1) separated from propleuron (1) diverging posteriorly, prosternum broadly exposed This character has been scored as inapplicable when (pl1, s1: Fig. 39A) the katepisternum is absent. Having the katepister-

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 66 L. VILHELMSEN ET AL. num separated from the propleuron occurs in the (1) present, low (fu1b: Fig. 41D, E) Tenthredinoidea, but is probably not a ground plan (2) present, high and curving posteriorly (fu1b: feature of the superfamily because Blasticotomidae Fig. 41B) still have the proximal part of the katepisternum in A profurcal bridge is present Xiphydriidae, Orussidae, contact with the propleuron (Vilhelmsen, 2000b). Cynipoidea, Gasteruption (Gasteruptiidae), Evani- idae, Megalyridae, Trigonalidae, and a few Aculeata. In Megalyridae, it is especially developed (state 2), PROSTERNUM, PROFURCA this being an autapomorphy for the family; it is 40. Prosternum, anteroventral part paralleled in a few Vespoidea. (0) at most extending slightly anterior to posterior margin of propleura (Fig. 40D) 47. Profurca, articulation with propleuron (1) extending well anterior to posterior margin of (0) lateral profurcal arm not articulating with propleura (dcl1: Fig. 40F) propleuron All non-apocritan Hymenoptera have state 0 for this (1) lateral profurcal arm articulating with propleuron character. In Apocrita, this character is highly vari- posterodorsally able within and amongst superfamilies. State 1 is an autapomorphy of the Hymenoptera (Vilhelmsen, 2000b), being observed in all members of 41. Prosternal spine the order. (0) absent (Fig. 41D, E) (1) median posteriorly directed spine present (pss: Figs 39B, 41C) FORE LEG A prosternal spine is absent from all non-apocritans. 48. Fore leg, procoxa In Apocrita, this character is highly variable within (0) broad basally, proximal foramen width at least and amongst superfamilies. half maximal width of procoxa (Fig. 42D) 42. Prosternum, laterosternal sclerites (1) reduced basally, proximal foramen width less (0) absent (Fig. 39B) than half maximal width (pcx1: Fig. 42A–C) (1) present (lss: Fig. 39D) A reduction of the proximal, articulating part of the This character is a hymenopteran ground plan procoxa is found in Ceraphronoidea, Chalcidoidea, feature, being present in at least some members of all Cynipoidea, Evaniidae, Ichneumonoidea, Dinapsis non-apocritan superfamilies. In Apocrita, it is only (Megalyridae), Mymarommatidae, Platygastroidea, present in Aulacidae, Gasteruption (Gasteruptiidae), Proctotrupoidea, and most Aculeata. Despite being and Ampulex (Ampulicidae). present in most Apocrita, this state is probably not a ground plan feature of the group, given that it is 43. Prosternum, subdivision absent from Stephanidae, Trigonalidae, Aulacidae, (0) not subdivided (Fig. 41C, D) Gasteruptiidae, and all non-apocritan wasps. (1) transversely subdivided dorsally by deep lateral incisions (s1i: Fig. 41F) 49. Fore leg, procoxal transverse carina State 1 is a putative autapomorphy for the (0) absent (Fig. 42A, B) Scelionidae. (1) developed for at least part of the procoxa (Fig. 42C) 44. Profurca, number of profurcal pits The presence of a transverse carina basally on the (0) one (fu1p: Fig. 41E) procoxa is a putative autapomorphy of the Cy- (1) two (fu1p: Fig. 41D) nipoidea. It also occurs in some representatives of A single profurcal pit is observed in all Cynipoidea many other apocritan superfamilies. except Diplolepis, and in Maaminga and Mymaromma. 50. Fore leg, protibial furrow (0) absent 45. Profurca, anterior apodemes (1) U-shaped furrow present (0) absent or weakly developed (Fig. 40D) Having a U-shaped furrow subdividing a highly modi- (1) well developed, continuous with tendons (apa: fied protibia is an autapomorphy of the Orussidae. It Figs 40F, 41A) indicates the presence of a highly modified subgenual This character is highly variable throughout the organ possibly employed in echolocation in female Hymenoptera. orussids (Vilhelmsen et al., 2001).

46. Profurca, bridge (ORDERED) 51. Fore leg, calcar (0) absent (Fig. 41C) (0) anterior apical protibial spur unmodified

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 67

(1) anterior apical protibial spur modified into calcar 57. Mesonotum, prophragma shape for antenna cleaning (0) bilobed (ph1: Fig. 43A) The modification of the anterior apical protibial spur (1) not subdivided by slit (ph1: Fig. 43B, D) (the calcar) for antenna cleaning is an autapomorphy The prophragma when present is usually subdivided for the Hymenoptera. The protibial spur is second- medially by a longitudinal notch of various extent. It arily simplified in many Tenthredinoidea (Basibuyuk is undivided in Mymaromma, Diapriidae, and a & Quicke, 1995; Vilhelmsen, 2001). number of representatives of other superfamilies.

52. Fore leg, posterior apical protibial spurs 58. Mesonotum, prophragma laterally (0) absent or reduced (0) not extended, higher submedially than laterally (1) present (ph1: Fig. 43A, B) A well-developed posterior apical protibial spur is (1) extended, higher laterally than submedially and only present in Xyelidae, Tenthredinoidea, Pamphilio- extending to notauli laterally (ph1: Fig. 43D) idea, and Ceraphronoidea amongst the Hymenoptera; In Chalcidoidea the prophragma is expanded laterally it is a putative synapomorphy of all Hymenoptera to form a wide sheet rather than a medial lobe; this is except the three first taxa mentioned, the condition in a putative autapomorphy for the superfamily. Ceraphronoidea being a reversal. 59. Mesonotum, anterior mesoscutal sulcus 53. Fore leg, probasitarsal notches (0) absent (Fig. 43A, D) (0) absent (1) transverse sulcus accommodating dorsal margin (1) present of pronotum present (ams: Fig. 43B) The probasitarsal notch and comb (see following char- The presence of a transverse sulcus anteriorly on the acter) are used in antennae cleaning. Both features mesonotum is developed in most Apocrita and many are developed together in Orussidae and Apocrita. non-apocritan wasps. The sulcus is absent from Chal- However, a probasitarsal notch is present in Cephidae cidoidea and many Chrysidoidea and Vespoidea. The even though this family has not developed a probasi- sulcus accommodates the dorsal margin of the prono- tarsal comb. tum; the presence of the sulcus is probably correlated with having the pronotum immovable relative to the 54. Fore leg, probasitarsal combs mesopleuron. (0) absent or weakly developed (1) present, well developed 60. Mesonotum, anterior mesoscutal sulcus This character is strongly correlated with the previ- configuration ous one, probasitarsal notches and combs usually (0) at most extending slightly onto prophragma occurring together. anteromedially (1) with distinct ventral extension onto prophragma 55. Fore leg, probasitarsal spur anteromedially (ams: Fig. 43D) (0) absent State 1 is observed in Siricidae, some Ichneumonidae, (1) present Platygastroidea (when a prophragma can be dis- The presence of a probasitarsal spur extending cerned), most Proctotrupoidea, and Metapolybia beyond the articulation between the first and second (Vespidae). protarsomeres is an autapomorphy of Orussidae. Like the modified protibia (see character 50), this feature MESOSCUTUM is probably involved in echolocation (Vilhelmsen et al., 2001). 61. Mesonotum, median mesoscutal sulcus and ridge (ORDERED) (0) both sulcus and ridge well developed (mms, mmsr: Fig. 44A, C, E) PROPHRAGMA (1) only sulcus developed 56. Mesonotum, prophragma (2) both sulcus and ridge absent, at least posteriorly (0) absent or reduced (Fig. 43C) (Fig. 44B, D, F) (1) well developed (ph1: Fig. 43A, B, D) Most non-apocritans have a well-developed mesoscu- The prophragma is reduced or absent in Gasterupti- tal sulcus and corresponding internal ridge, excep- idae, most Platygastroidea, and a number of other tions being the Siricidae and Orussidae. In Apocrita, taxa scattered across the entire Hymenoptera. When only Megalyridae and some Stephanidae and Ceraph- the prophragma is entirely absent, the other charac- ronoidea have the sulcus and ridge fully developed. A ters dealing with features on the prophragma have few Cynipoidea, Chalcidoidea, and Scelionidae have been scored as inapplicable. only the external sulcus developed.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 68 L. VILHELMSEN ET AL.

62. Mesonotum, anteroadmedian signum 66. Mesonotum, parascutal carina (0) absent (Fig. 44D) (0) absent (1) present (aas: Fig. 44B) (1) area accommodating tegula delimited by longitu- The anteroadmedian signa indicate the anterior dinal carina present (psc: Fig. 44A, B) attachment points of the longitudinal indirect wing The parascutal carina is present in Xiphydriidae, depressors (prophragmo-mesophragmal muscle). some Orussidae, and most Apocrita, making it a puta- They are absent from Chalcidoidea, Ichneumonoidea, tive synapomorphy for these taxa. Many Chrysidoidea Maaminga,andMymaromma, but present in most have the carina absent, but this is probably a representatives of all other apocritan superfamilies as reversal. well as in Orussus and Xiphydria. 67. Mesonotum, transscutal articulation (UNOR- 63. Mesonotum, notauli and notaular ridges DERED) (ORDERED) (0) absent (0) both (external) notauli and (internal) notaular (1) present, not less sclerotized than adjacent cuticle ridges developed far back on the mesoscutum (not, (2) present, less sclerotized than adjacent cuticle (tsa: notr: Fig. 44A, B, D, F) Fig. 44A–F) (1) only notauli developed State 1 is observed only in Siricidae, State 2 in (2) notauli and notaular ridges absent, at least pos- Xiphydriidae, Orussidae, and most Apocrita. Vilhelm- teriorly (Fig. 44C, E) sen (2001) discussed the possible homology of the Notauli and notaular ridges are entirely absent from structure observed in Siricidae with state 2, as sug- Siricidae, Orussidae, Megalyridae, Mymaromma- gested by Rasnitsyn (1988). Here, the character is tidae, and some Ceraphronoidea, Ichneumonidae, treated as unordered, following Gibson (1985) who Platygastroidea, Proctotrupoidea, and Aculeata. considered state 1 and 2 independently derived. The Notauli without corresponding internal ridges are transscutal articulation is an important element in found in most Cynipoidea, some Braconidae, and the flight mechanism of most Hymenoptera. The ver- Pelecinus. tical movements of the wings are caused by raising and lowering the mesonotum. However, this move- 64. Mesonotum, notauli configuration (ORDERED) ment is not sufficient for flight; the wing must also (0) separate, do not join prior to reaching transscutal have a rotational movement around its longitudinal articulation (not, tsa: Fig. 44D) axis. The rotational movement of the wing is trans- (1) converge medially to join prior to reaching articu- mitted from the rocking movement of the first axillary lation (not, tsa: Fig. 44A) sclerite as a result of pivoting the anterior and pos- (2) merge into U- or V-shaped sulcus, not reaching terior notal wing processes towards each other during articulation (not, tsa: Fig. 44B) the downstroke (Gibson, 1986). A transverse flexion This character is scored as inapplicable when the line across the mesonotum is likely to facilitate the notauli are entirely absent (see previous character). approachment of the anterior and posterior notal Hymenopteran taxa without the transscutal articula- wing processes. In non-apocritan Hymenoptera except tion but with notauli invariably have the latter con- Orussidae and Xiphydriidae there is a lateral mem- verging medially at the end of the median mesoscutal branous incision on the lateral margin of the mesono- sulcus well anterior to the mesoscutellum and were tum just posterior to the anterior notal wing process. assigned state 1. This state is only found in Bra- This incision enables the anterior movement of the conidae and a few other taxa amongst the Apocrita, posterior notal wing process via the rotation of the most of which have the notauli well separated. In anteroventral extension of the axilla. However, this is Gasteruptiidae, the notauli fuse into an U- or only possible because the mesonotum is compara- V-shaped sulcus well anterior to the articulation; this tively thin and weakly sclerotized in these taxa, and is an autapomorphy of the family. therefore flexible enough to deform during the down- stroke. In Xiphydriidae, Orussidae, and most Apocri- 65. Mesonotum, parapside tan taxa, the mesonotum is thicker and more strongly (0) absent (Fig. 44C, D) sclerotized and hence not flexible enough to allow the (1) present (par: Fig. 44A, B) required forward movement of the posterior notal Parapsides are present in Xiphydriidae and wing process except along the transscutal articula- Orussidae and many Apocrita, making it a putative tion. The transscutal articulation actually appears to synapomorphy for these taxa (Gibson, 1985). form a median continuation of the lateral incisions in However, they are secondarily absent in Chalcidoidea, the mesonotum observed in most ‘Symphyta’, connect- Ichneumonoidea, and a number of different taxa ing the incisions on opposite sides of the mesonotum. within other superfamilies. Secondary reduction of the transscutal articulation

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 69 within Apocrita is observed only in taxa having the (0) absent (Fig. 46B–D) mesonotum thinner and/or more weakly sclerotized, (1) present (axph: Fig. 46A) such as most Ichneumonidae, a few Proctotrupoidea, The axillar phragma is present in Chalcidoidea and and some Cynipoidea (Gibson, 1985). Mymarommatidae, being a putative synapomorphy for these two taxa (Gibson, 1986). 68. Mesonotum, transscutal ridge (0) absent (Figs 44F, 46C, D) MESOSCUTELLUM (1) present (tsr: Figs 44E, 46A, B) The transscutal ridge is an internal transverse ridge 73. Mesonotum, scutoscutellar sulcus lying just posterior to the transscutal articulation. It (0) different configuration than state 1 (sss: is only observed within Apocrita, being absent from Fig. 45A–C, F) Evaniidae, Ichneumonoidea, Platygastroidea, most (1) consisting of one or two wide depressions with Proctotrupoidea, Trigonalidae, and most Aculeata. small pits (sss: Fig. 45E) State 1 is observed in Platygastridae and in many 69. Mesonotum, size of dorsal axillar surface Cynipoidea and Diapriidae. (0) large, scutoscutellar sulcus U- or V-shaped (ax: 74. Mesonotum, scutoscutellar ridge Fig. 45A, C) (0) absent or weakly developed medially (ssr: (1) small, scutoscutellar sulcus straight medially (ax: Fig. 46D) Fig. 45B, E, F) (1) present, distinct throughout (ssr: Fig. 46A–C) The size of the dorsal axillar surfaces are estimated The scutoscutellar ridge corresponds to the scutoscu- by the configuration of the scutoscutellar sulcus, a tellar sulcus externally, forming the anterior bound- straight sulcus indicating small axillae being discon- ary of the mesoscutellum internally. It is reduced or tinuous medially. Large axillar surfaces are found in absent medially in Mymarommatidae, many Cyn- most non-apocritan Hymenoptera but only in ipoidea, and a few additional taxa. Stephanidae, Megalyridae, Ceraphronoidea, and a few other taxa amongst Apocrita. Large axillar sur- 75. Mesonotum, configuration of scutoscutellar ridge faces are probably a ground plan feature of the Apo- (0) reaching transscutal ridge/articulation medially crita, being found in putatively basal taxa (e.g. (ssr, tsr: Fig. 46A, C) Stephanidae). The dorsal axillar surface is enlarged (1) not reaching transscutal ridge/articulation (ssr, in those apocritan taxa in which the posterior tsr: Fig. 46B) mesonoto-mesotrochanteral or the mesonoto- This character has been scored as inapplicable when mesolaterophragmal muscle arises internally from the scutoscutellar ridge is not developed medially (see the dorsal axillar area (e.g. Fig. 17E) and therefore previous character), and/or the transscutal ridge/ might be a plesiomorphic state for Apocrita (Gibson, articulation is absent. Xiphydriidae, Orussidae, 1985). Stephanidae, and Trigonalidae have state 0 for this character, making it reasonable to assume that this is 70. Mesonotum, axillar carina the ground plan feature of the Apocrita. In the (0) absent remaining Apocrita, this character is somewhat (1) longitudinal carina extending dorsally from variable. scutellar arm present (axc: Fig. 45A, C, D) The axillar carina extending across the axilla and 76. Mesonotum, internal median longitudinal scu- separating the dorsal from the lateral axillar surface toscutellar ridge is found in Xiphydriidae, Orussidae, and most Apo- (0) absent (Fig. 46A) crita, being a putative synapomorphy for these taxa. (1) present (Fig. 46C) Only few apocritan taxa have this feature absent. A short longitudinal ridge extends posteriorly from the transscutal ridge into the lumen of the mesoscu- 71. Mesonotum, lateral corners of axillae tellum in some Vespoidea, but does not reach beyond (0) rounded, no distinct projection dorsally (Fig. 45A, halfway along the length of the mesoscutellum. D, E) (1) axillar carina with distinct posterior projection 77. Mesonotum, internal septum dorsally (axc: Fig. 45C) (0) absent (Fig. 46A, C, D) Having a posterior projection as an extension of the (1) septum with small fenestrum spanning at least axillar carina is observed in some Ichneumonoidea, part of mesoscutellum ventrally (Fig. 46B) Platygastridae, and most Proctotrupoidea. In Maamingidae, Mymarommatidae, and a few Chal- cidoidea the opening into the lumen of the mesoscu- 72. Mesonotum, axillar phragma tellum is reduced in size by the formation of a septum

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 70 L. VILHELMSEN ET AL. spanning the interior part of the mesoscutellum with situated posterior to the origins of the mesoscutellar only a small fenestrum in the middle. It has also been arms, so these two structures are probably not sporadically found in other chalcidoid groups (i.e. homologous. Eulophidae, Agaonidae, Signiphoridae; Krogmann & Vilhelmsen, 2006) and may be plesiomorphic for 82. Mesonotum, mesoscutellar arm configuration Chalcidoidea. (0) narrow, erect, slender (msa: Fig. 45A–B, D–F) (1) broad, low, smooth (msa: Fig. 45C) 78. Mesonotum, longitudinal subdivision of scutellum Flattened and smooth mesoscutellar arms are (0) not subdivided (Fig. 45A–E) observed in some Ichneumonoidea and many (1) subdivided by submedian longitudinal sulci Proctotrupoidea. (sulcus: Fig. 45F) The presence of submedian longitudinal grooves on 83. Mesonotum, origin of mesoscutellar arms the mesoscutellum is a putative autapomorphy of the (0) at posterolateral corners of mesoscutellum (msa: Gasteruptiidae. Fig. 45A–F) (1) anterolaterally on mesoscutellum 79. Mesonotum, frenum Having the mesoscutellar arms arising anterolater- (0) mesoscutellum not subdivided (Fig. 45A, C, E, F) ally on the mesoscutellum is an autapomorphy of the (1) mesoscutellum transversely subdivided by frenal Orussidae (Vilhelmsen, 2003b). line, fold, or carina (frl, frl?: Fig. 45B, D) 84. Mesonotum, mesoscutellar arm distally In many Chalcidoidea (e.g. Krogmann & Vilhelmsen, (0) not extending 2006), the mesoscutellum is externally subdivided by (1) distinctly extended laterally (msa: Fig. 45A–F) a transverse carina or line; the posterior part of the In Orussidae and virtually all Apocrita, the distal end mesoscutellum is then termed the frenum and may of the mesoscutellar arm extends beyond the lateral differ in sculpture from the anterior part. Internally, margin of the axillae. This feature is a putative syna- the subdivision is usually absent, but sometimes pomorphy for these two taxa. marked by a faint transverse line or by a distinct ridge (see Krogmann & Vilhelmsen, 2006: fig. 8B). In addition to some Chalcidoidea, a frenum is also MESOPHRAGMA observed in Maamingidae and Mymarommatidae. 85. Mesophragma, pseudophragmal lobe(s) However, it is possible that the row of small foveolae (0) absent or weakly developed (Fig. 47C) posteriorly on the mesoscutellum observed in some (1) well developed, distinct lobes (ph2l: Fig. 47E, F) Platygastroidea and Proctotrupoidea (see following The pseudophragmal lobes are distinct formations on character) is homologous with the frenum. the anterior margin of the mesophragma, usually extending anteriorly below the posterior margin of 80. Mesonotum, mesoscutellum posteriorly the mesoscutellum. They are present in Cephidae, (0) not as state 1 (Fig. 45A–B, D–F) Siricidae, Xiphydriidae, and most Apocrita, but (1) medially with row of foveolae (frl?: Fig. 45C) there is considerable variation within some A transverse row of small foveolae are situated on the apocritan superfamilies, especially Platygastroidea posterior margin of the mesoscutellum in Trigonal- and Proctotrupoidea. idae, Scelionidae, and many Proctotrupoidea. It is possible that this structure is homologous with the 86. Mesophragma, anterior margin position frenum observed in Chalcidoidea and a few additional (0) at most displaced slightly posterior to posterior taxa (see previous character). However, unlike the margin of mesoscutellum (Fig. 47A, C–F) frenal line, the presence of foveolae is not indicated (1) displaced posteriorly into propodeum for at least internally. the length of the mesoscutellum (gap: Fig. 47B) In state 1, there is a considerable gap between the 81. Mesonotum, mesoscutellar appendage median part of the mesophragma and the posterior (0) absent or weakly developed margin of the mesoscutellum. This trait is a putative (1) projection separated from scutellum by distinct autapomorphy of the Apoidea, but it is paralleled in line present Cephalonomia (Bethylidae). In many non-apocritan Hymenoptera, a small area posterior to the mesoscutellum proper is delimited by 87. Mesophragma, mesophragmal pockets a narrow line (see Vilhelmsen, 2000a: fig. 2A). It is (0) weakly developed, no curved line anterodorsally presumably a ground plan feature of the on mesophragma (Fig. 47A) Hymenoptera; it is not observed in any Apocrita. (1) well developed, with deeply curved posterior Unlike a frenum, the scutoscutellar appendage is margin (ph2p: Fig. 47C, D)

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 71

The presence of these pockets submedially on the 91. Mesophragma, mesolaterophragmal apodeme anterodorsal part of the mesophragma is indicated by shape the distinct curvature of the line marking the poste- (0) short, rounded rior boundary of the pocket. The presence of the (1) elongate, slender (ph2a: Fig. 47E, F) pockets is a ground plan trait of the Hymenoptera, as This character has been scored as inapplicable when they are observed in most non-apocritan wasps. They the mesolaterophragmal lobes are reduced. Xiphydri- are reduced in many Apocrita, notably Chalcidoidea, idae and most Apocrita have the mesolaterophragmal Cynipoidea, Gasteruptiidae, Megalyridae, Platygas- lobes slender; as the lobes are absent in Orussidae, it troidea, Diapriidae, Heloridae, and Apoidea. is uncertain whether this character is a synapomor- phy of Xiphydriidae, Orussidae, and Apocrita. In addi- 88. Mesophragma, median mesophragmal longitudi- tion, Scelionidae and many Braconidae as well as a nal ridge few additional taxa have the lobes short; however, (0) absent or weakly developed (Fig. 47C, F) this is probably secondary. (1) distinct ridge extending ventrally for most of phragma (ph2r: Fig. 47E) 92. Mesophragma, mesopostnotum The presence of a well-developed longitudinal ridge (0) exposed ventrally on the mesophragma is evidently a (1) concealed by anterior part of metanotum hymenopteran ground plan feature, being present in The mesophragma is concealed from dorsal view in all non-apocritan wasps as well as in several outgroup Xiphydriidae, Orussidae, and almost all Apocrita, taxa. Amongst Apocrita, only Aulacidae, Gasterupti- making this feature a putative synapomorphy for idae, Stephanidae, and some Braconidae and Apoidea these taxa. The trait is also present in Tremex (Siri- have the ridge well developed. However, it is probably cidae), but this is probably a convergence. an apocritan ground plan feature. 93. Mesophragma, lateral attachment of mesopostno- 89. Mesophragma, mesolaterophragmal lobes tum (ORDERED) (0) reduced or absent (0) broad, exposed (1) present, well developed (ph2a: Fig. 47E, F) (1) invaginated, but still developed Amongst the taxa examined, the mesolaterophragmal (2) reduced, mesopostnotum entirely internal lobes are only absent from Orussidae and a few apo- State 2 is a putative synapomorphy for Xiphydria, critan taxa. The mesolaterophragmal lobes might be Orussoidea, and Apocrita. State 1, present in Cephus developed at the site of insertion of the mesofurco- and Siricidae, is here interpreted as an intermediate mesolaterophragmal muscle. The muscle plays an state between states 0 and 2 and hence state 1 is a important role in the steering mechanism during synapomorphy for the more inclusive clade including flight by inducing a longitudinal fold in the fore wing, Cephus and Siricidae as well as the previously men- altering its profile (Nachtigall, Wisser & Eisinger, tioned taxa. 1998). In non-apocritan Hymenoptera there are two 94. Mesophragma, lateral flanges muscles extending between the mesofurca and the (0) absent (Fig. 47A–D, F) mesolaterophragma. In Apocrita usually only the (1) distinct flanges present anterolaterally (Fig. 47E) anterior muscle is present but in Mymaridae, the The presence of lateral extensions in the middle of the muscle is divided into two subunits (Heraty et al., lateral margin of the mesophragma is an autapomor- 1997). The secondary subdivision of the muscle phy of the Gasteruptiidae. perhaps enables more complex wing folding and therefore a mechanism for changing wing profile.

90. Mesophragma, number of mesolaterophragmal MESOPECTUS, DORSAL SCLERITES lobes 95. Mesopectus, configuration with mesonotum (0) one (ph2a: Fig. 47E) (0) not broadly abutting, tegula and pronotum adja- (1) two (ph2a: Fig. 47F) cent (tg, N1l: Fig. 48A, C) This character has been scored as inapplicable when (1) abutting for considerable distance, tegula well the mesolaterophragmal lobes are reduced. Two lobes separated from pronotum (N2, pl2: Fig. 48B) or projections variously developed can be observed Having the mesonotum adjacent to the dorsal part of next to each other anterolaterally on the meso- the mesopectus and not separated by the pronotum is phragma in Xiphydriidae, Ceraphronoidea, Cyn- an autapomorphy of the Chalcidoidea, where the ipoidea, Diapriidae, and many other Proctotrupoidea. dorsal part of the prepectus abuts the mesonotum In other taxa, at most one projection is present on laterally. In Apoidea and a few additional Aculeata, each side. the mesonotum abuts the mesopleural arm; these

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 72 L. VILHELMSEN ET AL. taxa have also been scored state 1. In Mymaromma, Xyelidae and the Orussidae. It is absent in all Apo- the tegula is absent, and the mesonotum abuts the crita. Gibson (1985, 1993) hypothesized that the mesopleural arm. However, the parascutal carina, homologous structure to the sclerite in Xyeloidea is which delimits the area laterally on the mesonotum still attached to the mesopleuron as the anepisternum that accommodates the tegula, anteriorly reaches the and only became detached in non-xyelid lateral pronotal corner; this is also the condition in Hymenoptera, this being an autapomorphy of the taxa with a tegula that have state 0, so this state has latter. The postspiracular sclerite has subsequently also been assigned to Mymaromma. been lost in several instances, notably in the Orussidae and Apocrita, and this is a putative syna- 96. Mesopectus, tegula configuration pomorphy for these two taxa. (0) exposed (tg: Fig. 48A–C) (1) concealed by dorsolateral corner of pronotum 100. Mesopleuron, posterior thoracic spiracle configu- This character has been scored as inapplicable in taxa ration (UNORDERED) that have the tegula absent. A concealed tegula is (0) exposed, in concavity in mesopleural margin (sp2: observed in Syntexis (Anaxyelidae) and Siricidae, Fig. 48C) being a putative synapomorphy for these taxa. (1) exposed, above mesopleural margin (2) not visible externally (Fig. 48A, B, D) 97. Mesopleuron, external part of mesobasalare Most non-apocritan wasps have the posterior thoracic (0) not enlarged (Fig. 48F) spiracle externally visible. Orussidae and most Apo- (1) conspicuously enlarged, extending ventral to crita have the spiracle concealed or even absent; it anterior spiracle (Fig. 48E) was not possible to discern between concealment and An enlarged external basalare is observed in absence of the spiracle because this fragile structure Orussidae and Stephanidae. The phylogenetic signifi- was often destroyed during dissection and the condi- cance of the distribution of this trait is uncertain tion could not be properly evaluated. The absence of (Vilhelmsen, 2001). an externally visible posterior thoracic spiracle is probably a synapomorphy of Orussidae and Apocrita, 98. Mesopleuron, basalar apodeme the few instances of an exposed spiracle in Apocrita (0) large, cup-shaped (baa: Fig. 48E) being reversals. (1) reduced, tendon-like (Fig. 48F) A large disk-like or cup-shaped apodeme receives 101. Mesopleuron, supramesopleural sclerite mesopleuro- and mesocoxo-mesobasalar muscles (0) absent (Fig. 48A) (when present; see Daly, 1963) ventrally in all non- (1) sclerite between mesopleuron and metapleural apocritan wasps. In most Apocrita, the apodeme is arm present (sms: Fig. 48C, D) reduced to a small sclerotization or tendon with This sclerite, when present, is situated in the position hardly any expansion ventrally. The large apodeme is where the posterior spiracle is usually observed; in observed only in Stephanidae, Aulacidae, Gasterup- some instances (e.g. Trigonalidae), the sclerite might tion (Gasteruptiidae), Ichneumonoidea, Pelecinus, serve to conceal the spiracle. The supramesopleural and Plumarius (Plumaridae). The presence of the sclerite is present in Evaniella (Evaniidae), Trigonal- large apodeme is probably an apocritan ground plan idae, and most Aculeata. feature that has been repeatedly reduced. The enlarged and cup-shaped basalar apodeme is corre- lated with an enlarged mesopleuro-mesobasalar MESOPECTUS, LATERALLY muscle. The muscle is most developed in Orussus and 102. Mesopleuron, mesepimeral ridge (ORDERED) Megischus. The unusually enlarged mesopectal site of (0) absent or weakly developed attachment of the muscle is probably made possible (1) distinct ridge extending from dorsal margin of by the reduction of the dorsoventral indirect flight mesopleuron to approximately halfway to mesocoxal muscle in Megischus. This muscle is absent in articulation (mepr: Figs 49B, 50A) Orussus (Gibson, 1985). In these taxa the mesonoto- (2) distinct ridge extending from dorsal margin of mesotrochanteral muscle seems to take the function mesopleuron to mesocoxal articulation (mepr: of the dorsoventral indirect flight muscle. Figs 49A, C, E, 52D) The mesepimeral ridge arises from an internal 99. Mesopleuron, postspiracular sclerite process at the posterodorsal edge of the mesopleuron, (0) absent which corresponds to the subalar pit (Ronquist & (1) present Nordlander, 1989; Mikó et al., 2007). It is adjacent to The postspiracular sclerite is present in most non- the dorsal margin of the mesopleuron and might or apocritan wasps, notable exceptions being the might not reach the lateral mesocoxal articulation.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 73

The ridge posteriorly delimits the site of origin of the second apodeme arising from the posterodorsal edge anterior mesopleuro-mesofurcal muscle, and its of the mesopleuron and extending along the dorsal length correlates with how far ventrally the site of margin of the site of origin of the anterior origin of the muscle extends. The mesopleuro- mesopleuro-mesofurcal muscle (mepr: Fig. 31E). This mesosubalar, mesopleuro-third axillary sclerite and ventrally curving short apodeme could be homologous mesopleuro-metanotal muscle if present arises pos- with the mesepimeral ridge. This supports Shcherba- terodorsal to the mesepimeral ridge. The mesopleuro- kov’s (1981) hypothesis that the mesepimeral ridge third axillary sclerite of the fore wing, the second and mesopleural ridge are not homologous structures. mesopleuro-mesonotal, and the mesopleuro- In the taxa where only one ridge is present postero- mesocoxal muscles arise anterior to the site of origin dorsally on the mesopleuron, it may be identified by of the anterior mesopleuro-mesofurcal muscle. The its position relative to the sites of origin of the second mesepimeral ridge is present in many apocritan taxa. mesopleuro-mesonotal and anterior mesopleuro- It does not extend all the way to the lateral mesocoxal mesofurcal muscles (Shcherbakov, 1981; see also pre- articulation in Evanioidea, Megalyridae, vious character). However, in Cephidae the second Maamingidae, Trigonalidae, and some Aculeata. Fully mesopleuro-mesonotal muscle arises partly developed mesepimeral ridges are present in Cyn- anteroventral to the mesopleural ridge making it pos- ipoidea, Ichneumonoidea, Platygastroidea, and most sible that even the anterior mesopleuro-mesofurcal Proctotrupoidea. muscle could secondarily transfer ventral to the ridge in apocritans. 103. Mesopectus, mesopleural ridge The reduction of the mesopleural ridge is a putative (0) absent or reduced to a short vertical apodeme synapomorphy of Xiphydriidae, Orussidae, and Apo- extending ventral to the mesopleural apodeme crita. Amongst the Apocrita a mesopleural ridge is (Figs 49E, 50A) only developed in some Chalcidoidea; this is evidently (1) ridge extending between anterior margin of secondary and constitutes a putative chalcidoid auta- mesopleuron and mesocoxal articulation (mpr: pomorphy (Krogmann & Vilhelmsen, 2006). Fig. 49C) The fully developed mesopleural ridge is observed in 104. Mesopleuron, mesopleural pit all non-apocritan Hymenoptera (mpr: Fig. 31A, B, D) (0) absent except Orussidae, where the ridge is strongly reduced (1) small pit present (Fig. 31E, F), and in Xiphydriidae where it is absent The presence of the mesopleural pit usually indicates (Fig. 31C). When fully developed it extends between where the mesopleural apodeme is invaginated and is the anterior margin of the mesopleuron ventral to the thus highly correlated with the presence of the mesopleural wing process and the mesocoxal articu- apodeme (see following character). The occurrence lation, separating the mesepisternum and of the pit is highly variable within and amongst mesepimeron; posteriorly, the ridge is situated some superfamilies. distance ventral to the posterodorsal margin of the 105. Mesopleuron, mesopleural apodeme mesopleuron. The mesopleural apodeme, when (0) absent or weakly developed (Fig. 49C) present, is situated just posterodorsal to the (1) apodeme present (mpa: Fig. 49D, E) mesopleural ridge. The site of origin of the The occurrence of the mesopleural apodeme is highly mesopleuro-third axillary sclerite, second mesopleuro- variable within and amongst superfamilies. The mesonotal, and the anterior mesopleuro-mesofurcal apodeme serves as the site of origin of the second muscles extends posterodorsally along the mesopleu- mesopleuro-mesonotal muscle in all Hymenoptera. ral ridge in most non-apocritan Hymenoptera The presence of the apodeme in Apocrita is highly (Dhillon, 1966; Shcherbakov, 1981; Gibson, 1993). In correlated with the extension of the site of origin of Cephus, the mesopleuro-third axillary sclerite muscle the mesopleuro-mesocoxal and the second arises ventrally, and the second mesopleuro- mesopleuro-metanotal muscles. When these muscles mesonotal muscle partly ventral to the mesopleural are rod-like, with reduced site of origin, or have a ridge (Fig. 31A). When the ridge is not developed posterior rod-like band, they at least partly arise from anterior to the mesopleural apodeme as in Orussus,or the mesopleural apodeme. If both muscles arise from it is reduced as in Xiphydria and Apocrita, the the mesopleuron with a fan-shaped (more extended) mesopleuro-third axillary sclerite muscle arises from origin, the apodeme is absent. Its occurrence within the ventral part of the mesopleuron. The mesopleural Hymenoptera is highly homoplasious and hence ridge is easily confused with the mesepimeral ridge seems to be of limited phylogenetic value. (see previous character) because they rarely occur together in the same taxon. In Orussus, where a 106. Mesopleuron, mesopleural apodeme configura- reduced mesopleural ridge is present, there is a tion

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 74 L. VILHELMSEN ET AL.

(0) separated from mesepimeral ridge idae, some Orussidae, and many Apocrita, being (1) continuous with mesepimeral ridge (mpa, mepr: absent from most Chalcidoidea, Megalyridae, Myma- Fig. 49E) rommatidae, Stephanidae, some Proctotrupoidea, and This character has been scored as inapplicable when most Aculeata. the mesopleural apodeme and/or mesepimeral ridge is absent. It is somewhat variable amongst the taxa that 111. Mesopleuron, acetabulum can be scored. (0) absent or weakly developed (Fig. 50C, D) (1) concavity accommodating procoxa present (act: 107. Mesopectus, mesopleural triangle Fig. 50B) (0) at most a slight depression present dorsally on There is a high degree of overlap between the pres- mesopleuron ence of acetabular carinae and the acetabulum (1) distinct triangular depression extending across (paired or unpaired concavities accommodating the dorsal mesopleuron (pl2t: Fig. 49F) procoxae), but because it is not exact, the acetabulum The mesopleural triangle is a depression extending has been scored as a separate character. posteriorly from dorsally on the anterior margin of the mesopleuron; it tapers posteriorly and usually 112. Mesopleuron, subpleural signum terminates in the subalar pit close to the posterodor- (0) absent (Fig. 50C) sal margin of the mesopleuron. The mesopleural tri- (1) longitudinal line or crease present (sps: Fig. 51B) angle is observed in Cynipoidea and some Diapriidae. The subpleural signum is a longitudinal structure situated in the middle of the ventral part of the mesepisternum; its structure is variable, it might be MESOPECTUS, VENTRALLY a narrow line or just a small smooth oblong spot. It is 108. Mesopleuron, prospinasternum present in Orussidae and most Apocrita, being (sec- (0) separate sclerite ondarily) absent in Chalcidoidea, Ichneumonoidea, (1) fused with mesopleuron and/or pronotum Mymarommatidae, and some Platygastroidea and (Fig. 52B) Proctotrupoidea. The prospinasternum is absent as an independent sclerite in Tenthredinoidea and Apocrita and fused 113. Mesopectus, pseudosternal sulci secondary either to the mesopectus or to the ventral (0) absent or not developed internally (Figs 50B–D, part of the propodeum (see also character 16). Appar- 52D) ently, these instances occurred independently (Vil- (1) well developed internally and externally helmsen, 2000b, 2001). Fully developed pseudosternal sulci with correspond- ing internal ridge are found only in Xyelidae, some 109. Mesopleuron, prospinasternal apodeme Tenthredinoidea, Cephidae, and Anaxyelidae (Vil- (0) absent (Fig. 52D) helmsen, 2001); external vestiges might be observed (1) present, well developed (psa: Fig. 52B) in additional non-apocritan taxa (Schulmeister, The presence or absence of a prospinasternal 2003c). It is probably a hymenopteran ground plan apodeme is highly variable within Hymenoptera; sub- feature that has been repeatedly reduced. stantial homoplasy has to be inferred to explain its distribution across the order. The prospinasternal 114. Mesopectus, oblique mesopleural ridge apodeme serves as the site of origin of the (0) absent or weakly developed (Fig. 50D) prospinasterno-procoxal muscle. In some instances (1) oblique internal carina on mesepisternum present the muscle arises from the ventral part of the (ompr: Fig. 50A) mesopleuron or the pronotum without any apodeme. This trait is here scored as any oblique internal The character hence seems to be of limited phyloge- carina on the anteroventral part of the mesepister- netic value (see also character 228). num. As such, it is of somewhat scattered occurrence within the Apocrita. It is usually indicated by an 110. Mesopleuron, acetabular carina external sulcus. Wharton (2006) discerned between a (0) absent or weakly defined (Fig. 50C, D) sternaulus and precoxal sulcus within Ichneu- (1) distinct, extends below procoxae (abc: Fig. 50B) monoidea, depending on whether the sulcus marks The acetabular or epicnemial carina extends trans- the ventral origin of the mesopleuro-mesobasalar versely on the anteroventral part of the mesepister- muscle (sternaulus) or is situated laterodorsal to this num when present, usually forming the posterior insertion (precoxal sulcus). It was not possible to boundary of the acetabulum (see following character). investigate the musculature for enough taxa to clarify The presence of the carina and the acetabulum is this across the entire hymenopteran sample included thus correlated. The carina is present in Xiphydri- here. It is thus possible that the oblique mesopleural

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 75 ridge is not homologous in all the taxa that have been noidea, Evanioidea, Megalyridae, and Trigonalidae. scored for it. The presence of the internal ridge and Rasnitsyn (1988) proposed this character to be a corresponding external sulcus is highly correlated synapomorphy for these taxa as well as Stephanidae, with the topology of the pleural musculature in Cyn- terming them the Evaniomorpha. Johnson (1988) con- ipoidea. If the ventral margin of the site of origin sidered Stephanidae to have the plesiomorphic state of the mesopleuro-mesobasalar and the second and excluded them from Evaniomorpha. Gibson mesopleuro-mesonotal muscle are aligned, then the (1999) suggested the condition displayed by these ridge marks the ventral margin of the sites of origin taxa to be transitory, being further modified in taxa of the muscles (omr: Fig. 8E); if the basalar muscle that have the proximal part of the mesocoxa reduced arises more ventrally from the mesopectus (ventral (see character 127) and the mesal lobes accommodat- margin of muscles in offset position), then the ridge is ing the median articulations inflected. However, taxa absent (Fig. 8F). The former condition is present in that have the proximal part of the mesocoxa reduced numerous taxa belonging to different subfamilies have been scored state 0 for the present character. (Ronquist, 1999; Paretas-Martínez et al., 2007).

115. Mesopleuron, transverse posterior mesopleural MESOFURCA carina 119. Mesofurca, mesofurcal pit (0) absent (Figs 50B, 51B, D) (0) situated at level with mesocoxal foramina (fu2p, (1) present, delimiting concave or smooth area just cx2f: Figs 50B, 51B, D) anterior to mesocoxal foramina (pmc: Fig. 51C) (1) situated anterior to mesocoxal foramina (fu2p, A distinct transverse carina just anterior to the cx2f: Figs 50C, 51C) mesocoxal foramina is observed in Chalcidoidea, Having the mesofurcal pit situated anterior to the Mymarommatidae, Platygastroidea, and some Proc- mesocoxal foramina is probably an autapomorphy for totrupoidea as well as a few additional apocritan the Chalcidoidea. It is paralleled in a few more apo- taxa. critan taxa.

116. Mesopleuron, mesocoxal foramina (ORDERED) 120. Mesofurca, mesospinasternal apodeme (0) widely open dorsally, not surrounded by (ORDERED) mesopleural cuticle (cx2f: Fig. 51A) (0) absent (Fig. 52A, B, D) (1) foramen constricted, but still with narrow (1) present, short, erect (msap: Fig. 52C) opening dorsally (cx2f: Fig. 51D) (2) elongate, projecting posteriorly between metafur- (2) closed dorsally, surrounded by continuous cal arms mesopleural cuticle (cx2f: Fig. 51B, C) The mesospinasternal apodeme, situated on the This character has been scored as inapplicable when mesodiscrimen at the point where the mesofurcal the meso- and metapleura are fused ventrally. Partly arms diverge, and its associated muscles (character or fully enclosed mesocoxal foramina (states 1 and 2) 257) are present in most non-apocritan wasps, being are observed only in taxa that have the proximal part absent only from some Tenthredinoidea. In Siricidae, of the mesocoxa reduced (character 127). Within these the apodeme is extended posteriorly between the taxa, whether the mesocoxal foramen is partly or fully metafurcal arms, this being an autapomorphy of the surrounded is somewhat variable. family (Vilhelmsen, 2000a). In Apocrita, it is absent except in some Stephanidae (Schlettererius) and 117. Mesopleuron, median mesocoxal articulation Vespoidea. It is difficult to decide if these are (0) absent (cx2ma: Figs 50B, 51B) instances of retained plesiomorphies or of reversals. (1) present, on projection (cx2ma: Fig. 51A, C) The median mesocoxal articulation is not developed 121. Mesofurca, arms proximally in Cynipoidea, Mymaromma, a number of Proc- (0) with at most shallow depressions (Fig. 52B–D) totrupoidea, and a few Ichneumonoidea. (1) with distinct depressions dorsally (Fig. 52A) In most Chalcidoidea, a pair of distinct concavities is 118. Mesopleuron, medial mesocoxal articulation developed on the proximal part of the mesofurcal position arms where they diverge from the mesodiscrimen; the (0) situated proximally, articulations not elongate concavities are often quite deep and are separated (cx2ma: Fig. 51C, D) medially by a longitudinal septum being continuous (1) situated distally, on medial surface of mesocoxa with the discrimen. The concavities correspond to the (cx2ma: Fig. 51A) medially displaced site of origin of the anterior The distal position of the median mesocoxal (and mesofurco-mesolaterophragmal muscle in most Chal- metacoxal) articulation is observed in Ceraphro- cidoidea (Fig. 6F). In other Hymenoptera the concavi-

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 76 L. VILHELMSEN ET AL. ties are absent and the muscle arises laterally from MID LEG the base of the mesofurcal bridge (e.g. Figs 2A, 21C, 126. Mid leg, mesocoxa 32E). The medially extended site of origin of the (0) not subdivided anterior mesofurco-mesolaterophragmal muscle and (1) subdivided ((Fig. 53A–D) corresponding proximal concavities of the lateral The transversely subdivided mesocoxa is a well- mesofurcal arms are probably an autapomorphy of established synapomorphy of the Orussidae and Apo- Chalcidoidea. crita (Johnson, 1988).

122. Mesofurca, anterior arm 127. Mid leg, proximal part of mesocoxa (0) short, inconspicuous (0) well developed ((Fig. 53A) (1) elongate (fu2aa: Fig. 52B) (1) very reduced ((Fig. 53B–D) State 1 has been assigned to all taxa having a meso- The proximal part of the mesocoxa is reduced in furcal bridge because the bridge is apparently derived Chalcidoidea, Cynipoidea, Ichneumonoidea, Myma- by the fusion of the anterior mesofurcal arms (Heraty rommatidae, Platygastroidea, Proctotrupoidea, and et al., 1994). Elongate anterior mesofurcal arms are some Aculeata. probably an autapomorphy of Hymenoptera (Heraty et al., 1994) that have been secondarily reduced in 128. Mid leg, coxotrochanter articulation Tenthredinoidea, Ceraphronoidea, and a few addi- (0) broad, trochanter cylindrical proximally tional apocritan taxa. (1) narrow, trochanter with flattened disk proximally The presence of a narrowed coxotrochanter articula- 123. Mesofurca, bridge tion apparently restricting the movement at the (0) absent (Fig. 52B) articulation to only one plane is an autapomorphy of (1) present (fu2b: Fig. 52A, C, D) Evaniidae; only Pantolytomia (Diapriidae) has any- The mesofurcal bridge is present in Cephidae, Siri- thing resembling the condition in Evaniidae. coidea, Xiphydriidae, Orussidae, and most Apocrita, being a putative synapomorphy for these taxa (Heraty 129. Mid leg, trochantellus et al., 1994). There are a few instances of secondary (0) absent absence within Apocrita, e.g. Ceraphronoidea, some (1) femur subdivided proximally, forming small tro- Chalcidoidea, Platygastridae, Maaminga, and Myma- chantellus romma; these might be correlated with small body The demarcation by a line of a short portion of the size. femur proximally as the trochantellus is an autapo- morphy of Hymenoptera. The trochantellus is weakly 124. Mesofurca, anterior projection on bridge developed in some Apocrita, e.g. Proctotrupidae and a (0) absent (Fig. 52A, D) few other Proctotrupoidea, but this is secondary. (1) present (Fig. 52C) This character has been scored as inapplicable when the mesofurcal bridge is absent. The presence of an METANOTUM anterior projection is apparently an apocritan 130. Metanotum ground plan feature (Heraty et al., 1994). However, (0) reduced medially, antecostal sulcus close to it is absent in most Chalcidoidea, some Cynipoidea, mesoscutellum (N3?: (Fig. 54D) most Evanioidea, Scelionidae, Diapriidae, and (1) well developed, antecostal sulcus well separated Vespoidea. from mesoscutellum ((Fig. 54C, E, F) The reduction of the metanotum is apparently an 125. Mesofurca, lateral arm autapomorphy of Ceraphronoidea. As possible (0) short, not extending towards mesopleuron remains of the metanotum cannot be identified with (Fig. 52B) certainty in this superfamily, at least not medially, (1) elongate, extending towards mesopleuron (fu2a; Ceraphronoidea are scored as inapplicable for all the Fig. 52A, C, D) characters dealing with the metanotum. The presence Elongate lateral mesofurcal arms are found in Siri- of an independent humeral sclerite on the anterodor- coidea, Xiphydriidae, Orussidae, and Apocrita, being sal edge of the propodeum in Ceraphronoidea corrobo- a putative synapomorphy for these taxa; however, rates that the metanotum is fused with the they are also observed in Tenthredinoidea (Fig. 32A), propodeum in this superfamily. but this is probably a convergently evolved feature (Vilhelmsen, 2001) and could correspond to the later- 131. Metanotum, orientation ally extended site of origin of the median mesofurco- (0) more or less horizontal, angled fewer than 90° mesotrochanteral muscle. relative to mesoscutellum (N3: (Fig. 54B)

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 77

(1) vertical, angled 90° relative to mesoscutellum with the development of the more strongly sclerotized (N3: (Fig. 54A) skeleton of Orussidae and Apocrita, similarly to the In state 1, the metanotum is entirely concealed under development of the transscutal articulation on the the posterior margin of the mesoscutellum in dorsal mesonotum (see also character 67). view. This condition is possibly an autapomorphy of Cynipoidea; it is also present in some Chalcidoidea 135. Metanotum, metascutellum and, notably, Ismarus (Diapriidae). (0) absent or reduced ((Fig. 54F) (1) present, well developed (scl3: (Fig. 54A–C, E) 132. Metanotum, cenchri The metascutellum has been reduced in Orussidae, (0) absent ((Fig. 54C–F) Stephanidae, and a number of additional taxa scat- (1) present (cnc: Fig. 33I) tered amongst the apocritan superfamilies. The The presence of cenchri is a well-known reduction of the metascutellum might be correlated hymenopteran ground plan trait that has been sec- with reduction of the hind wing venation. This char- ondarily lost in Apocrita and Cephoidea (see, e.g. acter is not very informative at the superfamily level. Vilhelmsen, 2001) Most taxa with a weakly developed metascutellum have been scored as inapplicable for the two following 133. Metanotum, hind wing tegula characters. (0) absent (1) present 136. Metanotum, metascutellum configuration The hind wing tegula is present in the ground plan of (0) reaching anterior margin of metanotum, abutting Hymenoptera, but has not been observed in any mesoscutellum (scl3: (Fig. 54E) Xiphydriidae, Orussidae, and Apocrita. Its absence is (1) not reaching anterior margin of metanotum (scl3: a synapomorphy for these three taxa (Vilhelmsen, (Fig. 54C) 2000a). This appears to be a highly variable and little infor- mative character. 134. Metanotum, humeral sclerite (0) absent, anterior metanotal wing process continu- 137. Metanotum, incurvation posterior to ous with remainder of the metanotum metascutellum (1) anterior metanotal wing process situated on sepa- (0) at most weakly developed (scl3: (Fig. 54C) rate sclerite (hmsc: Fig. 35A, D, E) (1) present, distinct (scl3: (Fig. 54E) The hind wing is connected to the fore wing by the State 1 is a putative autapomorphy of Cynipoidea, but hamuli, and most of the power for its vertical move- it is also observed in many other apocritan superfami- ment is transmitted from the fore wing. However, the lies. rotational movement of the hind wing is probably not transmitted from the fore wing. In the ‘Symphyta’ 138. Metanotum, longitudinal lateral metanotal except Xiphydriidae and Orussidae, the lateral carina margin of the metanotum has a distinct incision (0) absent or reduced, not traversing metanotum between the anterior and posterior notal wing pro- (1) well developed, traversing entire metanotum cesses (Fig. 33H, I) (character 139). This incision is a (N3c: Fig. 54F) serial and functional homologue of the incisions A distinct longitudinal carina extends across the met- forming the precursors of the transscutal articulation anotum lateral to the metascutellum in Orussidae in the mesonotum (see character 67). In Orussidae and most Apocrita examined, making it a putative and Apocrita except Cynipoidea, the anterior notal synapomorphy for these two taxa. wing process is located on the separate humeral scler- ite, which articulates with the lateral end of the 139. Metanotum, lateral incision metanotum (Fig. 35A, D, E). The presence of the (0) absent humeral sclerite is a putative synapomorphy for these (1) incision present anterolaterally (inc: Fig. 33H, I) taxa. The location of the anterior notal wing process The incision, when present, extends medially between and the sites of attachment of (when present) the the anterior and posterior metanotal wing process, median metapleuro-metanotal, metanoto- laterally being continuous with the membrane around metatrochanteral, and metanoto-metacoxal muscles the hind wing base. The presence of this feature in on the humeral sclerite in Orussidae and Apocrita lower Hymenoptera has not been reported previously. makes it reasonable to assume that the humeral It is apparently a hymenopteran ground plan feature sclerite is homologous with the anterodorsal part of and possibly an autapomorphy of the order, having the metanotum. The separation of the anterior notal been secondarily lost in Xiphydriidae, Orussidae, and wing process from the metanotum could be correlated Apocrita.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 78 L. VILHELMSEN ET AL.

METAPECTUS, LATERAL helmsen, 2000a) is the main characteristic of the 140. Metapleuron, apodemal part of metabasalare integration of the propodeum with the metathorax. It (ORDERED) obscures the development of the posterior part of the (0) absent or reduced metepimeron and articular inflection in Apocrita (see (1) present, independent cup-shaped sclerite the two following characters), which therefore have (2) present, continuous with metapleuron been scored as inapplicable. The metabasalare is present as a discrete and dis- 145. Metapleuron, metepimeron tinct, cup-shaped sclerite in the hymenopteran (0) well developed throughout ground plan, but has been reduced to a small sclerite (1) reduced posteriorly or lost numerous times, e.g. within Tenthredinoidea, The metepimeron is reduced posteriorly in Anax- Cephoidea, Orussoidea, and Apocrita. yelidae, Xiphydriidae, and Orussidae, perhaps as a 141. Metapleuron, metapleural arm – T1 association precursor to the fusion of the metapleuron with the (ORDERED) propodeum in Apocrita (see previous character; (0) not abutting T1 Shcherbakov, 1981; Vilhelmsen, 2000a). Taxa having (1) abutting T1 the fusion have been scored as inapplicable. (2) fused with T1 (Fig. 55A–C) 146. Metapleuron, articular inflection The condition in Orussidae (state 1) can be inter- (0) absent preted as an intermediate between the wide separa- (1) present tion of the metapleural arm and the propodeum in The articular inflection is a small median projection other non-apocritan Hymenoptera and the fusion of on the dorsal margin of the metapleuron situated them in Apocrita, hence the character has been where the propodeum abuts the metapleuron. It is treated as ordered. present in most non-apocritan Hymenoptera, but absent from Cephidae and Orussidae. 142. Metapleuron, metapleural arm configuration (0) continuous with rest of metapleuron (Fig. 55A, B) 147. Metapleuron, dorsal longitudinal ridge (1) separated from rest of metapleuron by anterolat- (0) absent (Fig. 55B) eral extension of T1 (Fig. 55C) (1) distinct ridge ventral to propodeal spiracle Orussidae and most Cynipoidea have been scored as present (Fig. 55A, D) state 1 for this character, but the configuration is This character is highly variable, both states being somewhat different in these two taxa. In Orussidae, represented in most apocritan superfamilies. When the metapleural arm is not fused with the propodeum present, the carina often runs just dorsal to the meta- (see previous character), but the anterolateral corner pleural sulcus, at least anteriorly, indicating the of propodeum overlaps and separates the metapleural boundary between the metapleuron and propodeum. arm from the rest of the metapleuron (see Vilhelmsen, 2000a: fig. 5F). In Cynipoidea, the anterolateral part 148. Metapleuron, metapleural pit of the propodeum is fused with the metapleuron (as in (0) entirely absent (Fig. 55B, D) all Apocrita), and an anterior extension of the propo- (1) at least shallow depression present (mtpi: deum overlaps the metapleuron laterally at the meta- Fig. 55A, C) pleural pit. This is a variable character of limited phylogenetic value. 143. Metapleuron, metepisternal anapleural cleft (0) absent 149. Metapleuron, metapleural apodeme (1) present (0) absent or weakly developed The metepisternal anapleural cleft is a small notch in (1) present, well developed (mtpa: Fig. 58A–E) the anterior margin of the metapleuron (Vilhelmsen, This character is variable in the non-apocritan 2000a: fig. 1), marking the ventral boundary of the Hymenoptera but present in most Apocrita, where it metapleural arm. It is present in all non-apocritan is often fused with the lateral metafurcal arm (see Hymenoptera except Siricidae, but absent from all below) and hence can be difficult to discern. Apocrita. 150. Metapleuron, mesopleural-metapleural associa- 144. Metapleuron, metepimeron – T1 association tion (ORDERED) (0) at most fused for short distance (0) might articulate or abut ventrally, but not fused (1) broadly fused (pl3, T1: Figs 55A–D, 61A, B) (Fig. 55A–C) The fusion of the metapleuron with the propodeum in (1) fused ventrally Apocrita (paralleled in some Tenthredinoidea, see Vil- (2) fused ventrally and laterally (Fig. 55D)

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 79

Fusion of the meso- and metapleuron ventrally (i.e. within Apocrita. In some taxa, e.g. most Ichneu- between the mesocoxal foramina and sometimes also monoidea, the carina is developed into a distinct a short distance lateral to them) occurs fairly fre- projection anteriorly. quently in Apocrita: Evaniidae, Megalyridae, Trigo- nalidae, and some Aculeata. Only in Ceraphronoidea 154. Metapleuron, ventral transverse carina and Mymaromma is lateral fusion almost all the way (0) absent or weakly developed (Fig. 56D) to the hind wing articulation observed, and this (1) transverse carina anterior to metacoxal foramina feature is apparently not a ground plan feature of present (tmc: Fig. 56B, C, E) Mymarommatidae (Gibson et al., 2007). In addition, The ventral transverse carina is situated between the some Teleasinae (Scelionidae) have the meso- and metepisternal depressions and the metacoxal metapleura extensively fused (Mikó et al., 2007). foramina, when present. Both states occur within most superfamilies of Apocrita. 151. Metapleuron, paracoxal notches (0) absent (Figs 56B–E, 58A–F) 155. Metapleuron, area anterior to paracoxal ridge/ (1) present sulcus Paracoxal notches have only been observed in (0) reduced medially (Fig. 58C–E) Xyelidae and Pamphiliidae (Vilhelmsen, 2000a), (1) well developed (Fig. 58A, F) making it doubtful that this is a hymenopteran This character has been scored as inapplicable for ground plan trait. taxa that have the meso- and metapleuron fused ventrally. It is variable throughout Hymenoptera. METAPECTUS, VENTRAL 156. Metapleuron, anterior branch of paracoxal 152. Metapleuron, median longitudinal metepisternal ridges carina/projection (ORDERED) (0) absent (0) absent (Fig. 56D) (1) present (pcr: Fig. 58A, B) (1) present, separating metepisternal depressions The paracoxal ridge is variable in its configuration; it (mlmc: Fig. 56B, E) might extend laterally as an anterior branch close to (2) depressions separated by broad raised area or at least parallel to the anterior margin of the (Fig. 56F) metapleuron (almost all Apocrita; in these cases, it is Vilhelmsen (2001, character 144) scored the presence termed the paracoxal ridge for short) or curve poste- or absence of metepisternal depressions delimited by riorly towards the metacoxal foramen as a posterior median and lateral carinae and accommodating the branch (Pamphilioidea, Cephidae, Xiphydriidae, mesocoxae, considering presence to be a synapomor- Trigonalidae). In some rare instances (Orussus, Pris- phy of the Orussidae and Apocrita. The survey of a taulacus, some Evaniidae, Sapyga) both anterior and larger apocritan taxon sample for the present study posterior branches are present together; hence, it was has revealed that the configurations of the metepis- decided to score them as separate characters (see ternal depressions and adjacent carinae are highly following character). variable within the Apocrita. Therefore, we do not score the character as in Vilhelmsen (2001), but 157. Metapleuron, posterior branch of paracoxal ridge instead score the median and lateral metepisternal (0) absent carinae separately in order to increase precision. The (1) present (ppcr: Fig. 13D) median longitudinal metepisternal carina is variously developed within the Apocrita, being absent from 158. Metapleuron, anterior paracoxal ridge configu- some representatives of many superfamilies. In some ration (UNORDERED) Evaniidae and in Cephalonomia (Bethylidae), the (0) not extending to metapleural apodemes, not con- median separation between the metepisternal depres- tinuous with marginal metapleural apodeme (pcr, sions is developed into a broad raised area. mtpa: Fig. 58A) (1) extending to metapleural apodemes (fu3 + mtpa + 153. Metapleuron, lateral longitudinal metepisternal pcr: Fig. 58F) carinae (ORDERED) (2) continuous with marginal metapleural apodemes, (0) absent (Fig. 56D) separate from metapleural apodemes (1) low carina lateral to metepisternal depressions Most non-apocritan Hymenoptera have state 0; present (llmc: Fig. 56B) within Apocrita, this character is highly variable. (2) projections at anterolateral corners of metepister- State 2 is a putative synapomorphy of Aulacidae and nal depressions present (lmp: Fig. 56E) Gasteruptiidae. The development of the lateral longitudinal metepis- ternal carina on the metepisternum is highly variable 159. Metapleuron, metapectal plates

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 80 L. VILHELMSEN ET AL.

(0) absent (Fig. 58A–C, E) Hymenoptera. In Stephanidae the site of origin of the (1) low lobe present laterally on anterior paracoxal lateral metapleuro-metacoxal muscle extends dorsally ridge (mtpp: Fig. 58D) to the metapleural arm (Fig. 25C), in Aculeata the The metapectal plates are low rectangular attach- muscle extends to the propodeum and reaches the ment sites of the anterior metapleuro-metabasalar metalaterophragma (Fig. 26D); in Evaniidae the and median metapleuro-metacoxal muscles situated metapleuro-metatrochanteral muscle extends to the lateral to the metafurcal bases in many Chalcidoidea propodeum (Fig. 12D, E). (Fig. 7D). The anterior metapleuro-metabasalar muscle arises from the base of the metafurca (Fig. 7C) 163. Metapleuron, lateral coxal articulation in some Chalcidoidea, supporting the hypothesis that (0) exposed, visible laterally (cx3la: Fig. 57A) the metapectal plate is fused with the base of the (1) concealed in lateral view (cx3la: Fig. 57B–D) metafurca (Krogmann & Vilhelmsen, 2006). The pres- The lateral metacoxal articulation is exposed in all ence of the plate is a putative autapomorphy of the non-apocritan Hymenoptera and Stephanidae and superfamily (Krogmann & Vilhelmsen, 2006). Megalyridae. In Stephanidae, the exposed articula- tion is probably a retained plesiomorphy; in Megaly- 160. Metapleuron, metacoxal foramina ridae, it is most likely to be a secondary reversal. (0) well separated from mesocoxal foramina (cx3f: Fig. 56B, F) 164. Metapleuron, articulation notch (1) adjacent to mesocoxal foramina, ventral metepis- (0) absent or weakly developed (Fig. 57C, D) ternum reduced (cx3f, cx2f: Fig. 56A) (1) notch in foraminal rim at metacoxal lateral State 1 is an autapomorphy of Ceraphronoidea. articulation well developed (arn: Figs 57B, 60C, D) Because of the almost complete reduction of the The presence of an incurvation in the lateral margin ventral part of the metepisternum it entails, Ceraph- of the rim surrounding the metacoxal foramen is a ronoidea have been scored as inapplicable for charac- putative synapomorphy for Aulacidae and Gasterup- ters situated in this region. tiidae, but it also occurs in a number of other apocri- tan taxa. This character has been scored as 161. Metapleuron, median coxal articulation inapplicable in taxa that have an exposed lateral (0) reduced, at most developed as low swelling metacoxal articulation because these taxa do not have (Fig. 57C) a rim developed around the metacoxal foramen. (1) articulation point well developed (cx3ma: Fig. 57A, B, D) METAFURCA The median metacoxal articulation is variously devel- 165. Metafurca, metafurcal pit position oped in Apocrita, being distinct in Stephanidae, Trigo- (0) closer to metacoxal foramina than to anterior nalidae, Ceraphronoidea, Megalyridae, Evanioidea, margin of metapectus (fu3p: Fig. 56B) Aculeata, and most Ichneumonoidea, but weakly (1) closer to anterior margin of metapectus than to developed in most Chalcidoidea, Cynipoidea, metacoxal foramina (fu3p: Fig. 56C, D) Mymarommatidae, Platygastroidea, and many The metafurcal pit(s) is situated close to the anterior Proctotrupoidea. margin of the metapleuron in almost all Chalcidoidea, making it a putative autapomorphy for the superfam- 162. Metapleuron, median coxal articulation position ily. However, this condition is also observed in many (0) ventromedial to lateral articulation, axis of move- Ichneumonidae and some Platygastroidea, Proc- ment oblique (cx3ma, cx3la: Fig. 57B, D) totrupoidea, Apoidea, and Chrysidoidea. (1) approximately ventral to lateral articulation, axis of movement vertical (cx3ma, cx3la: Fig. 57A) 166. Metafurca, number of metafurcal pits The lateral displacement of the median metacoxal (0) one (fu3p: Fig. 56B, D) articulation to a position ventral to the lateral articu- (1) two (fu3p: Fig. 56C) lation in Stephanidae implies that the movement of Two metafurcal pits situated submedially close to the the metacoxa is in a horizontal rather than in a anterior margin of the metapleuron occur in a vertical/oblique plane. This condition is apparently an number of Chalcidoidea, occasionally even together autapomorphy of the Stephanidae, even if it is paral- with a third, median pit (see Krogmann & Vilhelm- leled in Evania, Ampulex, and Aporus. The taxa that sen, 2006). It is uncertain if the presence of one more have these changes in the articulation of the metacoxa pit is a ground plan trait of the superfamily. The have corresponding changes in the topology of some of presence of two metafurcal pits is probably correlated the extrinsic leg muscles. Both the lateral mesopleuro- with the position of the bases of the metafurcal arms metacoxal and metapleuro-metatrochanteral muscles relative to the metadiscrimen (see character 168), but arise anteroventral to the metapleural ridge in most these two characters are not exactly congruent.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 81

167. Metafurca, position (0) short (0) metafurcal arms arise posteriorly on (1) elongate, extending towards metapleural metadiscrimen apodeme (fu3a, mtpa: Fig. 58C) (1) metafurcal arms arise at or close to anterior end (2) fused with metapleural apodeme (fu3a, mtpa: of metadiscrimen Fig. 58B, D) The anterior position of the divergence of the Short lateral metafurcal arms are characteristic of metafurcal arms from the metadiscrimen was estab- most non-apocritan Hymenoptera (except Tenthredi- lished by Vilhelmsen (2000a) as an autapomorphy noidea) and Schlettererius; the condition in the latter of the Hymenoptera, being reversed only a few taxon is probably plesiomorphic. Other Apocrita times within the Apocrita (some Scelionidae, e.g. invariably have elongate lateral metafurcal arms that Telenomus) may or may not fuse with metapleural apodemes; these two conditions are highly variable within 168. Metafurca, metafurcal arm-metadiscrimen con- Apocrita. figuration (0) adjacent, metafurcal arms arise from discrimen (fu3a: Fig. 58B, C, E) HIND LEG (1) metafurcal arms widely separate basally, not con- verging, detached from discrimen (fu3a: Fig. 58D) 172. Hind leg, metatrochantinal apodeme The widely separate metafurcal arm bases occur in (0) absent many Chalcidoidea but only in a few nonchalcidoid (1) present taxa (Archaeoteleia, Cephalonomia, and Maaminga). In Hymenoptera, the metatrochantins are small scle- Krogmann & Vilhelmsen (2006: fig. 24) illustrate pos- rotized attachment sites for the metanoto- sible transitions between different configurations metatrochantinal muscles situated in the membrane within Chalcidoidea. The basally separated metafur- between the posteroventral metapleural margin and cal arms correlates with the unique site of origin of the metacoxa (see Vilhelmsen, 2000a). This configu- the median metafurco-metacoxal muscle. The muscle ration is probably a ground plan feature of the arises exclusively from the paracoxal ridge and meta- Hymenoptera. The metatrochantinal apodeme and its discrimenal lamella in taxa having separated associated muscle have been lost entirely in the metafurcal arms (Fig. 7G), whereas it arises at least Tenthredinoidea, Xiphydriidae, Orussidae, and partly from the lateral metafurcal arm in other Apocrita. Hymenoptera taxa. 173. Hind leg, size of coxa 169. Metafurca, connection to mesofurca (0) short, less than three-quarters of length of (0) separate from mesofurca metafemur plus trochanter ((Fig. 59A) (1) fused with mesofurca for some distance (1) elongate, more than three-quarters of length of The metafurcal arm is fused with the mesofurcal arm metafemur and trochanter (cx3, fem3: (Fig. 59C, D) submedially, but separate basally and distally in Elongate metacoxae are an autapomorphy of Pison and Stangeella, making it a putative synapo- Stephanidae; their presence may be correlated with morphy for these two taxa. the reorientation of the plane of movement of the coxae (see above). Elongate metacoxae have also been 170. Metafurca, anterior metafurcal arm developed independently in a few Chalcidoidea. (0) elongate, at most slightly shorter than lateral arm (fu3aa: Fig. 58E) 174. Hind leg, femoral spines (1) reduced, considerably shorter than lateral arm (0) absent or weakly developed ((Fig. 59A) (Fig. 58B–D) (1) at least one distinct spine present ventrally Distinct anterior metafurcal arms are present in most ((Fig. 59C, D) non-Apocrita (except Tenthredinoidea). In Apocrita, The presence of sturdy spines on the hind femur is a they are absent except in a few taxa, e.g. Proctotrupi- stephanid autapomorphy, with only a few additional dae, Ceraphronoidea, and notably Stephanidae; in the independent occurrences in Apocrita. latter family, they may constitute a retained plesio- morphy. Pison and Stangeella were scored as inappli- 175. Hind leg, tibial preapical spurs cable for this character because the anterior (0) absent ((, C) metafurcal arms, when present, are situated approxi- (1) present mately where the fusion between the meso- and Metatibial preapical spurs are present only in metafurcal arms takes place (see previous character). Xyelidae, some Tenthredinoidea (see Vilhelmsen, 2001), Pamphilioidea, and Cephidae. It is probably a 171. Metafurca, lateral metafurcal arm (ORDERED) ground plan feature of Hymenoptera.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 82 L. VILHELMSEN ET AL.

176. Hind leg, tibial brush 181. Propodeum, lateral antecostal projections (0) absent (0) absent (Fig. 60B, C) (1) dense brush of setae present on at least part of (1) present anteriorly and posterior to antecostal median side ((Fig. 59B) sulcus (lap: Figs 60A, 61B) An assemblage of hairs on the inner side of the hind These structures are present in Cynipoidea, most tibia is developed to various extents in most Proctotrupoidea, and a few Ichneumonoidea. It Hymenoptera; usually, it is at least developed distally. appears to be less variable amongst superfamilies The hairs might be modified, e.g. expanded distally. than the previous character. Only scattered hairs are present in Xyelidae, Pam- philiidae, Anaxyelidae, and Siricidae, making it 182. Propodeum, metaphragma (ORDERED) doubtful if the brush is present in the ground plan of (0) absent Hymenoptera. The few instances of absence of the (1) present only laterally (ph3: Fig. 58C, D) brush within Apocrita are obviously secondary rever- (2) present, continuous medially (ph3: Fig. 58A, B, E, sals. The brush is probably used in wing grooming F) behaviour (Basibuyuk & Quicke, 1999). A metaphragma is developed at least laterally in most Hymenoptera. A medially continuous metaphragma is 177. Hind leg, tarsal plantulae present in Megalyridae, Stephanidae, Trigonalidae, (0) absent Evanioidea, Vespoidea, and most Ichneumonoidea, (1) present but it is variable in many other superfamilies. The presence of tarsal plantulae is a ground plan feature of Hymenoptera. They are absent from Syn- 183. Propodeum, metalaterophragmal lobes texis, Orussidae, and most Apocrita. Their occur- (0) weakly developed or absent (Fig. 58C–F) rences in Apocrita most likely represents reversals. A (1) well developed (ph3l: Fig. 58A, B) detailed study of tarsal plantulae in Hymenoptera is Metalaterophragmal lobes are developed in many provided by Schulmeister (2003b). non-apocritan wasps, but only in Stephanidae, Gasteruptiidae, and Plumarius amongst Apocrita. In Gasteruptiidae (e.g. Pseudofoenus), the distinct meta- PROPODEUM laterophragmal lobes may be correlated with the 178. Propodeum, T1 medially anterodorsal position of the propodeal foramen, (0) divided almost adjacent to the metaphragma. The ph3-T2 (1) continuous (Fig. 60A–D) muscles arise from the elongate lobes (Fig. 13A), The medially divided first abdominal tergum is a otherwise the muscles would be too short to have hymenopteran ground plan character. It has become any significant leverage on T2 and the rest of the continuous secondarily in some Tenthredinoidea and metasoma. Orussidae plus Apocrita (e.g. Vilhelmsen, 2001). 184. Propodeum, metaphragma-metapleural apodeme 179. Propodeum, metapostnotum association configuration (0) separated by unsclerotized line, connection (0) separate (ph3, mtpa: Fig. 58C, D) movable (1) metaphragma and metapleural apodeme fused (1) immovably fused (ph3, mtpa: Fig. 58A, B) The metapostnotum is closely associated with T1 in The metaphragma is lateroventrally continuous with all Hymenoptera, but a separation can still be the metapleural apodeme in Diapriidae, Stephanidae, observed in most non-apocritan wasps; in Orussidae Evanioidea except Aulacidae, most Aculeata, and and Apocrita, the fusion is complete. many Ichneumonidae.

180. Propodeum, median antecostal projections 185. Propodeum, metapostnotum (ORDERED) (0) continuous medially (Fig. 60C) (0) absent (Fig. 60B, C) (1) subdivided medially (1) one projection present anteriorly and posterior to The metapostnotum is subdivided in Cephidae, Anax- antecostal sulcus yelidae, Siricidae, and Xiphydriidae. As discussed in, (2) several projections present anteriorly and poste- e.g. Vilhelmsen (2001), this is unlikely to be a true rior to antecostal sulcus (map: Fig. 60A) synapomorphy of these families. One or more of these projections is present in Cyn- ipoidea, most Proctotrupoidea and Ichneumonoidea, 186. Propodeum, median projection and some Chalcidoidea and Platygastroidea. It is (0) absent (Fig. 60A, B) apparently not strictly correlated with the following (1) distinct projection present medially (prp: character. Figs 54D, 55D)

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 83

The projection is present in Ceraphron, Megaspilus, A transverse carina on the propodeum is present in and winged Lagynodes, so its presence is probably an Ceraphronoidea, Aulacidae, and Platygastroidea, but autapomorphy of Ceraphronoidea. is also of scattered occurrence in many other apocri- tan superfamilies. 187. Propodeum, median longitudinal carina (0) absent (Fig. 60A–C) 194. Propodeum, propodeal foramen (ORDERED) (1) present, well developed (Fig. 60D) (0) not developed, T2 broadly attached to T1 This is a highly variable character, both states being (1) T1 articulating with T2 but not constricted represented in most apocritan superfamilies. laterally (2) T1 posteriorly constricted laterally, articulating 188. Propodeum, lateral longitudinal carina with T2 (pdf: Fig. 62A–D) (0) absent (Fig. 60C, D) State two corresponds to the wasp-waist, the defining (1) distinct ridge dorsal to propodeal spiracle present feature of Apocrita. Interestingly, a possible precursor (lpc: Fig. 60A) to the articulation is found laterally between T1 and This is a highly variable character, both states being T2 in some non-apocritan wasps, notably Xiphydri- represented in most apocritan superfamilies. idae and Orussidae; therefore, this character has been treated as ordered. 189. Propodeum, propodeal spiracle configuration (0) elongate, slit-like (psp: Figs 55A, 60D, 61A, C) 195. Propodeum, propodeal foramen configuration (1) rounded (psp: Figs 61B, D, 62A) (0) continuous with metacoxal foramina (pdf, cx3f: An elongate propodeal spiracle is probably the ground Figs 57A, 62C, D) plan state of Hymenoptera and also of Apocrita, being (1) separated from metacoxal foramina by sclerotized found in Orussidae, Stephanidae, Megalyridae, Trigo- propodeal bridges (T1b: (Fig. 63A–C, E) nalidae, Evanioidea, and most Aculeata. It is variable Besides the non-apocritan wasps, continuous meta- in most other apocritan superfamilies. coxal and propodeal foramina are found in Stephanidae, Megalyridae, Trigonalidae, and some 190. Propodeum, propodeal spiracle laterally Aculeata and Ichneumonoidea. This condition is (0) exposed (psp: Figs 55A, 61B, 62A) hence likely to be the ground plan state for Apocrita. (1) covered by flap (psp: Figs 55C, 61D) However, it is difficult to substantiate that the pres- Having the propodeal spiracle covered by some kind ence of sclerotized bridges between the foramina sup- of cuticular extension occurs in Trigonalidae, Cyn- ports a more inclusive group of apocritan ipoidea, Platygastroidea, and many Proctotrupoidea, superfamilies, given the variability within Aculeata but rarely outside these taxa. and Ichneumonoidea.

191. Propodeum, spiracle position (horizontal) 196. Propodeum, position of propodeal foramen (0) not further than halfway between antecostal (ORDERED) sulcus and T1 posterior margin (psp: Figs 55A, B, (0) situated posterior to anterior margin of metacoxal 60D, 61B) foramen (pdf: Figs 60A, 63A, B) (1) closer to T1 posterior margin than to antecostal (1) situated level with metacoxal foramen (pdf, cx3f: sulcus (psp: Fig. 61A) Figs 60B, 62A) The posterior position on T1 of the propodeal spiracle (2) dorsally, at least halfway between metacoxal is apparently an autapomorphy of Stephanidae. foramina and metapostnotum (pdf: Fig. 60C) (3) adjacent to antecostal sulcus, compressing sulcus 192. Propodeum, spiracle position (vertical) medially (ans, pdf: Fig. 60D) (0) not adjacent to propodeal-metapleuron boundary State 0 corresponds to the presence of a nucha, a (psp: Figs 55A, 61A) distinct raised rim around the propodeal foramen in (1) abutting boundary (psp: Fig. 61B) Cynipoidea (Ronquist & Nordlander, 1989) and many This character has been scored as inapplicable for Chalcidoidea (Krogmann & Vilhelmsen, 2006), but most non-apocritan Hymenoptera because they do not also more generally of taxa with a propodeal foramen have the propodeum continuous with the metapleu- placed on a posterior extension. Taxa with the meta- ron. In Apocrita, it is usually variable within the coxal and propodeal foramen continuous have been superfamilies that have some taxa displaying state 1. scored as state 1. States 2 and 3 cover the variation within Evanioidea; this superfamily has traditionally 193. Propodeum, transverse propodeal carina been defined by the anterodorsally situated propodeal (0) absent (Fig. 62B) foramen (Rasnitsyn, 1988). However, in Gasterupti- (1) distinct carina present some distance from pro- idae, the propodeal foramen is even further displaced podeal foramen (tpc: Figs 54D, 62A) dorsally, lying adjacent to the antecostal sulcus.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 84 L. VILHELMSEN ET AL.

197. Propodeum, propodeal foramen ventrally (1) narrow, cylindrical, at most slightly expanded (0) straight (Fig. 63B) posteriorly (Figs 65A, 66E) (1) distinctly incurved (Fig. 63A) A narrow, cylindrical petiole is found in Stephanidae, This character has been scored as inapplicable when Evaniidae, Mymarommatidae, many Chalcidoidea, the metacoxal and propodeal foramina are continu- and most Proctotrupoidea. This feature is usually ous. The incurved ventral margin (best seen in correlated with fusion of T2 and S2. ventral view) is observed in most Cynipoidea and many Proctotrupoidea, but also occurs scattered 203. Petiole, articulating condyle amongst many other superfamilies. (0) reduced or absent, petiolar foramen subcircular (arc?: Figs 64F, 65E) 198. Propodeum, propodeal foramen shelf (1) well developed, with distinct depressions laterally (0) absent (Fig. 63B, C, E) (arc: Figs 64B, C, 65A–D, F) (1) distinct shelf extending ventrally into body cavity A distinct condyle on the anterior margin of T2 with from foramen (Fig. 63F) lateral depressions receiving the tips of the propodeal This character has been scored as inapplicable when articulating teeth forming the posterior part of the the metacoxal and propodeal foramina are continu- meso-metasomal articulation is present in most Apo- ous. The shelf ventral to the propodeal foramen crita and is probably a ground plan feature of this accommodates the anteroventral part of the petiole; taxon. It is reduced in Ceraphronoidea, Aulacidae, this trait is an autapomorphy of Evaniidae. Gasteruptiidae, Maamingidae, Mymarommatidae, and some Platygastroidea. If the condyle is weakly 199. Propodeum, articulating teeth developed, usually this is also the case with the (0) absent or weakly developed (Fig. 63E) propodeal articulating teeth. This and the following (1) distinct teeth present (T1t: Figs 62C, D, 63C, D, character have been scored as inapplicable for taxa F) that do not have a wasp-waist. Ronquist et al. (1999) scored the presence of ‘distinct, tooth-like condyli’ only in Aculeata and Ichneu- 204. Petiole, anterior width monoidea, even if they recognized the presence of (0) not wide, condyle occupying at least half of ante- ‘unspecialized articular processes’ in Proctotrupidae rior width and some Platygastroidea. We consider these struc- (1) wide, condyle less than one-third of anterior tures that form the mesosoma-metasoma articulation width (arc: Fig. 64B, C) with the anterior part of the petiole to be much more Having the petiole wide anteriorly relative to the widespread in Apocrita, being developed to various articulating condyle is characteristic of Ichneu- degrees in Evaniidae, Trigonalidae, and many Proc- monoidea and Aculeata, making it a potential syna- totrupoidea. Taxa without a wasp-waist have been pomorphy for them. Only a few other apocritan taxa scored as inapplicable for this character. have this feature. 200. Propodeum, first abdominal sternum 205. Petiole, transverse carina on T2 (0) absent or reduced (0) absent (Figs 64A, 65C–E) (1) present (1) present, situated just posterior to articulation The absence of the first abdominal sternum is a (T2tc: Figs 64C, D, 65A, B) hymenopteran ground plan trait (see Vilhelmsen, A transverse carina on T2 is present in Ceraphro- 2001). noidea, Stephanidae, Mymaromma, Platygastroidea, most Proctotrupoidea, and some Chalcidoidea, Cyn- PETIOLE ipoidea, and Ichneumonoidea. The carina on T2 may 201. Petiole, T2 and S2 configuration be continuous with a corresponding carina on S2, (0) separate (Fig. 65C, D) forming a continuous ring around the anterior part of (1) fused, at least anteriorly (Fig. 65A, B, E, F) the petiole [e.g. Ceraphronoidea, Platygastroidea Many Apocrita have the petiolar tergum and sternum (Fig. 64D), Mymaromma], or not connected to any at least partly fused, but this is not the case in ventral counterpart (e.g. Stephanidae). In Ceraphro- Aulacidae, Megalyridae, Trigonalidae, and some noidea, the dorsal part of this continuous ring is Platygastroidea, Stephanidae, Ichneumonoidea, and apparently situated on the boundary between T2 and Aculeata, indicating that fusion is not an apocritan T3 (see Masner & Dessart, 1967 and Dessart & ground plan feature. Cancemi, 1987), indicating that it might not be homologous with the transverse carina on T2 in other 202. Petiole, posteriorly taxa. However, we score the carina as present in this (0) expanding posteriorly, conical (Fig. 64A–D, F) superfamily, because the part of T2 posterior to the

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 85 carina could have been reduced or fused with T3, the S2. However, we observed a line of five to six sensillae latter being quite extensive in Ceraphronoidea. on the anterolateral margin of the ventral part of the petiole in Megaspilus and a single hair in the same 206. Petiole, T2 longitudinal internal ridge position in Lagynodes. These are likely to be homolo- (0) absent (Fig. 64B, F) gous with the sensillar patches observed on S2 in (1) ridge present posteriorly, externally indicated by most other taxa examined (Fig. 66A–C), indicating sulcus (Fig. 64A) that the ventral part of the petiole articulating with An internal longitudinal ridge on T2 is found in most the mesosoma in Megaspilidae includes S2. Further- Aculeata, but is absent from at least one representa- more, the metafurco–S2 and T1–S2 muscles attach tive of each of the aculeate superfamilies examined ventrally and laterally, respectively, on the anterior here. It is possibly a ground plan feature of Aculeata margin of the petiole in Megaspilidae as in other that has been secondarily reduced in some taxa. Hymenoptera that have been examined for muscula- ture. It seems more parsimonious to assume that the 207. Petiole, S2 boundary between T2 and S2 has been just obscured (0) at least partly sclerotized (Fig. 66A–C, E, F) in Megaspilidae when compared to Ceraphronidae (1) membranous medioventrally (Fig. 66D) rather than both obscured and displaced ventrally, as The medioventral part of S2 is entirely desclerotized the latter would entail displacement of the sensillar only in some Chalcidoidea, making this character at patches and the attachment sites of the above- most informative within this superfamily. The pres- mentioned muscles from S2 to T2. Our interpretation ence of sensillar patches ventrolaterally in the scle- of the extent of S2 implies that the ventral part of the rotized part of the petiole indicates that the lateral circular transverse carina is situated within S2 in parts of S2 are still sclerotized, but fused with T2. Megaspilidae.

208. Petiole, S2 posteriorly 210. Petiole, longitudinal carina anteriorly on S2 (0) equally sclerotized or membranous throughout (0) absent (Fig. 66C, F) (Fig. 66D–F) (1) present posterior to anterior margin (S2lc: (1) less heavily sclerotized posteriorly for at least half Fig. 66A, B) the length of T2 (Fig. 66B) This character is highly variable both within and In contrast to the previous character, the anterior amongst superfamilies. It has been scored as inappli- part of S2 is sclerotized in state 1 of this character. cable when the medioventral part of S2 is entirely This state is an autapomorphy of Ichneumonoidea, membranous. having been reversed in a few taxa.

209. Petiole, transverse carina anteriorly on S2 MUSCULATURE (0) absent (Fig. 66A, B, F) 211. Median pronoto-prophragmal muscle (1) transverse carina posterior to sensillar patches (0) absent present (S2tc: Figs 64C, D, 66C) (1) present (t1m-ph1, t1l-ph1: Fig. 1A, B) This character is highly variable both within and The muscle is absent in many Hymenoptera taxa amongst superfamilies. It has been scored as inappli- including all ‘Symphyta’ and present in Evanioidea, cable when the medioventral part of S2 is entirely some Proctotrupoidea, Stephanoidea, Trigonaloidea, membranous. In Megaspilidae there is no line of and Vespoidea. fusion between T2 and S2 on the anterior surface of the metasoma accommodating the short anterior part 212. Site of origin of the dorsal pronoto-procoxal of the petiole articulating with the mesosoma, muscle (UNORDERED) whereas short lines are visible lateral to the articu- (0) from along the dorsal margin of the pronotum lating part of T2/S2 in Ceraphronidae. This led (t1d-cx1: Fig. 27A, B) Masner & Dessart (1967) to conclude that in (1) distinctly ventral to the dorsal margin of the Megaspilidae the entire articulating part of the meta- pronotum (t1d-cx1: Fig. 10D) soma is formed by T2, which occupies the whole area (2) from the ventral surface of the anterior thoracic encompassed by the continuous circular carina delim- spiracle occlusor muscle apodeme (t1d-cx1: Figs 14C, iting the anterior part of the metasoma. According to 19B) their interpretation, in Megaspilidae S2 is reduced to State 0 is present in non-apocritan Hymenoptera and a narrow ventral strip delimited anteriorly by the some Apocritan taxa; state 2 is present in Urosigal- ventral part of the carina and posteriorly by the S2/S3 phus and some Proctotrupoidea. boundary. Hence, the ventral part of the carina should be situated on the boundary between T2 and 213. Ventral pronoto-procoxal muscle

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 86 L. VILHELMSEN ET AL.

(0) absent character is highly correlated with the configuration (1) present (t1v-cx1: Fig. 30A–C) of the prepectus (see character 17). The muscle is absent from all apocritan taxa. The presence of the ventral pronoto-procoxal muscle has 218. Site of pronotal origin of the anterior thoracic not previously been reported in Hymenoptera. spiracle occlusor muscle (0) arises at least partly from the occlusor muscle 214. Pronoto-mesobasalar muscle apodeme (sp1occ: Figs 4A, 19B) (0) absent (1) arises from the wall of the pronotum (sp1occ: (1) present (t1-ba2: Figs 1A, 2B, C) Fig. 19D) The muscle is absent in all ‘Symphyta’ and present in This character has been scored as inapplicable when Megaspilidae, most Evanioidea, Ichneumonoidea, the muscle does not arise from the pronotum. State 1 Megalyroidea, in a few Scelionidae (Archaeoteleia, occurs in some Proctotrupoidea, Evanioidea, Megaly- Idris), and Trigonaloidea. In Hymenoptera a roidea, and Platygastroidea. maximum of six muscles insert on the mesobasalar apodeme; they arise from the pronotum, mesopleuron, 219. Lateral propleuro-postoccipital muscle intersegmental membrane, mesocoxa, mesotro- (0) absent chanter, and mesoscutum. The presence of the (1) present (pl1l-poc: Figs 1D, 2D) pronoto-mesobasalar muscle has not previously been This muscle is absent in most non-apocritan reported in Hymenoptera. The basalare muscles Hymenoptera (including Orussus) and present in are known to function antagonistically to the many Apocrita. mesopleuro-third axillary muscles in folding the fore wing (Gibson, 1986), but some, like the mesocoxo- 220. Propleural arm-postoccipital muscle mesobasalar and mesotrochantero-mesobasalar (0) absent muscles may also function during turning motions in (1) present (ppa-poc: Figs 4B, D, 30E) flight (Dickinson & Tu, 1997). In Apocrita, these The presence of this muscle is perhaps an auta- extrinsic leg muscles are absent. It is possible that pomorphy of Ceraphronoidea, and paralleled in the pronotal subunits of the basalare muscles, which Tenthredinoidea. are present only in Apocrita, replaced these muscles functionally. 221. Propleural arm-protrochanteral muscle (0) absent 215. Pronoto-profurcal muscle (1) present (ppa-tr1: Fig. 1A, C) (0) absent This muscle is present in non-apocritan (1) present (t1-fu1: Fig. 17C, F) Hymenoptera, but absent in many apocritan taxa The muscle is observed only in Megalyroidea and making it difficult to interpret the phylogenetic signal Scelionidae. In these taxa the propleural arm- of this character. pronotal muscle is not subdivided, as in many other Apocrita. Therefore, it is possible that this muscle is 222. Mesofurco-propleural arm muscle homologous with a subunit of the propleural arm- (0) absent profurcal muscle. (1) present (fu2-ppa: Figs 11D, 31G) 216. Pronoto-third axillary sclerite of fore wing The absence of this muscle is a putative autapomor- muscle phy for apocritans with several reversals. (0) absent (1) present (t1-3ax2: Fig. 19C) 223. Profurco-prophragmal muscle The muscle is present in all genera of Scelionidae and (0) absent in Vanhornia, and could be a secondary subdivision of (1) present the second mesopleuro-third axillary sclerite muscle This muscle is present only in non-apocritan (Mikó et al., 2007). Hymenoptera; its absence is therefore a putative autapomorphy for Apocrita. 217. Anterior thoracic spiracle occlusor muscle (V01, 91) (UNORDERED) 224. Origin of median profurco-procoxal muscle (0) arise from independent prepectus (sp1occ: (0) from the posteroventral part of the profurca Figs 6D, 27C) (fu1m-cx1: Fig. 8C) (1) arise from mesopleuron (1) from the ventral part of the propleural arm (2) arise from pronotum (sp1occ: Fig. 1A) (fu1m-cx1: Fig. 1A) As the origin of the anterior thoracic spiracle occlusor State 1 is observed in non-apocritan Hymenoptera; muscle is usually used to identify the prepectus, this the profurcal origin of this muscle in Evanioidea,

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 87

Trigonalidae, Apoidea, and Vespoidea is most likely to (0) absent be the result of secondary reversals. (1) present (t2-ph2: Fig. 4F) This muscle is present in all non-apocritan 225. Profurco-protrochanteral muscle Hymenoptera except Orussidae and in Ceraphro- (0) absent noidea, Cynipoidea, and some Proctotrupoidea. The (1) present (fu1-tr1: Figs 14A, 20C) muscle may be an important steering muscle of the This muscle is present in various Hymenoptera, in fore wing and be considered as an antagonistic muscle which it could have developed in parallel. to the anterior mesofurco-mesolaterophragmal muscle (see character 89). 226. Prospinasterno-profurcal muscle (0) absent 231. Presence of mesonoto-mesocoxal muscle (1) present (0) absent The absence of this muscle could be a synapomorphy (1) present (t2-cx2: Fig. 32B) for Cephidae, Siricoidea, Xiphydriidae, Orussidae, This muscle is present only in Xyelidae and Cephidae. and Apocrita. 232. Anterior mesonoto-mesotrochanteral muscle 227. Dorsal mesofurco-profurcal muscle (0) absent (0) absent (1) present (t2a-tr2: Fig. 17A, E) (1) present (fu2-fu1d: Fig. 4B) This muscle is present in all non-apocritan This muscle may be homologous with the mesofurco- Hymenoptera and in Ceraphronoidea, Chalcidoidea, propleural arm muscle (see character 222). It is and Megalyroidea. The anterior mesonoto- present in Megaspilidae, Ichneumonoidea, Megalyroi- mesotrochanteral muscle in Chalcidoidea might be dea, Platygastroidea, and Vanhorniidae. formed by a secondary subdivision of the posterior 228. Origin of prospinasterno-procoxal muscle mesonoto-mesotrochanteral muscle (Gibson, 1999). (UNORDERED) (0) from independent prospinasternum 233. Posterior mesonoto-mesotrochanteral muscle (1) from anteriorly on the mesopectus (sps1-cx1: (0) absent Fig. 17D) (1) present (t2p-tr2: Fig. 17A, E) (2) from ventral pronotal sclerotization (sps1-cx1: This muscle is present in Ceraphronoidea, Chalci- Fig. 19F) doidea, and Diapriidae excluding Ismarinae (Gibson, (3) from independent prepectus 1999) and Stephanoidea. The muscle arises from the independent prospinas- ternum in all non-apocritan Hymenoptera except 234. Anterior mesonoto-metanotal muscle Tenthredinoidea (see Vilhelmsen, 2000b). In most (0) absent Apocrita, it arises from medially on the anterior (1) present (t2a-t3: Figs 15D, 22C) margin of the mesopectus, often from an apodeme in This muscle is present in all non-apocritan this position. This condition is probably the ground Hymenoptera except Orussidae and in some Ichneu- plan feature for Apocrita and highly correlated with monoidea and Proctotrupoidea. the absence of an independent prospinasternum (character 108). States 2 and 3 are independent, sec- 235. Posterior mesonoto-metanotal muscle ondary developments observed in Proctotrupidae and (0) the two bands of the paired muscle insert medi- Pelecinus and in Chalcidoidea and Chrysis, respec- ally on the metanotum (t2p-t3: Fig. 15D) tively (see also character 16). (1) the two bands of the paired muscle insert later- ally on the metanotum (t2p-t3: Fig. 29G) 229. Mesonoto-mesobasalar muscle State 1 is a putative synapomorphy for Apoidea and (0) absent Vespoidea; the condition has not been observed (1) present (t2-ba2: Fig. 14E) outside these taxa. This muscle was observed only in Doryctes amongst apocritans but present in all non-apocritan 236. Site of origin of second mesopleuro-mesonotal Hymenoptera. As a result of the minute size of the muscle muscle it is possibly overlooked in apocritan taxa (0) from the mesopleural ridge or posterior to the having the internal part of the mesobasalare distally mesopleural ridge from the mesopleural arm (pl2-t2b: expanded into a broad apodeme (see also character Fig. 31B) 214). (1) anterior to the mesopleural ridge or from the wall of the mesopleuron sometimes at least partly from the 230. Mesonoto-mesolaterophragmal muscle mesopleural apodeme (pl2-t2b: Fig. 31A, C)

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 88 L. VILHELMSEN ET AL.

State 1 is present in Cephidae, Xiphydriidae, and (1) arises from the wall of the mesopleuron, some- Apocrita (see also character 103). times partly from the mesopleural apodeme (pl2-cx2: Figs 2C, 6E, 31C) 237. Intersegmental membrane-mesobasalar muscle State 1 is present in Xiphydria and Apocrita. This (anterior mesopectal-mesobasalar muscle) character may be correlated to the presence of the (0) absent mesopleural ridge (see character 103). (1) present (ism1,2-ba2: Fig. 2B) This muscle is present in many Apocrita and Ony- 244. Mesopleuro-third axillary sclerite of hind wing cholyda and may be homologous with the prepecto/ muscle intersegmental membrane-mesobasalar muscle of (0) absent Xyelidae and Chrysis (see also character 214). (1) present (pl2-3ax3: Fig. 22D) This muscle is present in Chalcidoidea, Doryctes, Sce- 238. Mesocoxo-mesobasalar muscle lionidae, and Proctotrupoidea. The muscle may be the (0) absent secondary subdivision of each of the metapleuro-third (1) present (cx2-ba2: Fig. 32B, C) axillary sclerite muscles. This muscle is absent in Tenthredinoidea, Xiphydria, Orussus, and Apocrita (see also character 214). 245. Posterior mesofurco-mesolaterophragmal muscle (0) absent 239. Mesotrochantero-mesobasalar muscle (1) present (fu2p-ph2: Fig. 32E) (0) absent This muscle is present only in non-apocritan (1) present (tr2-ba2: Fig. 32C) Hymenoptera and its absence is a putative autapo- This muscle is present in Onycholyda, Cephus, and morphy of Apocrita. Xiphydria and is reported for the first time in Hymenoptera (see also character 214). 246. Lateral mesofurco-mesotrochanteral muscle (0) absent 240. Mesopleuro-mesosubalar muscle (1) present (fu2l-tr2: Fig. 10E) (0) absent This muscle is present in Evaniidae, Platygastroidea, (1) present (pl2-sa2; Figs 6E, 29A) most Proctotrupoidea, Apoidea, and Plumarius.The This muscle is absent in Xiphydria, Orussus, and lateral mesofurco-mesotrochanteral muscle may be most Apocrita; it is present in Chrysidoidea, formed by a secondary subdivision of the median Vespoidea, and Chalcidoidea. In Chrysidoidea and mesopleuro-mesotrochanteral muscle (Gibson, 1985, Vespoidea the muscle arises from the posteroventral 1999; Mikó et al., 2007). mesopleural apodeme (Fig. 29A), whereas in Chalci- doidea it arises from the wall of the mesopectus 247. Median mesofurco-mesotrochanteral muscle (Fig. 6E). The mesopleuro-mesosubalar muscle could (0) absent be homologous with the Mesocoxo-mesosubalar (1) present (fu2m-tr2: Fig. 2A) muscle in Chalcidoidea (Gibson, 1986). This muscle is absent in Ceraphronoidea, Chalci- doidea, and Stephanoidea. 241. Mesocoxo-mesosubalar muscle (0) absent (Fig. 6G) 248. Site of origin of the median mesofurco- (1) present (cx2-sa2: Fig. 2A) mesotrochanteral muscle The absence of this muscle is a putative autapomor- (0) arises submedially from the lateral part of the phy for Chalcidoidea. mesofurcal arm (fu2m-tr2: Figs 21E, 28B, 31G) (1) arises from the mesofurcal bridge or from the 242. Posterior mesopleuro-mesofurcal muscle anterior mesofurcal arm (fu2m-tr2: Fig. 2A) (0) absent This character has been scored as inapplicable when (1) present (pl2p-fu2: Figs 29A, 32A, E) the muscle is absent. State 1 is present in non- This muscle is absent in Xiphydria and most Apo- apocritan Hymenoptera, Monomachus, Diapriidae, crita, but present in Vespoidea and Chrysidoidea, and Chrysidoidea, and Vespoidea. therefore could be considered as an autapomorphy for Aculeata. It is difficult to decide if this is an instance 249. Mesofurco-metabasalar muscle of retained plesiomorphy or of reversal. (0) absent (1) present (fu2-ba3: Fig. 32E) 243. Site of origin of the mesopleuro-mesocoxal The absence of this muscle is a putative autapomor- muscle phy of Apocrita. (0) arises from the anterior surface of the mesopleu- ral ridge (pl2-cx2: Fig. 31A, B, D, F) 250. Mesospinasterno-metafurcal muscle

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 89

(0) absent (1) present (t3a-cx3: Fig. 34B) (1) present This muscle is present in some non-apocritan This muscle is present in all non-apocritan Hymenoptera and in Ceraphronoidea. It is difficult to Hymenoptera except Tenthredinoidea. It was not decide if this is an instance of retained plesiomorphy observed in any Apocrita despite the presence of a or of reversal. The muscle arises from the humeral mesospinasternal apodeme in some of these (see also sclerite and inserts anterior to the site of insertion of character 120). the median metapleuro-metacoxal muscle in Ceraph- ronoidea (Fig. 5E–G). In ‘Symphyta’ the metanoto- 251. Metanoto-metabasalar muscle metacoxal muscle arises from the submedian part of (0) absent the metanotum, always posterior to the area homolo- (1) present gous with the humeral sclerite (Fig. 34B), and always This muscle is absent in Cephidae, Xiphydriidae, inserts on the metacoxa posterior to the site of origin Orussidae, and Apocrita. According to Vilhelmsen of the lateral metapleuro-metacoxal muscle. There- (2000a), it is also absent from some Tenthredinoidea, fore, it is more likely that the metanoto-metacoxal Megalodontesidae, and Siricidae, but present in Syn- muscle of Ceraphronoidea is homologous with the texis. The variability of this muscle amongst basal metanoto-metatrochanteral muscle of other Apocrita non-apocritan Hymenoptera makes it of limited phy- (see also characters 134, 258). logenetic value. 257. Posterior metanoto-metacoxal muscle 252. Median metapleuro-metanotal muscle (0) absent (0) absent (1) present (t3p-cx3: Fig. 34B) (1) present (pl3m-t3: Fig. 12A, B) This muscle is present in most non-apocritan This muscle is absent from Orussidae and many Hymenoptera and absent from all Apocrita; the Apocrita, but still of widespread occurrence within absence is a putative autapomorphy for the latter the latter taxon. The character hence seems to be of taxon. limited phylogenetic value (see also character 134). 258. Metanoto-metatrochanteral muscle 253. Site of origin of the median metapleuro- (0) absent metanotal muscle (1) present (t3-tr3: Fig. 23G–I) (0) arises anterior to the anterior branch of the para- This muscle is present in Athalia, Onycholyda, Orus- coxal ridge (pl3m-t3:Fig. 22B) soidea, Chalcidoidea, Cynipoidea, and most Platyga- (1) arises posterior to the anterior branch of the stroidea and Proctotrupoidea. It is difficult to decide if paracoxal ridge (pl3m-t3: Fig. 13A, B) this is an instance of retained plesiomorphy or of This character has been scored as inapplicable when reversal. the muscle is missing (see previous character). State 1 is observed in Evanioidea and ‘Symphyta’. 259. Site of origin of the anterior metapleuro- 254. Metalaterophragmo-metafurcal muscle metabasalar muscle (0) absent (0) from anterior to the anterior branch of the para- (1) present (ph3-fu3: Figs 9D, 13E, 33C) coxal ridge, but posterior to the anterior margin of the This muscle arises from the metalaterophragma in metapleuron (pl3a-ba3: Fig. 3A) most non-apocritan Hymenoptera and in Cynipoidea. (1) from the wall of the fused mesometapectus (pl3a- The muscle arises from the metanotum in Orussidae, ba3: Figs 5E, 18E) Aulacidae, Gasteruptiidae, and some Aculeata but is State 0 is a possible synapomorphy of Megalyridae absent from most Apocrita. and Ceraphronoidea. The condition is likely to be correlated with the fusion of the meso- and metapleu- 255. Metanoto-metalaterophragmal muscle ron (character 150); however, it was not observed in (0) absent any other apocritan taxa that also have the meso- and (1) present (t3-ph3: Fig. 9E) metapleuron fused to various degrees. This muscle is present in non-apocritan Hymenoptera except Tenthredinoidea and Orussoidea and in Cyn- 260. Lateral metapleuro-metabasalar muscle/ ipoidea. The presence of the muscle in Cynipoidea is intrinsic muscle of metapleuron probably a reversal and could be an autapomorphy of (0) absent the superfamily. (1) present (pl3l-ba3, pl3-pl3: Figs 15E, 34C, F, 35C) A lateral subunit of the metapleuro-metabasalar 256. Anterior metanoto-metacoxal muscle muscle is present in Xiphydriidae and Ichneu- (0) absent monoidea. In the latter taxon the muscle always

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 90 L. VILHELMSEN ET AL. arises from the metabasalar apodeme. The presence 267. Site of origin of the lateral metapleuro-metacoxal of the apodeme and the muscle is a putative autapo- muscle morphy for Ichneumonoidea. Vilhelmsen (2000a) sug- (0) does not extend to the propodeum (pl3l-cx3: gested that the lateral metapleuro-metabasalar Fig. 18B) muscle of xiphydriids is homologous with the intrinsic (1) extends to the propodeum (pl3l-cx3: Figs 15C, muscle of the metapleuron of other non-apocritan 26D) Hymenoptera. It is difficult to decide whether this is State 1 is present in Ichneumonoidea and Aculeata. a retained synapomorphy or a reversal. 268. Metapleuro-propodeal muscle 261. Posterior metapleuro-metabasalar muscle (0) absent (0) absent (1) present (pl3-T1: Fig. 34H) (1) present (pl3p-ba3: Fig. 3B) This muscle is present in Cephus and Orussus. This muscle is present in Trigonalidae and Evanio- idea, being a putative synapomorphy for these taxa. It 269. Metasterno-second abdominal sternal muscle is also present in most Aculeata and in Ibalia. (0) absent 262. Metacoxo-metabasalar muscle (1) present (s3-S2: Figs 28D, 29F) (0) absent The presence of this muscle is a putative synapomor- (1) present (cx3-ba3: Figs 9B, 33F, 34C) phy for Aculeata. This muscle is apparently present in the hymenopteran ground plan, but absent from Xiphy- 270. Site of origin of the metapleuro-metatrochanteral driidae, Orussidae, and most Apocrita; the absence muscle might be a synapomorphy for these taxa. However, (0) does not extend to the propodeum (pl3-tr3: the muscle is still present in Evaniidae, Plumarius, Fig. 3C) and Diplolepis. (1) extends to the propodeum (pl3-tr3: Fig. 12B, E) State 1 is present in Megalyroidea and Evanioidea. 263. Metacoxo-metasubalar muscle (0) absent 271. Second abdominal sternal-metacoxal muscle (1) present (cx3-sa3: Fig. 3C) (0) absent The absence of this muscle is a putative autapomor- (1) present (S2-cx3: Fig. 34A) phy for Chalcidoidea. This muscle is absent in Apocrita.

264. Anterior metapleuro-metafurcal muscle 272. Propodeo-second abdominal segment muscle (0) absent (0) absent (1) present (pl3a-fu3: Fig. 33A) (1) present (T1-S2: Fig. 3B) This muscle was not observed in Apocrita except for This muscle is absent from Stephanidae and Cyn- Ibalia (Ronquist & Nordlander, 1989). ipoidea. These could be independently acquired auta- 265. Posterior metapleuro-metafurcal muscle pomorphies for these two clades. Muscle 16 (0) absent (Vilhelmsen, 2000a), arising from the first metasomal (1) present (pl3p-fu3: Fig. 33A) tergite and inserting on the second metasomal ster- This muscle was not observed in Xiphydria and nite, is present in all ‘Symphyta’, but absent in all Orussus (Vilhelmsen, 2000a) or in Apocrita. Ronquist Apocrita. On the basis of the site of attachment it may & Nordlander (1989) reported this muscle from be homologous with the propodeo-second abdominal Ibalia; Vilhelmsen (2000a) considered them to have segment muscle of Apocrita. However, the muscle confused it with the metalaterophragmo-metafurcal inserts on the metapleuron in Orussus (pl3-T1: muscle. Fig. 34H) and Xiphydria.InOrussus abietinus there is another muscle arising from T1 (ventral to the 266. Lateral metapleuro-metacoxal muscle metaphragma) and inserting on T2 (T1-T2: Fig. 34H). (0) arises from the metapleural apodeme and some- This muscle was not reported in Orussus by Vilhelm- times from the metapleuron ventral to the metapleu- sen (2000a) and could be homologous with muscle 32a ral apodeme, site of origin limited by the metapleural (Vilhelmsen, 2000a) of Cephus (see character 268). ridge (pl3l-cx3: Fig. 15B, C) The propodeo-second abdominal segment muscle of (1) arises exclusively from the paracoxal ridge (pl3l- apocritans therefore is more probably homologous cx3: Figs 22D, 23A) with muscle 32a of Cephus and Orussus than with State 1 is present in some Proctotrupoidea. The muscle 16. The propodeo-second abdominal segment muscle is absent in Gasteruptiidae, which might be muscle arises ventral to the site of origin of the an autapomorphy of this taxon. metaphragmo-second abdominal tergal muscle in

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 91 most Hymenoptera. In Megalyra the muscle arises k = 25 (Fig. 70). A new technology search found iden- from the metaphragma, dorsal to the site of origin of tical trees with identical or almost identical fit values the metaphragmo-second abdominal tergal muscle. for the k settings tested. The transverse carina of the propodeum in this super- family corresponds to the site of origin of the latter muscle. This configuration is a putative autapomor- DISCUSSION phy for Megalyroidea. The following discussion will focus on the higher-level relationships of the Hymenoptera at the superfamily/ 273. Site of origin of the dilator muscle of the pro- family level. Even in the superfamilies represented by podeal spiracle (UNORDERED) the highest number of exemplars (e.g. Chalcidoidea, (0) arises just dorsal to the lateral metacoxal articu- Ichneumonoidea), the taxon sample is still too small lation (dT1sp: Fig. 3C) to allow a more than cursory discussion of the inter- (1) arises from the metapleural apodeme, anterior to nal relationships of these clades. Furthermore, the the propodeal spiracle (dT1sp: Figs 12F, 13E) character sample is not tailored to resolve relation- (2) arises from the propodeum on the level of the ships at the lower taxonomic level. For these reasons, propodeal foramen (dT1sp: Fig. 12E) discussion of within-superfamily relationships will be State 1 is observed in Gasteruptiidae and Aulacidae, brief, at most. Also, the discussion will focus on the being a putative synapomorphy for these two families; relationships within Apocrita. For more comprehen- state 2 is an autapomorphy for Evaniidae. The char- sive discussions of the phylogeny of the basal acter has been treated as unordered because it does hymenopteran lineages, see Vilhelmsen (2001) and not appear that the states form a transformation Schulmeister (2003a, c). Only the more prominent series, even if Gasteruptiidae, Aulacidae, and Evani- and/or least homoplasious characters supporting a idae are possibly closely related. given node are included in the discussion, and pos- sible homoplasies are usually only mentioned for the closest relatives of the clade under discussion, i.e. RESULTS – CLADISTIC ANALYSES those that are likely to influence the optimization of the character at the node being discussed, should the The equal weights analyses found 23 198 most parsi- overall topology of the tree change. monious trees of 1695 steps in length. A strict con- sensus tree is shown in Figure 67. A new technology search found 809 trees of the same length and the NON-APOCRITAN HYMENOPTERA strict consensus tree was identical to Figure 67. Most The monophyly of Hymenoptera is well supported. In apocritan superfamilies were retrieved, some with the equal weights strict consensus tree (Fig. 67), the good support. Support values for nodes above the base of the Hymenoptera is unresolved; in most of the superfamily level were generally low. The Aculeata implied weights analyses (Figs 68, 69), Macroxyela came out as a poorly resolved grade close to the base (Xyeloidea; k = 1, 3–11/15/20) comes out as sister of the Apocrita. group to the rest of Hymenoptera, with Onycholyda The implied weights analyses produced at most a (Pamphilioidea; k = 3–10/15/20) as sister to the few trees each, with different fit and sometimes also remaining Hymenoptera. Tenthredinoidea are usually different topologies (Figs 68–70). The number of rep- (exception: k = 2) retrieved as monophyletic with mod- lications that found the most fit tree was low, regard- erate support, but their position varies. They are the less of the settings, not exceeding much more than sister to all other Hymenoptera (including Xyelidae) 10% for any k value, and sometimes being substan- at high k values (25/30; Fig. 70), the sister to Xiphy- tially lower. The following sets of identical topologies dria (Xiphydrioidea) + Orussoidea + Apocrita when were identified: k = 5–8, and k = 9–10 (Fig. 69), and k = 1 (Fig. 68), but usually occupy a position as the 11, 15, 20. These three sets of topologies differed only third branch from the base of Hymenoptera after in the position of Monomachus, the position of Eva- Macroxyela and Onycholyda. Siricoidea sensu Schul- niidae, and the internal phylogeny of the Ichneu- meister [2003a; Syntexis (Anaxyelidae) + Siricidae] monoidea, i.e. the higher level relationships were are only retrieved as monophyletic when k = 1 stable over a broad range of the k values implemented (Fig. 68), the most frequent topology being in the implied weights analyses. The most aberrant Syntexis + (Siricidae + (Cephus [Cephoidea] + results were obtained with k = 1 (Fig. 68). We have (Xiphydria + (Orussidae + Apocrita)))). Cephus is chosen only to display the equal weights tree (Fig. 67, usually placed in this position, being the sister to with support values) and examples from the implied Siricoidea when k = 1. Cephus shares the following weights results spanning the range of variation in traits with Xiphydria, Orussidae, and Apocrita: (1) topology produced: k = 1 (Fig. 68), k = 10 (Fig. 69), having the cervical prominence placed ventral to the

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 92 L. VILHELMSEN ET AL. anterodorsal corner of the propleura (character 26 : 1; several reversals); (16) absence of the posterior also in Onycholyda; (2) the absence of a mesoscutellar metapleuro-metafurcal muscle (character 265 : 0). appendage (character 81 : 0); (3) the presence of a Orussoidea + Apocrita (Vespina sensu Rasnitsyn, well-developed metapleural apodeme (character 1988) is the most well-supported clade in our analy- 149 : 1; also in most Tenthredinoidea); (4) the pres- ses, corroborating the case for a single shift from ence of a hind tibial brush (character 176 : 1; also in herbivory to carnivory within the Hymenoptera. Tenthredinoidea); (5) the presence of an articulation Putative synapomorphies are: (1) the anteriorly between the first and second abdominal tergites extended pronotum (character 1 : 1; many reversals (character 194 : 1/2). within the Apocrita); (2) presence of a smooth dorsal The topology for the basal Hymenoptera suggested inflection on the propleura (character 30 : 1); (3) pres- by the recent studies of Vilhelmsen (2001) and Schul- ence of a probasitarsal comb (character 54 : 1); (4) the meister (2003a) was Xyeloidea + (Tenthredinoidea + laterally extended mesoscutellar arms (character (Pamphiloidea + (Cephoidea + (Siricoidea [alterna- 84 : 1); (5) absence of a postspiracular sclerite on the tively: Anaxyelidae + (Siricidae + etc. in Vilhelmsen, anterior mesopleural margin (character 99 : 0); (6) 2001)] + (Xiphydrioidea + (Orussoidea + Apocrita))))))). absence of an externally visible posterior thoracic Except for the latter three taxa, the topologies pro- spiracle (character 100 : 0; the spiracle is apparently duced by the present analyses differ somewhat from entirely absent in some cases, see Tonapi, 1958); (7) the previous ones, especially regarding the placement presence of mesopleural signa (character 112 : 1; some of Tenthredinoidea and Cephoidea. However, the reversals); (8) a transverse subdivision of the meso- current analyses are based only on characters from coxa (character 126 : 1); (9) presence of a humeral the adult mesosoma, whereas Vilhelmsen (2001) and sclerite at the hind wing base (character 134 : 1; Schulmeister (2003a) included data from a number of reversed in Cynipoidea); (10) presence of a lateral additional character systems both larval and adult as longitudinal carina on the metanotum (character well as, in the case of Schulmeister (2003a), molecular 138 : 1); (11) T1/propodeum abutting or fused with the data. Furthermore, support for these basal nodes is metapleural arm (character 141 : 1,2); (12 + 13) pres- generally low, so they might be overturned in a more ence of median and lateral longitudinal carinae ven- comprehensive analysis. trally on the metapleuron (characters 152 : 1/2; In contrast, there is substantial and consistent 153 : 1/2; numerous reversals); (14) absence of tarsal support for the three consecutive nodes in the topol- plantulae [character 177 : 0; reversed in some ogy Xiphydria + (Orussoidea + Apocrita) (Figs 67–70). Vespoidea (e.g. Pompilidae, Rhopalosomatidae) and These nodes were also retrieved in the analyses of Trigonalidae]; (15) presence of a medially continuous Vilhelmsen (2001) and Schulmeister (2003a). Synapo- propodeum (character 178 : 1) fused anteriorly with morphies for Xiphydria + Orussoidea + Apocrita the metapostnotum (character 179 : 1); (16) absence include: (1) presence of parapsides (character 65 : 1); of the mesonoto-mesolaterophragmal muscle (charac- (2) presence of a parascutal carina (character 66 : 1); ter 230 : 0; several reversals, e.g. many Proc- (3) presence of a transscutal articulation (character totrupoidea s.l., Ceraphronoidea); (17) absence of the 67 : 2); (4) presence of an axillar carina (character anterior mesonoto-metanotal muscle (character 70 : 1); (5) having the mesolaterophragmal apodeme 234 : 0; occasional reversals within the Apocrita); (18) slender (character 91 : 1; occasional reversals within absence of mesofurco-metabasalar muscle (character the Apocrita); (6 + 7) having the mesopostnotum con- 249 : 0); (19) absence of the metanoto- cealed both medially and laterally (characters 92 : 1; metalaterophragmal muscle (character 255 : 0; occa- 93 : 2); (8) absence of a mesopleural ridge (character sional reversals within the Apocrita). 103 : 0); (9) absence of the hind wing tegula (character The monophyly of the Apocrita is supported by a 133 : 0); (10) absence of a lateral incision on the number of apomorphies, not all of which are corre- metanotum (character 139 : 0); (11) having the lated with the formation of a wasp-waist: (1) absence metepimeron reduced posteriorly (character 145 : 0; of an independent prospinasternum (character this assumes that the metepimeron was reduced pos- 108 : 1); (2) absence of cenchri on the metanotum teriorly in Apocrita prior to the fusion of the meta- (character 132 : 0; paralleled in Cephoidea); (3 + 4) pleuron with the propodeum, see Shcherbakov, 1981; propodeum fused with metapleural arm and posterior Vilhelmsen, 2000a); (12) absence of hind leg tro- part of the metapleuron (characters 141 : 2; 144 : 1); chantins and the metanoto-trochantinal muscles (5) absence of the metepisternal anapleural cleft (character 172 : 0); (13) absence of the mesofurco- (character 143 : 0); (6) presence of the wasp-waist propleural arm muscle (character 222 : 0; several (character 194 : 2); (7) absence of the ventral pronoto- reversals); (14) absence of the anterior metanoto- procoxal muscle (character 213 : 0); (8) presence of the metacoxal muscle (character 256 : 0); (15) absence of lateral metapleuro-postoccipital muscle (character the metacoxo-metabasalar muscle (character 262 : 0; 219 : 1); (9) absence of the profurco-prophragmal

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 93 muscle (character 223 : 0); (10) the median profurco- Monomachus (Monomachidae) then have to be inter- procoxal muscle arising from the profurcal arm (char- preted as reversals]; (2) absence of an independent acter 224 : 0; several reversals, e.g. Evanioidea and prepectus (character 17 : 0; again there are reversals Trigonaloidea); (11) absence of the mesonoto- in Chalcidoidea and Monomachus amongst others, mesobasalar muscle (character 229 : 0); (12) absence this and the previous character are possibly corre- of the anterior mesonoto-mesotrochanteral muscle lated); (3) having the prepectus or its derivative (character 232 : 0; reversals in Chalcidoidea and extending dorsal to the anterior thoracic spiracle Ceraphronoidea + Megalyroidea); (13) presence of the (character 20 : 1; reversed in Chalcidoidea and intersegmental membrane-mesobasalar muscle (char- Maaminga); (4) having the scutoscutellar ridge reach- acter 237 : 1; numerous reversals within the Apo- ing the transscutal articulation/carina anteriorly crita); (14) median mesofurco-mesotrochanteral (character 75 : 0; with multiple reversals within Apo- muscle arising from submedially on the lateral part of crita); (5) absence of a well-developed median ventral the mesofurcal arm (character 248 : 0; several rever- mesophragmal longitudinal ridge (character 88 : 0; sals); (15) absence of the mesofurco-metabasalar reversed several times within Apocrita); (6) absence of muscle (character 249 : 0); (16) absence of the a large mesobasalar apodeme (character 98 : 1; metalaterophragmo-metafurcal muscle (254 : 0; reversed several times within Apocrita); (7) having several reversals); (17) absence of the posterior the lateral metacoxal articulation concealed (charac- metanoto-metacoxal muscle (character 257 : 0); (18) ter 163 : 1); (8) absence of well-developed anterior absence of the lateral metapleuro-metabasalar metafurcal arms (character 170 : 0). muscle (character 260 : 0); (19) absence of the second A large clade comprising Aculeata, Ichneu- abdominal sternal-metacoxal muscle (character monoidea, Chalcidoidea, Mymarommatoidea, and 271 : 0). Proctotrupomorpha s.s. is retrieved under the major- ity of the implied weights analyses (k = 2–10/15/20; Fig. 69). Possible synapomorphies for these taxa are: BASAL RELATIONSHIPS AMONGST THE APOCRITA (1) having the proximal part of the mesocoxa reduced Five major clades within the Apocrita are retrieved (character 127 : 1; however, many Aculeata have the over a considerable range of analytical conditions (see proximal mesocoxa well developed, see Johnson, Fig. 69), and some under all: (1) the Stephanidae; (2) 1988:, fig. 35); (2) having the anterior paracoxal ridge the Evaniomorpha s.s. (excluding the Stephanidae); extending to the metapleural apodeme (character (3) the Aculeata + Ichneumonoidea; (4) Chalcidoidea + 158 : 1; reversals in, e.g. most Chalcidoidea and all Maaminga [Maamingidae] + Mymaromma [Myma- Cynipoidea). rommatidae]; (5) Proctotrupomorpha s.s. (comprising The Proctotrupomorpha sensu Rasnitsyn (1988) Cynipoidea and Platygastroidea as well as comprises Chalcidoidea, Cynipoidea, Mymaromma- Proctotrupoidea, but excluding Chalcidoidea, toidea, Platygastroidea, and Proctotrupoidea. This Maamingidae, and Mymarommatoidea). The support clade is retrieved in all analyses (Figs 67, 69, 70) for these major clades and for the nodes connecting except when k = 1. Putative apomorphies include: them is generally weak. (1 + 2) having the second abdominal tergite and ster- The monophyly of Stephanidae is well supported by nite fused (character 201 : 1; reversals in, e.g. Scelion- several autapomorphies, some of which are unique idae; parallelisms outside Proctotrupomorpha) and amongst Hymenoptera: (1) presence of a notch above slender (character 202 : 1; several reversals); (3) pres- the anterior thoracic spiracle on the posterodorsal ence of a mesopleuro-third axillary sclerite of hind corner of the pronotum (character 12 : 1); (2) presence wing muscle (character 244 : 1; reversed in Cyn- of an internal transscutal ridge (character 68 : 1; pos- ipoidea); (4) presence of the metanoto- sibly a retained plesiomorphy); (3) lateral position of metatrochanteral muscle (character 258 : 1; a few the median metacoxal articulation (character 162 : 1); reversals). (4 + 5) presence of enlarged hind coxae and prominent spines on the hind femur (characters 173 : 1; 174 : 1); (6) having the propodeal spiracle in a posterior posi- EVANIOMORPHA SENSU STRICTO tion (character 191 : 1); (7 + 8) presence of a slender Rasnitsyn (1988) included in his Evaniomorpha the petiole (character 202 : 1) with a transverse carina on Ceraphronoidea, Evanioidea, Megalyroidea, Stepha- the second abdominal tergite (character 205 : 1). noidea, and Trigonaloidea. These taxa except There are some putative synapomorphies for the Stephanidae (= Evaniomorpha s.s.) are retrieved as a nonstephanid Apocrita, including: (1) having the monophylum in most implied weights analyses pronotum immovable relative to the mesopleuron (k = 2–11/15/20/25), albeit with low support. The ‘clas- [character 15 : 1; other occurrences of a movable sical’ autapomorphy for Evaniomorpha sensu Ras- pronotum within Apocrita, e.g. Chalcidoidea and nitsyn (1988) is: (1) presence of elongate median

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 94 L. VILHELMSEN ET AL. mesocoxal articulations connecting to the mesocoxa acter 130 : 0); (2) having the meso- and metapleura some distance down its ventral side (character 118 : 1; fused all the way to the hind wing base (character Stephanidae has been scored state 0, see Johnson, 150 : 2); (3) having the metapleuron reduced ventrally 1988 and Vilhelmsen, 2001). The validity of this char- so that the meso- and metacoxal foramina abut (char- acter was disputed by Gibson (1999), who regarded acter 160 : 1). Additional autapomorphies are: (4) the evaniomorph state as an intermediate condition presence of a posterior apical protibial spur (character between the type of coxal articulation (on the proxi- 52 : 1); (5) presence of two mesolaterophragmal lobes mal rim of a proximally broad coxa) seen in non- (character 90 : 1); (6) absence of a mesofurcal bridge apocritans and Stephanidae, and that of most of the (character 123 : 0); (7) presence of a median projection remaining Apocrita (on the proximal rim of a proxi- anteriorly on the propodeum (character 186 : 1); (8) mally reduced coxa; this condition is highly variable having the second abdominal tergite and sternite within Aculeata). Additional putative autapomorphies fused (character 201 : 1; paralleled in Evaniidae and for Evaniomorpha s.s. are: (2) presence of an internal Gasteruptiidae); (9) having the articulating condyle anterolateral pronotal ridge [character 11 : 1; on the second abdominal tergite reduced (character however, this is absent from Evaniidae and Lagyn- 203 : 0; paralleled in Aulacidae + Gasteruptiidae); (10) odes (Ceraphronoidea) and present in a number of the presence of a transverse carina on the second other apocritan taxa]; (3) presence of a pronoto- abdominal tergite (character 205 : 1) and sternite mesobasalar muscle (character 214 : 1; absent from (character 209 : 1; paralleled in Evaniidae); (11) pres- Evania). Having the meso- and metapleura fused to ence of the propleural arm-postoccipital muscle; (12) various degrees is observed in most evaniomorph taxa presence of the metanoto-metacoxal muscle. (character 150 : 1/2), but not in Aulacidae and Gaster- The monophyly of Megalyroidea is moderately sup- uptiidae, making it doubtful as an autapomorphy for ported, putative autapomorphies being: (1) presence Evaniomorpha s.s. of a groove posterolaterally on the propleuron forming Ceraphronoidea and Megalyroidea almost always an articulation with the pronotum (character 37 : 1); (except when k = 1) come out as sister groups with (2) presence of a posteriorly curved profurcal bridge substantial support, also under equal weights (character 46 : 2); (3) having the lateral metacoxal (Fig. 67). Possible synapomorphies are: (1) having the articulation exposed (character 163 : 0; a reversal); (4) anterior thoracic spiracle exposed and surrounded by presence of the pronoto-profurcal muscle (character continuous pronotal cuticle (character 14 : 2); (2) pres- 215 : 1; paralleled with Scelionidae); (5) having the ence of median extensions of the anteroventral propodeo-second abdominal sternal muscle arising corners of the pronotum (character 16 : 1); (3) absence from the metaphragma, dorsal to the site of origin of of an anterior profurcal apodeme (character 45 : 0); the metaphragmo-second abdominal tergal muscle (4) the presence of a well-developed median mesoscu- (paralleled in some Chrysidoidea). tal sulcus and corresponding internal ridge (character The monophyly of Trigonaloidea is strongly sup- 61 : 0; alternatively a retained plesiomorphy); (5) ported, putative autapomorphies being: (1) having a presence of an internal transscutal ridge (character row of small foveolae impressed posteriorly on the 68: 1; paralleled in Gasteruptiidae and some Aul- mesoscutellum (character 80 : 1); (2) presence of a acidae); (6) presence of a median longitudinal carina supramesopleural sclerite (character 101 : 1); (3) pres- on the second abdominal sternite (character 210 : 1; ence of an oblique mesopleural ridge (character absent from Ceraphron); (7) presence of the dorsal 114 : 1); (4 + 5) absence of the anterior paracoxal mesofurco-profurcal muscle (character 227 : 1); (8) sulcus and presence of the posterior paracoxal sulcus anterior mesonoto-mesotrochanteral muscle present ventrally on the metapleuron (characters 156 : 0; (character 232 : 1; a reversal); (9) having the anterior 157 : 1); (6) presence of tarsal plantulae (character metapleuro-metabasalar muscle arising from the wall 177 : 1; this is a reversal); (7) presence of a cuticular of the fused mesometapectus (character 259 : 1). flap lateral to the propodeal spiracle (character The monophyly of Ceraphronoidea is well sup- 190 : 1). ported. This superfamily is characterized by reduction Evanioidea are usually retrieved, with Trigona- and fusion of the metathorax, especially the dorsal loidea as their sister group. Potential synapomorphies and ventral parts, with the mesopleura and the pro- for Evanioidea + Trigonaloidea are: (1) having the podeum. A similar degree of integration of the met- metafurcal arms fused with the metapleural apo- athorax is only approached in Mymaromma, and at demes (character 171 : 2; paralleled in Megalyra); (2) least the fusion of the metapleuron with the presence of the median pronoto-prophragmal muscle mesopleuron is not a ground plan feature of the (character 211 : 1); (3) presence of the mesofurco- Mymarommatidae (Gibson et al., 2007). The ceraph- propleural arm muscle (character 222 : 1); (4) having ronoid autapomorphies that reflect this integration the median profurco-procoxal muscle arising from the are: (1) reduction of the metanotum medially (char- propleural arm (character 224 : 1); (5) presence of the

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 95 posterior metapleuro-metabasalar muscle (character (character 88 : 1; a putative retained plesiomorphy); 261 : 1). Putative autapomorphies for Evanioidea (3) having the anterior branch of the paracoxal ridge include: (1) having the propleural arms orientated on the metapleuron extending anterior to the meta- horizontally and extending posterior to the profurcal pleural apodeme (character 158 : 2); (4) presence of an arms (character 33 : 1; reversed in Evania); (2) articulation notch in the rim of the metacoxal absence of an anterior projection on the mesofurcal foramen (character 164 : 1); (5) having the articulat- arm (character 124 : 0; however, the anterior projec- ing condyle on the second abdominal tergite reduced tion is present in Gasteruption); (3) having the pro- (character 203 : 0; paralleled in Ceraphronoidea); (6) podeal foramen dorsally on the propodeum (character having the dilator muscle of the propodeal spiracle 196 : 2/3); (4) having the anterior thoracic spiracle arising from the metapleural apodeme, anterior to the occlusor muscle arising from the wall of the pronotum propodeal spiracle (character 273 : 1). (character 218 : 1; paralleled in Megalyra). However, Aulacidae are always paraphyletic with respect to under low intensity implied (k = 11/15/20/25/30; Gasteruptiidae, but as the taxon and character Fig. 70) and equal weights (Fig. 67), Trigonaloidea sample was not tailored to resolve the relationships and Evaniidae are sister groups, putative synapomor- within these two families, aulacid monophyly should phies being: (1) presence of a pronotal inflection (char- not be ruled out. Turrisi, Jennings & Vilhelmsen acter 19 : 1); (2) having the propodeal spiracle (2009) indeed retrieved Aulacidae in their analyses. abutting the boundary between the metapleuron and The monophyly of Gasteruptiidae is well supported the propodeum (character 192 : 1); (3) presence of and putative autapomorphies are: (1) having the pro- distinct articulating teeth on the margin of the pro- phragma highly reduced (character 56 : 0); (2) having podeal foramen (character 199 : 1); (4) having the the notauli continuous posteriorly anterior to the dorsal pronoto-procoxal muscle arising ventral to the transscutal articulation (character 64 : 2); (3) having dorsal margin of the pronotum (character 212 : 1; the mesoscutellum subdivided longitudinally (charac- paralleled in Megalyra). ter 78 : 1); (4) presence of anterolateral flanges on the The monophyly of Evaniidae is strongly supported, mesophragma (character 94 : 1); (5) presence of well- possible autapomorphies being: (1) presence of a lon- developed metalaterophragmal lobes (character gitudinal carina on the lateroventral margin of the 183 : 1); (6) having the propodeal foramen adjacent to propleuron (character 34 : 1); (2) presence of a pro- the antecostal sulcus (character 196 : 3); (7) having sternal spine (character 41 : 1); (3) presence of a proxi- the second abdominal tergite and sternite fused (char- mally flattened mesotrochanter fitted deeply into the acter 201 : 1; paralleled in Ceraphronoidea and Eva- mesocoxa (character 128 : 1); (4) presence of a distinct niidae); (8) having the anterior metapleuro- internal shelf ventral to the propodeal foramen (char- metabasalar muscle arising from the wall of the acter 198 : 1); (5 + 6) second abdominal tergite and metapleuron; (9) absence of lateral metapleuro- sternite fused (character 201 : 1; paralleled in Ceraph- metacoxal muscle; (10) having the propodeo-second ronoidea and Gasteruptiidae) and slender (character abdominal sternal muscle arising ventral to the pro- 202 : 1); (7) presence of a transverse carina on the podeal foramen. second abdominal sternite (character 209 : 1; paral- leled in Ceraphronoidea); (8) presence of the lateral mesofurco-mesotrochanteral muscle (character ACULEATA AND ICHNEUMONOIDEA 246 : 1); (9) presence of the metacoxo-metabasalar Aculeata and Ichneumonoidea are usually retrieved muscle (character 262 : 1); (10) having the site of origin as sister groups (k = 2–10/15/20; Fig. 69). In these of the metapleuro-metatrochanteral muscle extending cases, Aculeata are always monophyletic. Potential onto the propodeum (character 270 : 1; paralleled in synapomorphies for Aculeata and Ichneumonoidea Megalyra); (11) having the metaphragmo-second are: (1) the metalaterophragma being continuous with abdominal tergal and metafurco-second abdominal the metapleural apodemes (character 184 : 1; fre- sternal muscles reduced, arising from the lateralmost quently reversed within Ichneumonoidea); (2) pres- part of the metaphragma/metafurca; (12) having the ence of an anteriorly widened petiole (character dilator muscle of the propodeal spiracle arising from 204 : 1); (3) site of origin of the lateral metapleuro- the propodeum at the level of the propodeal foramen metacoxal muscle extending to the propodeum (char- (character 273 : 2). acter 267 : 1). The Aculeata-Ichneumonoidea sister There is good support for a monophyletic group group relationship was proposed by Rasnitsyn (1988), comprising Aulacidae and Gasteruptiidae, putative but has not been consistently retrieved in more strin- synapomorphies are: (1) having the dorsal margins of gent cladistic analyses (Ronquist et al., 1999; Dowton the propleura abutting anterodorsally for at least half & Austin, 2001; Sharkey et al., 2002). their length (character 31 : 1); (2) presence of a well- Aculeata are not monophyletic under equal weights developed ventral mesophragmal longitudinal ridge (Fig. 67) or when k = 1 (Fig. 68). In the former case,

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 96 L. VILHELMSEN ET AL.

Aculeata are placed as a basal grade within Apocrita, Braconidae are monophyletic and the Ichneu- with only Stephanidae more remotely related to the monidae are paraphyletic with respect to Braconidae, remaining Apocrita. Putative autapomorphies of except when k = 25 (Fig. 70) in which case they are Aculeata include: (1) presence of a supramesopleural monophyletic. A potential autapomorphy for Bra- sclerite (character 101 : 1; absent in a few terminals); conidae is having the notauli convergent posteriorly, (2 + 3) absence of the acetabular carina and the meeting medially prior to reaching the transscutal acetabulum on the mesopleuron (characters 110 : 0 articulation (character 64 : 1; both notauli and the and 111 : 0; these could alternatively be retained ple- transscutal articulation are absent from Ichneu- siomorphies); (4) presence of the mesofurco-propleural monidae). A putative autapomorphy for Ichneu- arm muscle (character 222 : 1); (5) presence of the monidae is the absence of the transscutal articulation metasterno-second abdominal sternal muscle (charac- (character 67 : 0; a reversal). ter 269 : 1); (5) presence of the posterior mesopleuro- mesofurcal muscle (character 242 : 1; reversal in Apoidea); (6) presence of the mesopleuro-mesosubalar CHALCIDOIDEA AND THEIR CLOSEST RELATIVES muscle (character 240 : 1). The sister group of Chalcidoidea is most frequently Within Aculeata, only Apoidea are consistently Maaminga + Mymaromma (Figs 67, 69), but it can retrieved as monophyletic. Putative autapomorphies also just be Mymaromma (k = 1; Fig. 68) or a for Apoidea include: (1) presence of median projec- clade comprising (Maaminga + Mymaromma) + tions on the anteroventral corners of the pronotum Proctotrupomorpha s.s. (k = 25; Fig. 70). Possible (character 16 : 1); (2) having the anterior margin of synapomorphies for Chalcidoidea and Maaminga the mesophragma displaced posteriorly (character + Mymaromma include: (1) absence of anteroadme- 86 : 1); (3) having the tegula separated from the lat- dian signa on the mesoscutum (character 62 : 0; par- erodorsal corner of the pronotum (character 95 : 1); alleled in Ichneumonoidea and some Proctotrupoidea (4) having the median mesophragmo-metaphragmal s.l.); (2) absence of parapsides on the mesoscutum muscle inserting medially on the propodeum, ventral (character 65 : 0); (3) presence of an internal transs- to the metaphragma. Indeed, the monophyly of cutal ridge (character 68: 1); (4) absence of the Apoidea is almost universally corroborated in recent mesopleural signa (character 112 : 0; paralleled in analyses of aculeate relationships (Brothers, 1999; Ichneumonoidea). Characters 62, 65, and 112 are all Ronquist et al., 1999; Pilgrim, von Dohlen & Pitts, structures that are external manifestations of the 2008). Chrysidoidea is usually also supported by attachment sites of the indirect flight muscles and these studies. However, the monophyly of Vespoidea hence might be correlated. In addition, several char- has been questioned by Rasnitsyn (1980) and Ron- acters are potential further synapomorphies for these quist (1999); furthermore, the recent comprehensive taxa, but for various reasons fail to optimize convinc- combined analysis of vespoid phylogeny conducted by ingly on Figure 69. An internal septum is present in Pilgrim et al. (2008) failed to retrieve Vespoidea under the mesoscutellum (character 77 : 1) of Maaminga almost all analytical conditions. and Mymaromma, but only in Gonatocerus Ichneumonoidea are always monophyletic. The (Mymaridae) amongst the Chalcidoidea included support for Ichneumonoidea is moderate, but includes here. A frenum is present on the mesoscutellum (char- a few potentially unique autapomorphies: (1) having acter 79 : 1) of Maaminga and Mymaromma and some the anterior thoracic spiracle situated on the poste- of the included Chalcidoidea. The metafurcal pit is rolateral corner of the pronotum (character 23 : 1) situated anteriorly on the metepisternum in with (2) a narrow projection just ventral to it (char- Maaminga and Chalcidoidea (character 165 : 1), but acter 24 : 1); (3) absence of the anteroadmedian signa not in Mymaromma (if the metafurcal pit has been on the mesoscutum (character 62 : 0; paralleled in correctly identified in the latter, see Vilhelmsen & Chalcidoidea and some Proctotrupoidea s.l.); (4) Krogmann, 2006). The metafurcal arms are widely absence of parapsides on the mesoscutum (character separated at the base in Maaminga and most Chal- 65 : 0); (5) presence of a large mesobasalar apodeme cidoidea (character 168 : 1); Mymaromma could not be (character 98 : 0; a reversal); (6) presence of a fully scored for this character because the metafurca is developed mesepimeral ridge (character 102 : 2; par- entirely absent (Vilhelmsen & Krogmann, 2006). alleled in Proctotrupoidea s.l.); (7) absence of the Apparently, Mymaromma is a fairly derived taxon mesopleural signa (character 112 : 0; paralleled in within Mymarommatoidea (Gibson et al., 2007), Chalcidoidea and their closest relatives); (8) presence having some reductional features that make it impos- of the lateral metapleuro-metabasalar muscle; sible to score some characters crucial to identifying (9) presence of the anterior mesonoto-metanotal the sister group of Chalcidoidea. Potential synapo- muscle (character 234 : 1; paralleled in some morphies for just Mymaromma + Chalcidoidea are: (1) Proctotrupoidea). presence of an axillar phragma [character 72 : 1, but

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 97 see Vilhelmsen & Krogmann (2006) for discussion of support for this relationship is low. They share homology]; (2) presence of a transverse posterior several features, some of which might be correlated mesopleural carina (character 115 : 1; paralleled in with small body size: (1) having the cervical promi- many Proctotrupomorpha s.s.). nences exposed [character 25 : 0; also present in The monophyly of Chalcidoidea is always retrieved several of the smallest chalcidoid exemplars (e.g. and well supported, their potential autapomorphies Cales, Coccophagus)]; (2) presence of only one profur- include a number of features, some of which are cal pit (character 44 : 0); (3) presence of an internal highly unique: (1) prepecti fused ventrally with the septum in the mesoscutellum (character 77 : 1; also in prospinasternum [character 21 : 2; Gonatocerus have Gonatocerus, see above); (4) absence of a well- the prepecti ventrally abutting (21 : 1), not fused]; (2) developed median mesocoxal articulation (character position of the anterior thoracic spiracle between the 117 : 0); (5) absence of a mesofurcal bridge (character pronotum and the mesonotum (character 23 : 2); (3) 123 : 0); (6) having the metascutellum reduced (char- the broadly exposed prosternum [character 35 : 1&2; acter 135 : 0); (7) having the articulating condyle on Spalangia has the prosternum mostly concealed the second abdominal tergite reduced (character (35 : 0)]; (4) having a laterally extended prophragma 203 : 0). (character 58 : 1); (5) the anterior mesoscutal groove The close association of Maaminga with Myma- being absent (character 59 : 0; correlated with the romma and Chalcidoidea in most of our analyses presence of a movable pronotum); (6) having the [however, see Fig. 68 (k = 1)] is in conflict with the mesophragmal pockets reduced (character 87 : 0; par- previous placement of Maamingidae in Proc- alleled in Cynipoidea, Diapriidae, and Platygastroi- totrupoidea. Early et al. (2001) in the initial descrip- dea); (7) having the tegula separated from the tion of Maamingidae did not base their superfamily laterodorsal corner of the pronotum (character 95 : 1); assignment on any comprehensive phylogenetic (8) having the mesofurcal pit situated anterior to the analysis. Rather, they excluded it from all apocritan mesocoxal foramina (character 119 : 1); (9) presence of superfamilies except Proctotrupoidea because dorsal concavities on the proximal part of the meso- Maamingidae did not possess any established auta- furcal arms (character 121 : 1); (10 + 11) presence of pomorphy of any of the other superfamilies. They both the anterior and posterior mesonoto- noted that not only did Proctotrupoidea not have any mesotrochanteral muscles (characters 232 : 1; autapomorphies at all that would preclude the inclu- 233 : 1); (13) having the mesofurco- sion of Maamingidae, but also that the systematic mesolaterophragmal muscle inserting along the status of Proctotrupoidea is highly doubtful. However, entire length of the mesolaterophragmal lobe (Heraty they did mention a couple of features in the head et al., 1994); (12) presence of the mesopleuro- (presence of a subantennal shelf) and antennae (pres- mesosubalar muscle (character 240 : 1); absence of ence of curved trichoid sensillae) that indicated close mesocoxo-mesosubalar muscle (character 241 : 0); (13) affinity with Diapriidae and perhaps Monomachidae, absence of the median and lateral mesofurco- both traditionally placed in the Proctotrupoidea. The mesotrochanteral muscles (character 247 : 0); (14) molecular evidence presented in Dowton & Austin absence of the metacoxo-metasubalar muscle (charac- (2001) corroborated this placement. It remains to be ter 263 : 0). seen where Maamingidae will turn up in a more Within Chalcidoidea, Acanthochalcis almost always comprehensive combined analysis. Further evidence (except when k = 1) comes out as the sister group to not included here that might exclude Maamingidae remaining Chalcidoidea. This is contrary to Gibson from the Diapriidae or any other ‘proctotrupoid’ (1986), who suggested Mymaridae to be the sister family is the configuration of the metasomal pregeni- group to all other Chalcidoidea; this was corroborated tal sclerites, which are not widely divergent in sizes by the molecular analysis of Campbell et al. (2001). and/or fused as in most Cynipoidea, Platygastroidea, The mymarid included here (Gonatocerus) is never and Proctotrupoidea (e.g. Naumann & Masner, 1985; retrieved in this position. Krogmann & Vilhelmsen Ronquist, 1995). (2006) also did not retrieve Gonatocerus as sister to the remaining Chalcidoidea in their morphology- based analyses and believed that this may have been PROCTOTRUPOMORPHA SENSU STRICTO caused by multiple secondarily reduced characters This clade, including the Cynipoidea and Platygas- correlated with miniaturization within Mymaridae. troidea as well as all the families usually included in Acanthochalcis is the only chalcidoid examined here Proctotrupoidea except Maamingidae, is retrieved not to have an exposed prepectus (character 18 : 0), except under equal weights and when k = 1. In the but this might be a reversal. former case Ismarus (Diapriidae) is sister to all other Maaminga and Mymaromma are almost always Proctotrupomorpha sensu Rasnitsyn 1988 (i.e. includ- sister groups (except when k = 1, see above), but the ing Chalcidoidea, Maaminga, and Mymaromma); in

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 98 L. VILHELMSEN ET AL. the latter case, the basal relationships of Proctotrupo- developed median mesocoxal articulation (character morpha sensu Rasnitsyn (1988) are unresolved. Proc- 117 : 0); (6) presence of fully enclosed mesocoxal totrupomorpha s.s. has fairly low support, potential foramina (character 116 : 2; paralleled in most Platy- autapomorphies are: (1) presence of a row of small gastroidea and some Proctotrupoidea); (7) absence of foveolae impressed posteriorly on the mesoscutellum the humeral sclerite in the hind wing base (character (character 80 : 1; absent from Cynipoidea, some 134 : 0); (8) presence of a distinct incurvation poste- Diapriidae, and Platygastridae); (2) presence of a fully riorly on the metascutellum (character 137 : 1); (9) developed mesepimeral ridge (character 102 : 2; presence of propleural arm-procoxal muscle; (10) absent from a few Diapriidae and paralleled in Ich- presence of the mesofurco-propleural arm muscle neumonoidea); (3 + 4) presence of several median (character 222 : 1); (11) presence of the metanoto- [character 180 : 2; absent from Scelionidae and Rop- metalaterophragmal muscle; (12) having the ronia (Roproniidae)] and lateral antecostal projections metafurco-metaphragmal muscle arising from the (character 181 : 1; absent from Platygastroidea); metafurca; (13) absence of the propodeo-second (5 + 6) presence of a transverse carina on the second abdominal segment muscle (character 272 : 0). abdominal tergite (character 205 : 1) and sternite Diplolepis consistently comes out as sister group to (character 209 : 1). remaining Cynipoidea. This is contrary to expectations Monomachus (Monomachidae) is often retrieved from earlier treatments of the phylogeny of the super- (k = 9/10/15/20; Fig. 69) as the sister group of the family (Ronquist, 1995, 1999), where Ibalia is placed remaining Proctotrupomorpha s.s. Other frequent as the basalmost taxon of those included here. Diplol- placements of Monomachus are as sister to all Diapri- epis is nested deeply within Cynipidae in the analyses idae except Ismarus (k = 3–4/25/30; Fig. 70) or to of Liljeblad & Ronquist (1998) and Nylander (2004). Cynipoidea + Diapriidae (k = 5–8). Monomachus has a Apparently, Diplolepis does not have a number of number of features correlated with the presence of a apomorphic features shared by the remaining Cyn- movable pronotum and a free prepectus that might be ipoidea included here: (1) presence of admedian plesiomorphic at the apocritan level; hence, the fol- depressions on the pronotum (character 3 : 1); (2) lowing features are putative synapomorphies of all presence of only a single profurcal pit (character the remaining Proctotrupomorpha s.s.: (1) presence of 44 : 0); (3) presence of a scutoscutellar sulcus consist- a notch above the anterior thoracic spiracle on the ing of at most two wide depressions with pits laterally posterodorsal corner of the pronotum (character (character 73 : 1; present also in some Diapriidae and 12 : 1); (2) presence of a posterior pronotal inflection Platygastridae); (4) having the metapleural arm sepa- [character 19 : 1; this is presumably a homologue of rated from the rest of the metapleuron by an antero- the prepectus (Gibson, 1985, 1999) and hence is lateral extension of T1 (character 142 : 1). This has the scored as inapplicable in taxa with an independent effect of pulling Diplolepis to the base of Cynipoidea in prepectus, e.g. Monomachus, Pantolytomia (Diapri- the present analyses, whereas its ‘plesiomorphic’ fea- idae) and Ropronia]. An additional possible synapo- tures would be interpreted as reversals with a more morphy is (3) presence of partly or fully enclosed comprehensive character and taxon sample relevant mesocoxal foramina (character 116 : 1/2). for the internal phylogeny of the superfamily. The sister group of Cynipoidea is often one or more Platygastroidea are always nested within Proc- Diapriidae, usually Ismarus (k = 3–11/15/20; Fig. 69). totrupomorpha s.s., usually as sister to a clade com- A possible synapomorphy for Ismarus + Cynipoidea is prising Helorus (Heloridae), Pelecinus (Pelecinidae), the presence of a vertically orientated metanotum Prototrupidae, and Vanhornia (Vanhorniidae) (character 131 : 1). Diapriidae are never retrieved as (Figs 67, 69, 70). This clade is only weakly supported, monophyletic. Under low intensity weighting (k = 25/ a potential synapomorphy being the presence of a 30) Cynipoidea comes out as the sister group to the ventral bridge connecting the lateroventral corners of remaining Proctotrupomorpha s.s. A putative synapo- the pronotum posterior to the procoxae [character morphy for Cynipoidea and Diapriidae is having the 16 : 2; only median projections (16 : 1) are present in mesophragmal pockets reduced (character 87 : 0; par- Helorus and Vanhornia]. Ropronia (Roproniidae) is alleled in Chalcidoidea and Platygastroidea). often the sister group to the clade comprising Platy- The monophyly of Cynipoidea is well supported, gastroidea and their closest relatives as mentioned prominent autapomorphies being: (1) absence of an above. Potential synapomorphies for this clade epicoxal lobe on the lateroventral corner of the include: (1) having the anterior mesoscutal groove propleuron (character 36 : 0); (2) presence of a profur- extended medioventrally (character 60 : 1); (2) pres- cal bridge (character 46 : 1); (3) presence of a trans- ence of propodeal articulating teeth (character verse carina on the procoxa (character 49 : 1); (4) 199 : 1); (3) presence of the lateral mesofurco- presence of a mesopleural triangle (character 107 : 1; mesotrochanteral muscle (character 246 : 1; absent paralleled in some Diapriidae); (5) absence of a well- from Helorus).

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 99

The monophyly of Platygastroidea is only weakly (Diapriidae + Monomachidae + Maamingidae). Our supported. Possible autapomorphies are: (1) absence results are more in line with Gibson (1999), who of the propleural arms (character 32 : 0; present in presented morphological evidence corroborating a Archaeoteleia, however); (2) reduction of the meso- clade comprising Platygastroidea, Pelecinidae, Proc- phragmal pockets (character 87 : 0; paralleled in totrupidae, and Vanhorniidae. However, we often Chalcidoidea, Cynipoidea, and Diapriidae); (3) fusion retrieve Cynipoidea as nested within Diapriidae, of the metafurcal arms with the metapleural apo- which is similar to the Cynipoidea + Diapriidae clade demes (character 171 : 2); (4) absence of lateral ante- proposed by Rasnitsyn (1988; see also Ronquist, costal projections (character 181 : 0). Platygastridae 1995). are fairly well supported, putative autapomorphies being: (1) presence of a scutoscutellar sulcus consist- ing of at most two wide depressions with pits laterally CONCLUDING REMARKS (character 73 : 1); (2) absence of a mesofurcal bridge The present analyses represent the most comprehen- (character 123 : 0, paralleled in a number of apocritan sive effort in hymenopteran phylogenetics based on a taxa). In contrast, Scelionidae is weakly supported, mesosomal data set to date. We have largely retrieved but the following putative autapomorphies can be previously proposed relationships for non-apocritan identified: (1) presence of lateral incisions on the Hymenoptera (see Vilhelmsen, 2001; Schulmeister, prosternum (character 43 : 1); (2) having the mesolat- 2003a), especially with regard to the closest relatives erophragmal apodeme short (character 91 : 0); (3) of Apocrita. We have demonstrated most apocritan separation of the second abdominal tergite and ster- superfamilies to be well corroborated, except for nite (character 201 : 0, a reversal); (4) presence of the Chrysidoidea, Vespoidea, Proctotrupoidea, and pronoto-third axillary sclerite of the fore wing muscle perhaps Evanioidea. In particular, Proctotrupoidea is (character 216 : 1). unlikely to be upheld as defined here, as Platygas- The base and internal nodes of the clade troidea and probably also Cynipoidea are nested Pelecinus + (Proctotrupidae + (Helorus + Vanhornia)) within this taxon. Sharkey (2007) removed Diapri- are generally weakly supported, except for idae, Maamingidae, and Monomachidae from Proc- Phaenoserphus + Proctotrupes (both Proctotrupidae). totrupoidea and placed them in a separate A potential synapomorphy for all these taxa is the superfamily Diaprioidea. Our results do not corrobo- presence of the median pronoto-prophragmal muscle rate this scheme, but we agree that it is necessary to (character 211 : 1). Proctotrupidae + (Helorus + redefine the Proctotrupoidea. However, we deem it Vanhornia) are supported by: (1) unique presence of premature to reclassify the Apocrita based on the submedian apodemes on the pronotum (character mesosomal data set alone. 9 : 1); (2) presence of smooth and flattened mesoscu- In general, support for relationships above the tellar arms (character 82 : 1). A putative synapomor- superfamily level is weak, especially within Apocrita. phy for Helorus + Vanhornia includes having the Hopefully, this will be remedied once our data set is dorsal pronoto-procoxal muscle arising from the ante- combined with other morphological and molecular rior thoracic spiracle occlusor muscle apodeme (char- data. Only by integrating information from as many acter 212 : 2). data sources as possible and analysing them together The topology of Proctotrupomorpha presented here will it be possible to achieve a robust phylogeny and differs in some respects from those proposed previ- stable classification for Hymenoptera. ously, e.g. by Rasnitsyn (1988; see also Ronquist et al., 1999) and by Dowton & Austin (2001). The most striking difference is the position of Chalcidoidea, ACKNOWLEDGEMENTS which in our analyses falls outside Proctotrupomor- pha s.s. In contrast, Rasnitsyn (1988) had Chalci- Denis Brothers, Matt Buffington, Jim Carpenter, doidea nested deeply within Proctrupomorpha s.l.as Andy Deans, Gary Gibson, John Heraty, John Huber, sister group of Platygastroidea; this relationship was Fredrik Ronquist, Susanne Schulmeister, Mike only corroborated in some of the analyses presented Sharkey, Dave Smith, and Matt Yoder all provided in Ronquist et al. (1999). Dowton & Austin (2001) also invaluable specimens for the present study. Matt retrieved Chalcidoidea + Platygastroidea in some of Buffington, Andy Deans, and Fredrik Ronquist par- their analyses and argued strongly in favour of egg- ticipated in helpful discussions at an early state of parasitism being the ancestral biology of this clade. assembling the data set. Jason Mottern, John Heraty, However, Castro & Dowton (2006) only retrieved and Susanne Schulmeister provided insightful com- Chalcidoidea + Platygastroidea in one of their trees ments on an earlier version of the paper. Special whereas the remaining analyses recovered Chalci- credit is due to Mike Sharkey for organizing work- doidea as sister to the diaprioid complex shops and functioning as the chief principal investi-

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 100 L. VILHELMSEN ET AL. gator for the HymAToL project. Financial support was Ichneumonides. In: Lepeletier de Saint-Fargeau A, ed. His- provided by NSF AToL grant EF-0337220 and Syn- toire Naturelles des Insectes. Paris: Roret, 56–324. thesys DK-TAF-2316 and DK-TAF-304. Cameron P. 1884. Fam. Chalcididae. [continued] Biologia Centrali-Americana. Insecta. Hymenoptera (Families Tenthredinidae-Chrysididae) 1: 97–120. REFERENCES Cameron P. 1887. Insecta. Hymenoptera. Families Tenthredinidae-Chrysididae. In: Godman F, Salvin O, eds. Ashmead WH. 1888. Descriptions of some unknown parasitic Biologia Centrali-Americana (Contributions to the knowl- Hymenoptera in the collection of the Kansas State Agricul- edge of the fauna and flora of Mexico and Central-America) tural College, received from Prof. E.A. Popenoe. Bulletin of 1: 422–432. the Kansas Agricultural Experimental Station 3: (appendix) Campbell B, Heraty JM, Rasplus JY, Chan K, Steffen- i–viii. Campbell J, Babcock C. 2001. Molecular systematics of Ashmead WH. 1893. A monograph of the North American the Chalcidoidea using 28S-D2 rDNA. In: Austin AD, Proctotrypidae. Bulletin of the U.S. National Museum 45: Dowton M, eds. Hymenoptera: evolution, biodiversity and 1–472. biological control. Collingwood: CSIRO Publishing, 59–71. Ashmead WH. 1898. Notes on parasitic Hymenoptera, with Castro LR, Dowton M. 2006. Molecular analyses of the descriptions of some new species. Part 2. Descriptions of Apocrita (Insecta: Hymenoptera) suggest that the Chalci- new parasitic Hymenoptera. Proceedings of the Entomologi- doidea are sister to the diaprioid complex. Invertebrate cal Society of Washington 4: 155–171. Systematics 20: 603–614. Austin A, Dowton M, Deans A. 2003. The pattern of rela- Crawford JC. 1909. A new family of parasitic Hymenoptera. tionships among superfamilies of apocritan Hymenoptera Proceedings of the Entomological Society of Washington 11: derived from recent morphological and molecular analyses. 63–64. Entomologische Abhandlungen 61: 164–165. Cresson ET. 1865. On the Hymenoptera of Cuba. Proceed- Barbotin F. 1964. Sur une nouvelle galle et deux nouveaux ings of the Entomological Society of Philadelphia 4: 1–200. cynipides en provenance d’Algérie. Marcellia 31: 151–157. Cresson ET. 1867a. Notes on the Pompilidae of North Basibuyuk HH, Quicke DLJ. 1995. Morphology of the America with descriptions of new species. Transactions of antenna cleaner in the Hymenoptera with particular refer- the American Entomological Society 1: 85–150. ence to non-aculeate families (Insecta). Zoologica Scripta Cresson ET. 1867b. Descriptions of two new species of Trigo- 24: 152–177. nalys. Proceedings of the Entomological Society of Philadel- Basibuyuk HH, Quicke DLJ. 1999. Grooming behaviours in phia 6: 351–352. Hymenoptera (Insecta): potential phylogenetic significance. Cresson ET. 1868. A list of the Ichneumonidae of North Zoological Journal of the Linnean Society 125: 349–382. America, with descriptions of new species. Transactions of Bellido D, Ros-Farré P, Melika G, Pujade-Villar J. 2003. the American Entomological Society 2: 89–114. Review of the asexual forms of Andricus kollari species- Cresson ET. 1869. List of the North American species of the group (Hymenoptera: Cynipidae: Cynipinae: Cynipini). genus Aleiodes Wesmael. Transactions of the American Folia Entomologica Hungarica 64: 171–222. Entomological Society 2: 377–382. Benson RB. 1938. On the Australian Orussidae, with a Key Cresson ET. 1879. Ibalia rufipes. Ibalia montana. Monthly to the Genera of the World (Hymenoptera, Symphyta). Proceedings of the Entomological Section of the Academy of Annals and Magazine of Natural History, London ser. 11 2: Natural Sciences, Philadelphia 7: 17. 1–15. Cresson ET. 1880. Descriptions of new North American Betrem JG. 1961. Cephalonomia stephanoderis nov. spec. Hymenoptera in the collection of the American Entomology (Hym., Bethylidae). Entomologische Berichten 21: 183–184. Society. American Entomological Society Transactions 8: Blood BN, Kryger TP. 1922. A new mymarid from Brock- 1–52. enhurst. Entomologist’s Monthly Magazine 58: 229–230. Curtis J. 1839. British Entomology; being illustrations and Bostik Findley. 2001. Technical data sheet Blu Tack. Avail- descriptions of the genera of found in Great Britain able at http://www.bostikfindley.com.au/ and Ireland: containing coloured figures from nature of the Bradley JC. 1908. The Evaniidae, ensign flies, an archaic most rare and beautiful species, and in many instances of family of Hymenoptera. Transactions of the American Ento- the plant upon which they are found. London: Printed for mological Society 34: 101–194. the author, 16: 722–769. Brothers DJ. 1999. Phylogeny and evolution of wasps, ants Daly HV. 1963. Close-packed and fibrillar muscles of the and bees (Hymenoptera, Chrysidoidea, Vespoidea and Hymenoptera. Annals of the Entomological Society of Apoidea). Zoologica Scripta 28: 233–249. America 56: 295–306. Brues CT. 1908. Notes and descriptions of North American Deans AR, Yoder MJ, Seltmann KC. 2008. Hymenoptera parasitic Hymenoptera, VI. Bulletin of the Wisconsin glossary. Available at http://purl.oclc.org/NET/hymontology. Natural History Society 6: 48–56. Dessart P, Cancemi P. 1987. Tableau dichotomique des Brues CT. 1943. The American species of Rhopalosoma. genres de Ceraphronoidea (Hymenoptera) avec commentar- Annals of the Entomological Society of America 36: 310–318. ies et nouvelles especes. Frustula Entomologica, Nouvelles Brullé MA. 1846. Tome Quatrième. Des Hyménoptères. Les Series VII–VIII (XX–XXI): 307–372.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 101

Dhillon SS. 1966. Morphology and biology of Athalia proxima skeletomusculature of Xyelidae (Hymenoptera) and Raphi- Klug. (Tenthredinidae, Hymenoptera). Aligarh Muslim Uni- diidae (Neuroptera). Memoirs of the Entomological Society versity Publications (Zoological Series) 7: 1–170. of Canada 165: 165–187. Dickinson MH, Tu MS. 1997. The function of dipteran flight Gibson GAP. 1999. Sister-group relationships of the Platy- muscle. Comparative Biochemistry and Physiology 3: 223– gastroidea and Chalcidoidea (Hymenoptera) - an alternative 238. hypothesis to Rasnitsyn (1988). Zoologica Scripta 28: 125– Dodd AP. 1915. Australian Hymenoptera Proctotrypoidea. 138. No. 3. Transactions of the Royal Society of South Australia Gibson GAP, Read J, Huber JT. 2007. Diversity, classifi- 39: 384–454. cation, and higher relationships of Mymarommatoidea Dodd AP. 1933. A new genus and species of Australian (Hymenoptera). Journal of Hymenoptera Research 16: Proctotrypidae. Proceedings of the Linnean Society of New 51–146. South Wales 58: 275–277. Goloboff PA. 1993. Estimating character weight during tree Dowton M, Austin AD. 2001. Simultaneous analysis of 16S, search. Cladistics 9: 83–91. 28S, CO1 and morphology in the Hymenoptera: Apocrita - Goloboff P, Farris S, Nixon K. 2000. TNT Tree analysis evolutionary transitions among parasitic wasps. Biological using New Technology) (BETA) ver. 1.0. Published by the Journal of the Linnean Society 74: 87–111. authors, Tucumán, Argentina. Drury D. 1773. Illustrations of natural history. Vol. 2. Guérin-Méneville FE. 1831 [1838]. Crustacés, arachnides London: White, 92 pp. et insectes. In: Duperrey LI., ed. Voyage autour du monde, Duncan CD. 1939. A contribution to the biology of North exécuté par ordre du Roi, sur la corvette de sa Majesté, La American vespine wasps. Stanford University Publications Coquille, pendant les années 1822, 1923, 1824 et 1825. Biological Sciences 8: 1–272. Zoologie. Tome deuxiéme. Paris: Bertrand, 319 pp. Early JW, Masner L, Naumann ID, Austin AD. 2001. Heraty JM, Woolley JB, Darling DC. 1994. Phylogenetic Maamingidae, a new family of proctotrupoid wasp (Insecta: implications of the mesofurca and the mesopostnotum in Hymenoptera) from New Zealand. Invertebrate Taxonomy Hymenoptera. Journal of Hymenoptera Research 3: 241– 15: 341–352. 277. Fabricius JC. 1781. Species Insectorum exhibentes eorum Heraty JM, Woolley JB, Darling DC. 1997. Phylogenetic differentias specificas, synonyma auctorum, loca natalia, implications of the mesofurca in Chalcidoidea metamorphosin adiectis observationibus, descriptionibus. (Hymenoptera), with emphasis on Aphelinidae. Systematic Tomus I. Hamburgi et Kilonii: Bohn, 552 pp. Entomology 22: 45–65. Fabricius JC. 1798. Supplementum Entomologiae System- Hochenwarth S. von 1785. Beiträge zur Insektengeschichte. aticae. Hafniae: Proft et Storch, 572 pp. Schriften der Berlinischen Gesellschaft Naturforschender Fabricius JC. 1804. Systema Piezatorum secundum ordines, Freunde 6: 334–360. genera, species adiectis synonymis, locis, observationibus, Howard LO. 1907. New genera and species of Aphelininae descriptionibus. Brunsvigae: Reichard, 440 pp. with a revised table of genera. Technical Series, Bureau of Friedrich, F, Beutel, RG. 2008. The thorax of Zorotypus Entomology, United States Department of Agriculture 12: (Hexapoda, Zoraptera) and a new nomenclature for the 69–88. musculature of Neoptera. Structure & Develop- Howard LO. 1908. A new genus and species of Mymaridae. ment 37: 29–54. Proceedings of the Entomological Society of Washington 10: Gates MW. 2000. A new species of Cirrospilus Westwood 68–70. (Hymenoptera: Eulophidae) from the southwestern United Hussey NW. 1956. A new genus of African Megastigminae States and Mexico. Proceedings of the Entomological Society (Hymenoptera: Chalcidoidea). Proceedings of the Royal of Washington. 102: 58–61. Entomological Society of London (B) 25: 161–162. Geoffroy EL. 1785. In: Fourcroy AF., ed. Entomologica Johnson NF. 1988. Midcoxal articulations and the phylogeny Parisiensis: sive catalogus insectorum, quae in agro of the order Hymenoptera. Annals of the Entomological Parisiensi reperiunter; secundum methodum Geoffraeanam Society of America 81: 870–881. in sectiones, genera et species distributus: cui addita sunt Kieffer JJ. 1910. Description de trois nouveaux Scelionides nomina trivialia et fere trecentae novae species. Paris: (Hym.). Bulletin de la Société Entomologique de France Academiae, 544 pp. 1910: 310–311. Gibson GAP. 1985. Some pro- and mesothoracic structures Königsmann E. 1976. Das phylogenetische System der important for phylogenetic analysis of Hymenoptera, with a Hymenoptera, Teil 1: Einführung, Grundplanmerkmale, review of terms used for the structures. The Canadian Schwestergruppe und Fossilfunde. Deutsche entomologis- Entomologist 117: 1395–1443. ches Zeitschrift 23: 253–279. Gibson GAP. 1986. Evidence for monophyly and relation- Königsmann E. 1977. Das phylogenetische System der ships of Chalcidoidea, Mymaridae, and Mymarommatidae Hymenoptera, Teil 2: ‘Symphyta’. Deutsche entomologisches (Hymenoptera: Terebrantes). Canadian Entomologist 118: Zeitschrift 24: 1–40. 205–240. Königsmann E. 1978a. Das phylogenetische System der Gibson GAP. 1993. Groundplan structure and homology of Hymenoptera, Teil 3: ‘Terebrantes’ (Unterordnung: Apo- pleuron in Hymenoptera based on a comparison of the crita). Deutsche entomologisches Zeitschrift 25: 1–55.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 102 L. VILHELMSEN ET AL.

Königsmann E. 1978b. Das phylogenetische System der Panzer GWF. 1798. Faunae Insectorum Germanicae initia Hymenoptera, Teil 4: ‘Aculeata’ (Unterordnung: Apocrita). oder Deutschlands Insecten. Nürnberg, Felssecker Heft 52: Deutsche entomologisches Zeitschrift 25: 365–435. 1–24. Konow FW. 1905. Neue exotische Tenthrediniden. (Hym.). Paretas-Martínez J, Arnedo MA, Melika G, Selfa J, Seco- 5(3): 157–166. Fernández MV, Fulop D, Pujade-Villar J. 2007. Phylog- Krogmann L, Vilhelmsen L. 2006. Phylogenetic implica- eny of the parasitic wasp subfamily Charipinae tions of the mesosomal skeleton in Chalcidoidea (Hymenoptera, Cynipoidea, Figitidae). Zoologica Scripta 36: (Hymenoptera: Apocrita) – tree searches in a jungle of 153–172. homoplasy. Invertebrate Systematics 20: 615–674. Pilgrim ED, von Dohlen CD, Pitts JP. 2008. Molecular Liljeblad J, Ronquist F. 1998. A phylogenetic analysis of phylogenetics of Vespoidea indicate paraphyly of the super- higher-level gall wasp relationships (Hymenoptera: Cynipi- family and novel relationships of its component families and dae). Systematic Entomology 23: 229–252. subfamilies. Zoologica Scripta 37: 539–560. Linné C. 1758. Systema Naturae, per regna tria naturae Provancher L. 1880. Faune canadienne. Les insects – secundum classes, ordines, genera, species cum characteri- Hyménoptères. Naturaliste Canadien 12: 33–48. bus, differentiis, synonymis, locis. 10th ed. Holmiae: Radoszkowski O. 1881. Hyménoptères d’Angola. Jornal de Salvius, 1: 1–824. sciencias mathematicas, physicas, e naturaes da Academia Linné C. 1761. Fauna Svecica Sistens Animalia Sveciae Real das Sciencas de Lisboa 8: 197–221. Regni: Mammalia, Aves, Amphibia, Pisces, Insecta, Vermes. Rasnitsyn AP. 1969. Origin and evolution of lower Holmiae: Salvius, 2: 1–578. Hymenoptera. Transactions of the Institute of Paleontology Linné C. 1763. Centuria Insectorum rariorum. Johansson: 123: 1–196 [in Russian; English translation 1979, Amerind Upsala, 1–32. Publ. New Delhi]. Linné C. 1767. Systema naturae per regna tria naturae, Rasnitsyn AP. 1980. Origin and evolution of Hymenoptera. secundum classes, ordines, genera, species cum charac- Transactions of the Institute of Paleontology 174: 1–192 [In teribius, differentiis, synonymis, locis. 12th ed. Holmiae: Russian; English translation 1984, Biosystematics Research Salvius, 1(2): 533–1328. Centre, Ottawa]. Malaise R. 1955. New and Old South American Saw-flies Rasnitsyn AP. 1988. An outline of the evolution of the (Hym., Tenthredinidae). Entomologisk Tidskrift, Stockholm hymenopterous insects (order Vespida). Oriental Insects 22: 76: 99–124. 115–145. Masner L, Dessart P. 1967. La reclassification des catego- Ratzeburg JTC. 1832. Über die officinellen Aderflüger, ries taxonomiques superieures des Ceraphronoidea besonders aus der Gattung Cynips. Berlinische Jahrbuch (Hymenoptera). Institutes Royales des Sciences Naturelles der Pharmacie 32: 181–198. de Belgique Bulletin 43/22: 1–33. Rohwer SA. 1915. A remarkable new genus of Cephidae. Masner L. 1968. A new genus of Scelionidae (Hymenoptera) Proceedings of the Entomological Society of Washington 17: with austral disjunctive distribution. New Zealand Journal 114–117. of Science 11: 652–663. Rohwer SA. 1917. Descriptions of thirty-one new species of Mikó I, Vilhelmsen L, Johnson NF, Masner L, Penzes Z. Hymenoptera. Proceedings of the United States National 2007. Skeletomusculature of Scelionidae (Hymenoptera: Museum 53: 151–176. Platygastroidea): head and mesosoma. Zootaxa 1571: 1– Ronquist F. 1995. Phylogeny and early evolution of the 78. Cynipoidea (Hymenoptera). Systematic Entomology 20: Nachtigall W, Wisser A, Eisinger D. 1998. Flight of the 309–335. honey bee. VIII. Functional elements and mechanics of the Ronquist F. 1999. Phylogeny, classification and evolution of ‘flight motor’ and the wing joint-one of the most complicated the Cynipoidea (Hymenoptera). Zoologica Scripta 28: 139– gear-mechanisms in the kingdom. Journal of Com- 164. parative Physiology 168: 323–344. Ronquist F, Nordlander G. 1989. Skeletal morphology of an Nagy CG. 1975. A new genus of Scolebythidae (Hymenoptera) archaic cynipoid, Ibalia rufipes. Entomologica Scandinavica. from South Africa and Australia. Journal of the Entomo- Supplementum 33: 1–60. logical Society of Southern Africa 38: 75–78. Ronquist F, Rasnitsyn AP, Roy A, Erikson K, Lindgren Naumann ID, Masner L. 1985. Parasitic wasps of M. 1999. Phylogeny of the Hymenoptera: A cladistic the proctotrupoid complex: a new family from Australia reanalysis of Rasnitsyn’s (1988) data. Zoologica Scripta 28: and a key to world families (Hymenoptera: Proctotrupoidea 13–50. sensu lato). Australian Journal of Zoology 33: 761– Say T. 1824. [Insecta]. In: Keating WH. ed. Narrative of an 783. expedition to the source of the St. Peter’s River, Lake Win- Nylander J. 2004. Bayesian phylogenetics and the evolution nepeek (Winnepeg), Lake of the Woods 1823 under the of gall wasps. Doctoral dissertation. Acta Universitatis Upp- command of Major Long. Carey, Lea: Philadelphia, 268– saliensis, Uppsala University, Sweden. 378. Olivier GA. 1792. Encyclopédie Méthodique. Histoire Say T. 1835. Descriptions of new North American Naturelles Insectes. Tome Sixième. Chez Panckoucke, Hymenoptera, and observations on some already described. Imprimeur-Libraire: Paris, 704 pp. Boston Journal of Natural History 1: 210–305.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 103

Schulmeister S. 2003a. Simultaneous analysis of basal of the order. Journal of Zoological Systematics and Evolu- Hymenoptera (Insecta): introducing robust-choice sensitiv- tionary Research 35: 49–70. ity analysis. Biological Journal of the Linnean Society 79: Vilhelmsen L. 2000a. Before the wasp-waist: Comparative 245–275. anatomy and phylogenetic implications of the skeleto- Schulmeister S. 2003b. Morphology and evolution of tarsal musculature of the thoraco-abdominal boundary region in plantulae in Hymenoptera (Insecta), focussing on the basal basal Hymenoptera (Insecta). Zoomorphology 119: 185–221. lineages. Zoologica Scripta 32: 153–172. Vilhelmsen L. 2000b. Cervical and prothoracic skeletomus- Schulmeister S. 2003c. Review of morphological evidence on culature in the basal Hymenoptera (Insecta): Comparative the phylogeny of basal Hymenoptera (Insecta), with a dis- anatomy and phylogenetic implications. Zoologischer cussion of the ordering of characters. Biological Journal of Anzeiger 239: 105–138. the Linnean Society 79: 209–243. Vilhelmsen L. 2001. Phylogeny and classification of the Scopoli IA. 1763: Entomologia Carniolica exhibens Insecta extant basal lineages of the Hymenoptera (Insecta). Zoologi- Carnioliae indigena et Distributa in Ordines, Genera, cal Journal of the Linnean Society 131: 393–442. Species, Varietates. Methodo Linnaeana. Vindobonae: Vilhelmsen L. 2003a. Towards a consensus: latest results Trattner, 423 pp. from simultaneous analysis of the basal hymenopteran lin- Sharkey MJ. 2007. Phylogeny and classification of eages. Entomologische Abhandlungen 61: 162–163. Hymenoptera. Zootaxa 1668: 521–548. Vilhelmsen L. 2003b. Phylogeny and classification of the Sharkey MJ, Roy A. 2002. Phylogeny of the Hymenoptera: a Orussidae (Insecta: Hymenoptera), a basal parasitic wasp reanalysis of the Ronquist et al. (1999) reanalysis, emphaz- taxon. Zoological Journal of the Linnean Society 139: 337– ising wing venation and apocritan relationships. Zoologica 418. Scripta 31: 57–66. Vilhelmsen L. 2006. Developments in ‘symphytan’ phyloge- Shcherbakov DE. 1980. Morphology of the pterothoracic netics in the 20th century: towards a consensus. In: Blank pleura in Hymenoptera. 1. Ground plan. Zoologischeskii SM, Schmidt S, Taeger A, eds. Recent sawfly research: Zhurnal 59: 1644–1652 213 [in Russian; translation by synthesis and prospects. Kelten, Germany: Goecke & Evers, multilingual services division, Secretary of State, Canada]. 31–38. Shcherbakov DE. 1981. Morphology of the pterothoracic Vilhelmsen L, Isidoro N, Romani R, Basibuyuk HH, pleura in Hymenoptera. 2. Modifications of the ground plan. Quicke DLJ. 2001. Host location and oviposition in a basal Zoologischeskii Zhurnal 60: 205–213 [in Russian; transla- group of parasitic wasps: the subgenual organ, ovipositor tion by multilingual services division, Secretary of State, apparatus, and associated structures in the Orussidae Canada]. (Hymenoptera, Insecta). Zoomorphology 121: 63–84. Smith DR. 1991. A new Aulacus (Hymenoptera: Gasterup- Vilhelmsen L, Krogmann L. 2006. Skeletal anatomy of the tionidae: Aulacinae) from Virginia. Entomological News 102: mesosoma of Palaeomymar anomalum (Blood & Kryger, 187–191. 1922) (Hymenoptera: Mymarommatidae). Journal of Smith HS, Compere H. 1928. A preliminary report on the Hymenoptera Research 15: 290–306. insect parasites of the black scale, Saisseitia oleae (Bern.). Walker F. 1834. Monographia Chalciditum. Entomological University of California Publications in Entomology 4: 231– Magazine 2: 152. 334. Walker F. 1836. Monographia Chalciditum. Entomological Snodgrass RE. 1910. The thorax of the Hymenoptera. Pro- Magazine 3: 465–496. ceedings of the U.S. National Museum 39: 36–91. Walsh BD. 1870. On the group of eurytomides of the Spinola M. 1851. Himenopteros. In: Gay C., ed. Historia hymenopterous family Chalcididae: with remarks on the fisica y politica de Chile. Zoologia 6: 153–569. Maulde, theory of species and a description of Antigaster, a new and Renon: Paris. 572 pp. very anomalous genus of Chalcididae. The American Ento- von Stryk X. 1930. Untersuchungen über das Gelenk in der mologist and Botanist 2: 297–301, 329–335, 367–370. Taille der apocriten Hymenopteren. Zeitschrift für Mor- Westwood JO. 1832. In: Cuvier G, ed. Animal Kingdom. phologie und Ökologie der Tiere 16: 648–747. Class Insecta. London: Whittaker, Treacher and Co., 389– Tonapi GT. 1958. A comparative study of spiracular struc- 576. ture and mechanisms in some Hymenoptera. Transactions Westwood JO. 1874. Thesaurus Entomologicus Oxoniensis or of the Royal Entomological Society of London 110: 489– illustrations of new, rare and interesting insects for the most 532. part coloured, in the collections presented to the University of Turrisi GF, Jennings JT, Vilhelmsen L. 2009. Phylogeny Oxford by the Rev. F.W. Hope. Oxford: Clarendon Press, 205 and generic concepts in the parasitoid wasp family pp. Aulacidae (Hymenoptera: Evanioidea). Invertebrate Wharton RA. 2006. The species of Sternaulopius Fischer Systematics. 23: 27–59. (Hymenoptera: Braconidae, Opiinae) and the braconid ster- Viereck HL. 1916. One new genus and few new species of naulus. Journal of Hymenoptera Research 15: 317–347. Ichneumon-flies. Proceedings of the Biological Society of Whitfield JB, Johnson NF, Hamerski MR. 1989. Identity Washington 29: 165–172. and phylogenetic significance of the metapostnotum in non- Vilhelmsen L. 1997. The phylogeny of lower Hymenoptera aculeate Hymenoptera. Annals of the Entomological Society (Insecta), with a summary of the early evolutionary history of America 82: 663–674.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 104 L. VILHELMSEN ET AL.

APPENDIX 1 MATERIAL EXAMINED

Number of Superfamily, family Taxon specimens Methods employed

NEUROPTERA Chrysopidae Chrysopa perla (Linné, 1758) 2 Dissection MECOPTERA Panorpidae Panorpa communis (Linné, 1758) 2 Dissection LEPIDOPTERA Micropterigidae Micropterix calthella (Linné, 1761) 3 Dissection HYMENOPTERA Xyeloidea Xyelidae Macroxyela ferruginea (Say, 1824) 4 Dissection, muscles Tenthredinoidea Tenthredinidae Athalia rosae (Linné, 1758) 4 Dissection, muscles Notofenusa surosa (Konow, 1905) 2 Dissection Diprionidae Monoctenus juniper (Linné, 1758) 1 Dissection Pergidae Heteroperreyia hubrichi Malaise, 1955 2 Dissection Pamphilioidea Pamphiliidae Onycholyda amplecta (Fabricius, 1804) 4 Dissection, muscles Cephoidea Cephidae Cephus pygmeus (Linné, 1767) 4 Dissection, muscles Siricoidea Anaxyelidae Syntexis libocedrii Rohwer, 1915 1 Dissection Siricidae Tremex columba (Linné, 1763) 1 Dissection Urocerus gigas (Linné, 1758) 3 Dissection Xiphydrioidea Xiphydriidae Xiphydria camelus (Linné, 1758) 4 Dissection, muscles Xiphydria prolongata (Geoffroy, 1758) 2 Disssection, muscles Orussoidea Orussidae Orussobaius minutes Benson, 1938 2 Dissection Orussus abietinus (Scopoli, 1763) 5 Dissection, muscles Ceraphronoidea Ceraphronidae Ceraphron sp. 6 Dissection, SEM Megaspilidae Lagynodes sp. 4 Dissection, SEM Megaspilus fuscipennis (Ashmead, 1888) 12 Dissection, SEM, muscles Chalcidoidea Aphelinidae Cales noacki Howard, 1907 5 SEM Coccophagus rusti Compere, 1928 5 Dissection, SEM Chalcididae Acanthochalcis nigricans Cameron, 1884 4 Dissection, SEM Chalcis sp. 3 Muscles Eulophidae Cirrospilus coachellae Gates, 2000 1 Dissection, SEM Eurytomidae Eurytoma gigantea Walsh, 1870 4 Dissection, SEM Mymaridae Gonatocerus morrilli (Howard, 1908) 10 Dissection, SEM, muscles Ormyridae Ormyrus sp. 4 Muscles Pteromalidae Asaphes vulgaris Walker, 1834 3 SEM Cleonymus sp. 4 Dissection, SEM Nasonia vitripennis (Walker, 1836) 6 Dissection, SEM Spalangia nigripes Curtis, 1839 7 Dissection, SEM, muscles Torymidae Megastigmus dorsalis (Fabricius, 1798) 4 Muscles Megastigmus transvaalensis (Hussey, 1956) 10 Dissection, SEM, muscles Podagrion sp. 3 SEM Cynipoidea Cynipidae Andricus sternlichti Bellido et al., 2003 6 Muscles Diplolepis rosae (Linné, 1758) 14 Dissection, SEM, muscles Periclistus brandtii (Ratzeburg, 1832) 6 Dissection, SEM

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 105

APPENDIX 1 Continued

Number of Superfamily, family Taxon specimens Methods employed

Figitidae Anacharis sp. 5 Dissection, SEM Melanips sp. 4 Dissection, SEM Parnips nigripes (Barbotin, 1964) 5 Dissection, SEM Ibaliidae Ibalia leucospoides (Hochenwarth, 1785) 2 Dissection Ibalia rufipes Cresson, 1879 4 Dissection, muscles Evanioidea Aulacidae Aulacus impolitus Smith, 1991 2 Dissection Pristaulacus strangaliae Rohwer, 1917 8 Dissection, SEM, muscles Evaniidae Brachygaster minuta (Olivier, 1792) 13 Dissection, SEM, muscles Evania albofascialis Cameron, 1887 6 Dissection, muscles Evaniella semaeoda Bradley, 1908 11 Dissection, SEM, muscles Gasteruptiidae Gasteruption spp. 5 Dissection, SEM Pseudofoenus spp. 12 Dissection, SEM, muscles Ichneumonoidea Braconidae Aleiodes terminalis Cresson, 1869 5 Dissection, SEM Doryctes erythromelas (Brullé, 1846) 7 Dissection, SEM, muscles Orgilus gracilis (Brues, 1908) 4 Dissection, SEM Rhysipolis sp. 5 Dissection, SEM Urosigalphus sp. 10 Dissection, SEM, muscles Wroughtonia ligator (Say, 1824) 2 Dissection Ichneumonidae Campopleginae gen. sp. 1 Muscles Dusona egregia (Viereck, 1916) 5 Dissection, SEM Labena grallator (Say, 1836) 2 Dissection Lymeon orbum (Say, 1835) 2 Dissection Megarhyssa sp. 2 Muscles Mesochorus sp. 2 Muscles Paxylomma sp. 1 Muscles Pimpla aequalis (Provancher, 1880) 4 Dissection, SEM Zagryphus nasutus (Cresson, 1868) 4 Dissection, SEM Megalyroidea Megalyridae Dinapsis spp. 2 Dissection Megalyra fasciipennis Westwood, 1832 8 Dissection, SEM, muscles Mymarommatoidea Mymarommatidae Mymaromma anomalum (Blood & Kryger, 10 Dissection, SEM 1922) Platygastroidea Platygastridae Isostasius sp. 4 Dissection, SEM Proplatygaster sp. 5 Dissection, SEM Scelionidae Archaeoteleia mellea Masner, 1968 7 Dissection, SEM, muscles Baryconus sp. 2 Muscles Psix sp. 2 Muscles Scelio sp. 6 Muscles Sparasion formosum Kieffer, 1910 6 Dissection, SEM, muscles Telenomus podisi Ashmead, 1893 5 Dissection, SEM Proctotrupoidea Diapriidae Belyta sp. 8 Dissection, SEM, muscles Ismarus sp. 2 Dissection Pantolytomyia ferruginea (Dodd, 1915) 4 Dissection, SEM Poecilospilus sp. 5 Dissection, SEM, muscles Psilus sp. 4 Muscles Spilomicrus stigmaticalis Westwood, 1832 4 SEM Heloridae Helorus anomalipes (Panzer, 1798) 8 Dissection, SEM, muscles Helorus sp. 5 muscles Maamingidae Maaminga rangi Early et al., 2001 4 Dissection, SEM Monomachidae Monomachus antipodalis Westwood, 1874 8 Dissection, SEM, muscles Pelecinidae Pelecinus polyturator (Drury, 1773) 11 Dissection, muscles

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 106 L. VILHELMSEN ET AL.

APPENDIX 1 Continued

Number of Superfamily, family Taxon specimens Methods employed

Proctotrupidae Austroserphus albofasciatus Dodd, 1933 2 Dissection Phaenoserphus sp. 5 Dissection, SEM Proctotrupes sp. 4 Dissection, SEM, muscles Roproniidae Ropronia garmani (Ashmead, 1898) 7 Dissection, SEM, muscles Vanhorniidae Vanhornia eucnemidarum Crawford, 1909 11 Dissection, SEM, muscles Stephanoidea Stephanidae Megischus spp. 7 Dissection, SEM, muscles Schlettererius cinctipes (Cresson, 1880) 4 Dissection, SEM Trigonaloidea Trigonalidae Orthogonalys pulchella (Cresson, 1867) 7 Dissection, SEM, muscles Taeniogonalos gundlachii (Cresson, 1865) 9 Dissection, SEM, muscles Apoidea Ampulicidae Ampulex compressa (Fabricius, 1781) 2 Dissection Apidae Apis mellifera Linné, 1758 4 Muscles Bombus sp. 2 Muscles Crabronidae Pison chilense Spinola, 1851 6 Dissection, SEM, muscles Sphecidae Stangeella cyaniventris (Guérin-Méneville, 1 Dissection 1831) Chrysidoidea Bethylidae Bethylus sp. 2 Muscles Cephalonomia stephanoderis Betrem, 1961 4 Dissection, SEM Chrysididae Chrysis angolensis Radoszkowski, 1881 2 Dissection Chrysis sp. 3 Muscles Plumaridae Plumarius sp. 6 Dissection, SEM, muscles Scolebythidae Ycaploca evansi Nagy, 1975 4 Dissection, SEM Vespoidea Pompilidae Aporus niger (Cresson, 1867) 6 Dissection, SEM Rhopalosomatidae Rhopalosoma nearcticum Brues, 1943 4 Dissection, SEM Sapygidae Sapyga pumila Cresson, 1880 8 Dissection, SEM, muscles Vespidae Metapolybia cingulata (Fabricius, 1804) 6 Dissection, SEM Vespula sp. 6 Muscles

SEM, scanning electron microscopy. Superfamilies in bold.

APPENDIX 2 List of abbreviations used in Figures 1–66. Sources for abbreviations include Gibson (1985), Heraty et al. (1994), Vilhelmsen (2000a, b), Krogmann & Vilhelmsen (2006), and Mikó et al. (2007). Many of the abbreviations have not previously been employed.

1ax3, first axillary sclerite of hind wing aas, anteroadmedian signum abc, acetabular carina acs, acropleural sulcus act, acetabulum adp, admedian pronotal pits ama, anterior mesopleural apodeme ams, anterior mesoscutal sulcus ans, antecostal sulcus anwp3, anterior metanotal wing process apa, anterior profurcal apodeme apr, anterolateral pronotal ridge

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 107 arc, articulating condyle arn, articular notch asa, anterior supralar area ava, anteroventral profurcal apodeme ax, dorsal axillar surface axc, axillar carina axph, axillar phragma baa, basalar apodeme cnc, cenchrus cva, cervical apodeme cvpr, cervical prominence cx1, procoxa cx2, mesocoxa cx2f, mesocoxal foramen cx2ma, median mesocoxal articulation cx3, metacoxa cx3f, metacoxal foramen cx3la, lateral metacoxal articulation cx3ma, median metacoxal articulation dc1, prodiscrimen dc2, mesodiscrimen dc3, metadiscrimen dcl1, prodiscrimenal lamella dcl2, mesodiscrimenal lamella dcl3, metadiscrimenal lamella dlfu1, dorsal profurcal lamella dlfu3, dorsal metafurcal lamella dsa, dorsal spiracular apodeme epc, epomial carina epl, epicoxal lobe fa, flexor apodeme fem3, metafemur fr, frenum frl, frenal line fu1a, profurcal arm fu1b, profurcal bridge fu1p, profurcal pit fu2a, mesofurcal arm fu2aa, anterior mesofurcal arm fu2la, lateral mesofurcal arm fu2b, mesofurcal bridge fu2p, mesofurcal pit fu3, metafurca fu3a, metafurcal arm fu3aa, anterior metafurcal arm fu3la, lateral metafurcal arm fu3p, metafurcal pit inc, incision lap, lateral antecostal projection llmc, lateral longitudinal metepisternal carina lma, lateral metanotal apodeme lmp, lateral metepisternal projection lpc, longitudinal propodeal carina lss, laterosternal sclerite map, median antecostal projection mepr, mesepimeral ridge

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 108 L. VILHELMSEN ET AL. mlmc, median longitudinal metepisternal carina mma, marginal metapleural apodeme mms, median mesoscutal sulcus mmsr, median mesoscutal ridge mp, mesotrochantinal plate mpa, mesopleural apodeme mpr, mesopleural ridge msa, mesoscutellar arm msap, mesospinasternal apodeme mtl2, mesotrochantinal apodeme mtl3, metatrochantinal apodeme mtpa, metapleural apodeme mtpi, metapleural pit mtpp, metapectal plate mtps, metapleural sulcus mvp, medioventral pronotal projection N1a, submedian pronotal apodeme N1b, ventral pronotal bridge N1c, transverse pronotal carina N1l, pronotal lobe N1s, transverse pronotal sulcus N2, mesonotum N3, metanotum N3c, lateral metanotal carina not, notaulus notr, notaular ridge oma, occlusor muscle apodeme ompr, oblique mesopleural ridge par, parapsides pax, preaxilla pcr, paracoxal ridge pcs, paracoxal sulcus pcx1, proximal part of procoxa pdf, propodeal foramen ph1, prophragma ph2, mesophragma ph2a, mesolaterophragmal apodeme/lobe ph2l, pseudophragmal lobe ph2p, mesophragmal pocket ph2r, mesophragmal longitudinal ridge ph3, metaphragma ph3l, metalaterophragmal lobe pl1, propleuron pl1c, longitudinal propleural carina pl2, mesopleuron pl2t, mesopleural triangle pl3, metapleuron pma, posteroventral mesopleural apodeme pmc, posterior mesopleural carina pnwp3, posterior metanotal wing process ppa, propleural arm ppcr, posterior branch of the paracoxal ridge ppi, posterior pronotal inflection pre, prepectus prp, propodeal projection psa, prospinasternal apodeme

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 109 psc, parascutal carina psp, propodeal spiracle pss, prosternal spine s1, prosternum s1i, prosternal incision S2, abdominal sternum 2 S2lc, longitudinal carina on second abdominal sternum S2tc, transverse carina on second abdominal sternum scl2, mesoscutellum scl3, metascutellum sms, supramesopleural sclerite sp1, anterior thoracic spiracle sp2, posterior thoracic spiracle spa, sensillar patches sps, subpleural signum ssr, scutoscutellar ridge sss, scutoscutellar sulcus T1, propodeum T1a, median apodeme of the propodeum T1b, propodeal bridge T1t, propodeal tooth T2, abdominal tergum 2 T2tc, transverse carina on second abdominal tergum tg, tegula tmc, transverse metepisternal carina tpc, transverse propodeal carina tr3, metatrochanter tr3a, metatrochanteral apodeme tsa, transscutal articulation tsr, transscutal ridge vlfu1, ventral profurcal lamella vsa, ventral spiracular apodeme

APPENDIX 3 MESOSOMAL MUSCLE HOMOLOGIES IN HYMENOPTERA

Abbreviation Term Hymenoptera Friedrich & Beutel (2008)

1 cv-cx1 laterocervico-procoxal 7 Vb Ipcm2, Musculus procoxa-cervicalis 2 t1-poc pronoto-postoccipital Idlm2, M. pronoto-occipitalis 3 t1a-cv anterior pronoto-laterocervical 5 Vb Idvm5-6, M. pronoto-cervicalis anterior and medialis 4 t1p-cv posterior pronoto-laterocervical 5 Vb Idvm7, M. pronoto-cervicalis posterior 5 t1m-ph1 median pronoto-prophragmal 19 Vb Idlm5, 6, M. pronoto-phragmalis anterior 6 t1l-ph1 lateral pronoto-prophragmal 19 Vb Idlm5, 6, M. pronoto-phragmalis anterior 7 t1-pl1 pronoto-propleural 9 Vb Itpm3, M. pronoto-pleuralis anterior 8 t1-ppa pronoto-propleural arm 10 Vb ltpm4,5, M. pronoto-apodemalis 9 t1-fu1 pronoto-profurcal 10 Vb ltpm4,5, M. pronoto-apodemalis 10 t1d-cx1 dorsal pronoto-procoxal 11 Vb Idvm 16-18, M. pronoto-coxalis 11 t1v-cx1 ventral pronoto-procoxal 12 Vb Idvm16-18, M. pronoto-coxalis 12 sp1occ anterior thoracic spiracle occlusor muscle 110 G – 13 t1-ba2 pronoto-mesobasalar IIppm2, M. mesobasalare-intersegmentalis 14 t1-3ax2 pronoto-third axillary sclerite of fore wing 164 G IItpm7,9, M. mesapenisterno-axillaris, M. mesepimero-axillaris 15 pl1m-poc median propleuro-postoccipital 1 Vb Idvm1-3, M. cervico-occipitalis 16 pl1l-poc lateral propleuro-postoccipital 1 Vb Itpm2, M. propleuro-occipitalis 17 pl1p-poc posterior propleuro-postoccipital 1 Vb Itpm2, M. propleuro-occipitalis

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 110 L. VILHELMSEN ET AL.

APPENDIX 3 Continued

Abbreviation Term Hymenoptera Friedrich & Beutel (2008)

18 ppa-poc propleural arm-postoccipital 2 Vb – 19 pl1-pl1 intrinsic muscle of the propleuron 18 Vb – 20 pl1-cx1 propleuro-procoxal 12 Vb Ipcm4,5, M. propleuro-coxalis 21 pl1-tr1 propleuro-protrochanteral 17 Vb lpcm8, M. propleuro-trochanteralis 22 ppa-tr1 propleural arm-protrochanteral 17 Vb lpcm8, M. propleuro-trochanteralis 23 ppa-cx1 propleural arm-procoxal 15 Vb Iscm2,4, M. profurca-coxalis 24 fu2-ppa mesofurco-propleural arm 21 Vb Ivlm7, M. profurca-mesofurcalis 25 ph1-cv prophragmo-laterocervical 8 Vb Idlm3, M. prophragma-cervicalis 26 fu1d-poc dorsal profurco-postoccipital 2 Vb ldvm9, M. profurca-occipitalis 27 fu1v-poc ventral profurco-postoccipital 3 Vb Ivlm3, M. profurca-tentorialis 28 fu1-cv profurco-laterocervical 6 Vb Ivlm1, M. profurca-cervicalis 29 fu1-ph1 profurco-prophragmal 20 Vb Idvm10, M. profurca-phragmalis 30 fu1d-cx1 dorsal profurco-procoxal 15 Vb Iscm2,4, M. profurca-coxalis 31 fu1m-cx1 median profurco-procoxal 14 Vb – 32 fu1a-cx1 anterior profurco-procoxal 12 Vb Ipcm4,5, M. propleuro-coxalis 33 fu1-tr1 profurco-protrochanteral 17 Vb Iscm6, M. profurca-trochanteralis 34 sps1-fu1 prospinasterno-profurcal 23 Vb Ivlm4, M. profurca-spinalis 35 fu2-fu1d dorsal mesofurco-profurcal 21 Vb, 124 H Ivlm7, M. profurca-mesofurcalis

36 fu2-fu1v ventral mesofurco-profurcal 22 Vb, 124 H Ivlm7, M. profurca-mesofurcalis

37 s1-cx1 prosterno-procoxal 13 Vb Iscm3, M. profurca-coxalis medialis 38 pre-ba2 prepecto-mesobasalar 144 G IIppm2, M. mesobasalare-intersegmentalis 39 sps1-cx1 prospinasterno-procoxal 16 Vb lscm5, M. prospina-coxalis 40 sps1-fu2 prospinasterno-mesofurcal 24 Vb Ivlm9, M. prospina-mesofurcalis 41 ph1-poc prophragmo-postoccipital 4 Vb Idlm1, M. prophragma occipitalis/ldvm8, M. prophragma-tentorialis 42 ph1-ph2 prophragmo-mesophragmal 112 H IIdlm1, M. prophragma-mesophragmalis 43 ph2-ba2 mesolaterophragmo-mesobasalar 137 G IItpm1, M. prophragma-mesanepisternalis?? 44 ph2m-ph3 median mesophragmo-metaphragmal 5 Va, 112m H IIIdlm1, M. mesophragma-metaphragmalis

45 ph2l-ph3 lateral mesophragmo-metaphragmal 5 Va, 112m H IIIdlm1, M. mesophragma-metaphragmalis

46 ph2-hwb mesolaterophragmo-hind wing base 4 Va IIItpm1, M. mesophragma-metanepisternalis 47 ph2-ba3 mesolaterophragmo-metabasalar 3 Va, 137 H IIItpm2, M. metapleural-praealaris 48 t2-ba2 mesonoto-mesobasalar 141 G IItpm3, M. mesonoto-basalaris 49 t2-ph2 mesonoto-mesolaterophragmal 116 H IIdlm2, M. mesonoto-phragmalis 50 t2-cx2 mesonoto-mesocoxal 158 G IIdvm4,5, M. mesonoto-coxalis 51 t2a-tr2 anterior mesonoto-mesotrochanteral 165 G IIdvm7, M. mesonoto-trochanteralis 52 t2p-tr2 posterior mesonoto-mesotrochanteral 165 G IIdvm7, M. mesonoto-trochanteralis 53 t2-tch2 mesonoto-mesotrochantinal 130 G IIdvm3, M. mesonoto-trochantinalis posterior 54 t2a-t3 anterior mesonoto-metanotal 2 Va,114H – 55 t2p-t3 posterior mesonoto-metanotal 2 Va,114H – 56 pl2-t2a first mesopleuro-mesonotal 128/129 G IIdvm1, M. mesonoto-sternalis 57 pl2-t2b second mesopleuro-mesonotal 153 G IItpm4-6, M. mesonoto-pleuralis 58 pl2-t2c third mesopleuro-mesonotal 142 G IItpm2, M. mesopleural praealaris 59 ism1,2-ba2 intersegmental membrane-mesobasalar 110 G IIppm2, M. mesobasalare-intersegmentalis (anterior mesopectal-mesobasalar) 60 cx2-ba2 mesocoxo-mesobasalar 156 G IIpcm2,3, M. mesobasalare trochntinalis, M. mesapenisterno-coxalis anterior 61 tr2-ba2 mesotrochantero-mesobasalar 166 G IIpcm5, m. mesanepisterno-trochanteralis 62 pl2-ba2 mesopleuro-mesobasalar 154 G IIspm1, M. mesopleura-sternalis 63 pl2-3ax2a first mesopleuro-third axillary sclerite of 163 G IItpm7, M. mesanepisterno-axillaris fore wing 64 pl2-3ax2b second mesopleuro-third axillary sclerite 164 G IItpm9, M. mesepimero axillaris tertius of fore wing 65 pl2-3ax3c third mesopleuro-third axillary sclerite 164 G IItpm9, M. mesepimero axillaris tertius 66 pl2-sa2 mesopleuro-mesosubalar 161 G IItpm11, M. mesopleuro-subalaris

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 111

APPENDIX 3 Continued

Abbreviation Term Hymenoptera Friedrich & Beutel (2008)

67 cx2-sa2 mesocoxo-mesosubalar 160 G IIdvm6, M. mesocoxa-subalaris 68 pl2-pl2 intrinsic muscle of the mesopleuron 145 G IIppm1, M. mesotransanapleuralis 69 pl2a-fu2 anterior mesopleuro-mesofurcal 151 G, 151 H IIspm2, M. mesofurca-pleuralis 70 pl2p-fu2 posterior mesopleuro-mesofurcal 170 H IIscm4, M. mesofurca coxalis lateralis 71 pl2-cx2 mesopleuro-mesocoxal 157 G, 173 H IIpcm4, M. mesanepisterno-coxalis posterior 72 pl2-3ax3 mesopleuro-third axillary sclerite of hind 12 a+b Va IIItpm7, M. metanepisterno-axillaris wing 73 pl2-t3 mesopleuro-metanotal 9 Va IIIdvm1, M. metanoto-sternalis 74 s2-cx2 mesosterno-mesocoxal 169 H IIscm3, M. mesofurca coxalis medialis 75 fu2a-ph2 anterior mesofurco-mesolaterophragmal 150b H IIdvm8, mesofurca-phragmalis 76 fu2p-ph2 posterior mesofurco-mesolaterophragmal 150a H IIdvm8, mesofurca-phragmalis 77 fu2-cx2 mesofurco-mesocoxal 173 H IIscm2, M. mesofurca-coxalis posterior 78 fu2l-tr2 lateral mesofurco-mesotrochanteral 174 H IIscm6, M. mesofurca-trochanteralis 79 fu2m-tr2 median mesofurco-mesotrochanteral 174 H IIscm6, M. mesofurca-trochanteralis 80 fu2-ba3 mesofurco-metabasalar 29 Va,fb1 H IIspm6, M. mesofurca-metanepisternalis 81 fu2-fu3m median mesofurco-metafurcal 27a Va, 181 IIvlm3, M. mesofurca-metafurcalis H 82 fu2-fu3l lateral mesofurco-metafurcal 27b Va, 181 IIvlm3, M. mesofurca-metafurcalis H 83 sps2-fu3 mesospinasterno-metafurcal 28 Va, 180 H IIvlm5, M. mesospina-metafurcalis 84 sp3occ occlusor of posterior thoracic spiracle 1 Va – 85 t3-ba3 metanoto-metabasalar 11 Va IIItpm3, M. metanoto-basalaris 86 pl3m-t3 median metapleuro-metanotal 9 Va IIIdvm1, M. metanoto-sternalis 87 pl3la-t3 anterolateral metapleuro-metanotal 10 Va IIItpm4-6, M. metanoto-pleuralis 88 pl3lp-t3 posterolateral metapleuro-metanotal 10 Va IIItpm4-6, M. metanoto-pleuralis 89 t3-ph3 metanoto-metalaterophragmal 6 Va IIIdlm2, M. metanoto-phragmalis 90 t3a-cx3 anterior metanoto-metacoxal 18 Va,20Va – (in Ceraphronoidea)

91 t3p-cx3 posterior metanoto-metacoxal 19 Va IIIdvm4,5, M. metanoto-coxalis 92 t3-tr3 metanoto-metatrochanteral 20 Va IIIdvm7, IIIdvm2, M. metanoto-trochanteralis, M. metanoto-trochantinalis anterior 93 t3-tch3 metanoto-metatrochantinal 17 Va IIIdvm3, M. metanoto-trochantinalis posterior 94 pl3a-ba3 anterior metapleuro-metabasalar 13 Va IIIspm1, IIIppm2, M. metapleura sternalis, M. metabasalare intersegmentalis 95 pl3l-ba3 lateral metapleuro-metabasalar 14 Va IIIppm1, M. metatransanapleuralis 96 pl3p-ba3 posterior metapleuro-metabasalar 13 Va,21 Va IIIspm1, IIIppm2, M. metapleura sternalis, M. metabasalare intersegmentalis 97 cx3-ba3 metacoxo-metabasalar 21 Va IIIpcm2, M. metabasalare trochantinalis 98 pl3d-3ax3 dorsal metapleuro-third axillary sclerite 12 a+b Va IIItpm7, M. metanepisterno-axillaris of hind wing 99 pl3v-3ax3 ventral metapleuro-third axillary sclerite 12 a+b Va IIItpm9, M. metepimero-axillaris of hind wing 100 pl3-sa3 metapleuro-metasubalar 15 Va IIItpm11, M. metapleura-subalaris 101 cx3-sa3 metacoxo-metasubalar 22 Va IIIdvm6, M. metacoxa-subalaris 102 pl3-pl3 intrinsic muscle of the metapleuron 14 Va IIIppm1, M. metatransanapleuralis 103 pl3-fu3a anterior metapleuro-metafurcal 23 Va IIIspm2, M. mesofurco-pleuralis 104 pl3-fu3p posterior metapleuro-metafurcal 24 Va IIIscm4, M. mesofurca-coxalis lateralis 105 pl3m-cx3 median metapleuro-metacoxal 25 Va IIIscm1, M. mesofurca coxalis anterior 106 pl3l-cx3 lateral metapleuro-metacoxal 26 Va IIIpcm4, M. metanepisterno-coxalis posterior 107 pl3-tr3 metapleuro-metatrochanteral 31 Va IIIscm6, M. metafurca-trochanteralis 108 pl3-T1 metapleuro-propodeal 16 Va – 109 pl3-S2 lateral metapleuro-second abdominal 33 Va – sternal 110 ph3-fu3 metalaterophragmo-metafurcal 7 Va IIIdvm8, M. metafurca-phragmalis 111 fu3m-cx3 median metafurco-metacoxal 30 Va IIIscm2, M. metafurca-coxalis posterior 112 fu3l-cx3 lateral metafurco-metacoxal 30 Va IIIscm2, M. metafurca-coxalis posterior 113 fu3-tr3 metafurco-metatrochanteral 31 Va IIIscm6, M. metafurca-trochanteralis

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 112 L. VILHELMSEN ET AL.

APPENDIX 3 Continued

Abbreviation Term Hymenoptera Friedrich & Beutel (2008)

114 fu3-T1 metafurco-propodeal 8 Va – 115 fu3-S2 metafurco-second abdominal sternal 35 Va IIIvlm2, M. metafurca-abdominosternalis 116 s3-S2 metasterno-second abdominal sternal 35 Va?– 117 S2-cx3 second sterno-metacoxal 34 Va – 118 ph3-T2 metaphragmo-second abdominal tergal 32 Va – 119 T1-S2 propodeo-second abdominal sternal 16 or 32b Va – 120 T1-T2 propodeo-second abdominal tergal 16 or 32b Va – 121 oT1sp occlusor of the propodeal spiracle – 122 dT1sp dilator of the propodeal spiracle –

Muscle abbreviations and terms include Gibson (1985), Heraty et al. (1994), Vilhelmsen (2000a, b); and Mikó et al. (2007). Some of the abbreviations and terms have not previously been employed, in these cases we follow Vilhelmsen (1997, 2000a, b) and refer to muscles as follows: the first component of the name refers to the site of origin, the second component to the site of insertion of the muscle (references for homologies: G, Gibson, 1993; H, Heraty et al., 1994, Va, Vilhelmsen, 2000a; Vb, Vilhelmsen, 2000b).

APPENDIX 4 MUSCLE OCCURRENCE IN HYMENOPTERA

123 4 5 678 9101112131415161718192021

Xyeloidea 1 1 ? ? 0 1 1 1 0 1 1 1 0 0 1 1 00111 Tenthredinoidea 1 ? ? 1 0 1 1 1 0 1 1 1 0 0 1 0 01011 Pamphilioidea 1 ? ? ? 0 1 1 1 0 1 1 1 0 0 1 1 00011 Cephoidea 1 ? 1 1 0 1 1 1 0 1 1 1 0 0 1 0 00011 Xiphydrioidea 1 0 0 0 0 1 1 1 0 1 0 1 0 0 1 0 00011 Orussoidea 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0 00011 Ceraphronoidea 1 1 ? 1 0 1 1 1 0 1 0 1 1 0 1 1 01011 Chalcidoidea 1 ? 1 1 0 1 1 1 0 1 0 1 0 0 1 1 00011 Cynipoidea 1 ? 1 1 0 1 1 1 0 1 0 1 0 0 1 1 10011 Evaniidae 1 1 1 1 1 1 1 1 0 1 0 1 0/1 0 1 1 00011 Gasteruptiidae 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 1 00011 Aulacidae 11?0 1 1?101011 0 11 00011 Megalyroidea 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 00011 Ichneumonoidea 1 ? 1 0/1 ? ? 1 1 0 1 0 1 1 0 1 0/1 00011 Scelionidae11?1 0 11111010/1110 00011 Proctotrupoidea 1 1 1 1 0/1 1 1 1 0 1 0 1 1 0/1 1 1/? 00011 Stephanoidea 1 ? 1 1 1 1 1 1 0 1 0 1 0 0 1 0 00011 Trigonaloidea 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 1 00011 Apoidea 1 ? 1/? 1 0 1 1 1? 0 1 0 1 0 0 1 1 00011 Chrysidoidea 1 ? 1 1/? 0 1 1 1 0 1 0 1 0 0 1 1 00011 Vespoidea 1 ? 1 1 1 1 1 1 0 1 0 1 0 0 1 1 00011

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Xyeloidea 1 01111111101101111111 Tenthredinoidea 1 01011111100101101001 Pamphilioidea 1 01011111101101101011 Cephoidea 1 01011111110001101011 Xiphydrioidea 1 00011111000001101001 Orussoidea 1 00011111101011101011 Ceraphronoidea 1 00011101100011101011 Chalcidoidea 0/1 000111011000011010?1 Cynipoidea 1 110111011000011010?1 Evaniidae 0/1 01011101100001101011 Gasteruptiidae 1 010111011000011010?1 Aulacidae 1 010111011000011010?1

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 113

APPENDIX 4 Continued

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Megalyroidea 0 0001110110 0 01 110 10?1 Ichneumonoidea 1 0001110111/?101 110 10?1 Scelionidae0 0001110110 0 01 110 10?1 Proctotrupoidea 0/1 0001110110 ?/100/11101011 Stephanoidea 0 0101110110 1 00 110 10?1 Trigonaloidea 1 0101110110 0 00 110 1011 Apoidea 1 0 0? 0 1 110110 1 0? 110 1011 Chrysidoidea 0 0101110110 0 00 110/110?1 Vespoidea ? 0101110110 ? 00 110 1011

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Xyeloidea 110111 1 110 01 1111 1 1011 Tenthredinoidea ? 11101 1 000 01 1111 0 0011 Pamphilioidea ? 10111 1 010 01 1111 1 1111 Cephoidea ? 10011 1 110 11 1111 0 111? Xiphydrioidea ? 1 0 ? ? 1 1 0 1 0 0 1 1 1 1 1 0 0111 Orussoidea ? 1 0 ? ? 1 0 0 1 0 0 0 1 0 1 1 0 001? Ceraphronoidea 010??0 1 011 00 1110?00010? Chalcidoidea 010??0 0 001 00 1111 1 0011? Cynipoidea ? 1 0 ? ? 0 1 0 0 0 0 0 1 1 1 1 0 0010? Evaniidae 010??0 0 000 00 1110?0/10010? Gasteruptiidae ? 1 0 ? ? ? 0 0 0 0 0 0 1 1 1 0? 1 0010? Aulacidae ?10??? 0 000 00 1110?10010? Megalyroidea ? 1 0 ? ? 0 0 0 1 1 0 0 1 1 1 1 1 0010? Ichneumonoidea ? 1 0 ? ? 1/? 0 0 0 0 0 0/1 1 1 1 ? 0 001? Scelionidae?10??0 0 000 00 1111 1 0010 Proctotrupoidea ? 1 0 ? ? 0/? 0/1 0 0 0/1 0 0/1 1 1 1 ?/1 0/1 0010? Stephanoidea ? 1 ???? 0 0010011111 0010 Trigonaloidea 010??0 0 000 00 1110 1 0010? Apoidea ? 1 0 ? ? 0 0 0 0 0 0 0 1 1 1 0? 1 0011 Chrysidoidea ? 1 0 ? ? 0/? 0 0 0 0 0 0 1 1 1 0? 0/1 0010 Vespoidea ? 1 0 ? ? 0 0 0 0 0 0 0 1 1 1 0 1 001?

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

Xyeloidea 1111111 10 0 11110 1 110/111 Tenthredinoidea 1101011 10 0 11110 1 110 0/11 Pamphilioidea 1111011 10 0 11110 1 110 1 1 Cephoidea 1101011 10 0 11110 1 110 1 1 Xiphydrioidea 1101010 10 0 11110 1 110 1 1 Orussoidea 1101011 10 0 11?10 1 110 1 1 Ceraphronoidea 1101010 1? 0 11010 0 010 0 ? Chalcidoidea 1110010 11 0 11010 0 010 0 ? Cynipoidea 1101010 10 0 11010 1 010 0 ? Evaniidae 1101010 10 0 11011 1 010 0 ? Gasteruptiidae 1101010 10 0 11010 1 010 0 ? Aulacidae 1101010 10 0 11010 1 010 0 ? Megalyroidea 1101010 10 0 11010 1 010 0 ? Ichneumonoidea 1101010 10/10/1110101 010 0 ? Scelionidae1101010 11 0 11011 1 010 0 ? Proctotrupoidea 1101010 11 0 11010/10/10100 ? Stephanoidea 1101010 10 0 11010 0 010 ? ? Trigonaloidea 1101010 10 0 11010 1 010 0 ? Apoidea 1101010 10 0 11011 1 010 0 ? Chrysidoidea 1110011/?100 11010/11010 0 ? Vespoidea 1110011 10 0 11010 1 010 0 ?

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 114 L. VILHELMSEN ET AL.

APPENDIX 4 Continued

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

Xyeloidea 1 1 111110 11 001 11111111 Tenthredinoidea 0 1 110101 01 001 11110111 Pamphilioidea ? 1 111011 11 001 11111111 Cephoidea 0 1 111110 11 001 11111111 Xiphydrioidea 0 1 111010 01 100 11110011 Orussoidea 0 0 110011 01 000 11111011 Ceraphronoidea 0 1 110100 01 000 11110001 Chalcidoidea 0 0 110001 01 000 11100??1 Cynipoidea 0 1 111001 01 011 11110111 Evaniidae 0 1 110000 01 011 11110001 Gasteruptiidae 0 1 110000 00/101011110001 Aulacidae 01 110000 01 010 11110001 Megalyroidea 0 0 110000 01 000 11110001 Ichneumonoidea 0 0 110000 01 100 111100/??1 Scelionidae00 110000/101000 11110001 Proctotrupoidea 0 0/1 110000/101000 111100/?0/?1 Stephanoidea 0 0 11000? 01 000 11110001 Trigonaloidea 0 0 110000 01 010 11110001 Apoidea 0 0 110000 01 000 11110001 Chrysidoidea 0 0/1 110000 01 010/111110??1 Vespoidea 0 0/1 111000 01 010 11110001

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

Xyeloidea 10011111110111011 Tenthredinoidea 10001111010111011 Pamphilioidea 10001111010110? 11 Cephoidea 1010111111011?111 Xiphydrioidea 1 ? ? 0 1 1 1111011?? 11 Orussoidea 11101111010110111 Ceraphronoidea 1100011101001?? 11 Chalcidoidea 1100011101001?? 11 Cynipoidea 11001111010010011 Evaniidae 1100011101001?? 11 Gasteruptiidae 0100111101001?? 11 Aulacidae1100111101001?? 11 Megalyroidea 11000111010011011 Ichneumonoidea 1 ? 0 0 0 1 1101001?? 11 Scelionidae11000110/101001?? 11 Proctotrupoidea 11000110/100/10011/??11 Stephanoidea 1 ? 0 0 0 1 11010010011 Trigonaloidea 11000111010011? 11 Apoidea 1100111101101?? 11 Chrysidoidea 11001/?11101101?? 11 Vespoidea 1100011101101?? 11

0, absent, 1, present. For muscle numbers see Appendix 3.

APPENDIX 5 CHARACTER MATRIX

111213141

Chrysopa -00--00000 0000000-0- -?00000-00 00-0000111 000100000? Micropterix 1-00100000 0010000-0- -?00000-00 00-0000100 0001000000 Panorpa 1-00000000 1000100-0- -?00000-00 0100000110 0001000000 Macroxyela 1-00000000 0010001000 0?00001-10 0100000100 0101001000 Athalia 1-00100000 01001010-0 0-00002020 0100000110 0001001000

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 115

APPENDIX 5 Continued

1 11213141

Heteroperreyia 1-01-00000 0100100-0- --00002020 01000000-0 0001101000 Monoctenus 1-01-00000 0100101000 0-00002020 0100000110 0001101000 Notofenusa 1-01-00000 0100100-0- --00002020 0100000110 000110100? Onycholyda 1-00000000 0010100-0- --00012020 0100200100 000110100? Cephus 1-00000000 0010001000 0-00012020 0100200100 0101001000 Syntexis 1-01000000 00200010-0 0-00002020 0100200100 0101001000 Tremex 0-00111000 0010001101 0-00002020 0100200100 0100101000 Urocerus 1-00101000 00100011-0 0-00002020 0100200100 0100101000 Xiphydria 1-01-00000 00000011-0 0-00012020 0110200100 0101111000 Orussobaius 0000100000 00210011-0 0-00112121 01002010-0 0001111001 Orussus 0000100000 00210011-0 0-00012121 01002010-0 0101111001 Ceraphron 0001-00001 1012110-0- -10-101-21 01002100-0 0001001100 Lagynodes 0001-00000 0122110-0- -10-112021 0100210??0 0?0100111? Megaspilus 0001-00001 1012110-0- -10-112021 01002100-0 000100111? Acanthochalcis 0000000000 00000011-0 2?20112021 01101000-1 0001101100 Cales 10000000?0 00000010-0 0?20001-21 01?0000??1 0?01001?00 Cirrospilus 1-0000000? ?000001000 2-20001-21 0100100??1 0?01001100 Cleonymus 0000000000 0010001000 2?20112?21 01001000-0 1001001100 Coccophagus 1-00000000 00000010-0 -?20002021 01000000-1 000?101100 Eurytoma 0000010000 0011001000 2?20112021 01?01000-0 0001101110 Gonatocerus 1-00000000 00020010-0 1?20012021 01001000-1 0001001100 Megastigmus 1-00000000 00000010-0 2?20112?21 01001000-1 0001001100 Nasonia 1-00000000 00000010-0 2?20102021 01001000-1 1001101100 Spalangia 0000000000 1000001000 2?20112021 0??0200??0 1001101110 Anacharis 1-10110000 0100100-11 000-112021 01012000-0 000011111? Diplolepis 1-01-00000 0100100-11 000-112021 01012000-0 0001111110 Ibalia 0010110000 0110100-11 000-112021 01?12000-0 0000111110 Melanips 1-10100000 0100100-11 000-112021 01012000-0 000011111? Parnips 1-10110000 0100100-11 000-112021 01012000-0 000011111? Periclistus 1-10100000 0100100-11 000-112021 0101200100 0000111110 Aulacus 0000100000 1021100-0- -?00112021 1110200101 0101101000 Pristaulacus 1001-00000 1000100-0- -?00112021 1110200101 0101001000 Gasteruption 1001-00000 1021100-0- -?00112?21 1110200101 0101111000 Pseudofoenus 1001-00000 1021100-0- -?00112121 1110200101 0001101000 Brachygaster 1000110000 0021100-11 0?0-112021 01112101?1 1001111100 Evania 0000100000 0021100-11 0?0-112021 0101210101 1001111110 Evaniella 1000110000 0021100-11 0?0-112021 0111210101 100111111? Aleiodes ?00??00100 0021100-0- -011112021 0100211100 1001001100 Doryctes 0000000000 0021100-?? ?011112021 0100211100 1001101100 Orgilus 0001-00000 0020100-0- -011112021 0100211101 0001001100 Rhysipolis 0001-00100 0021100-0- -010112021 0100211100 000100110? Urosigalphus 0001-00000 0021100-0- -011112021 0100211100 0001001100 Wroughtonia 0001-00000 0020100-0- -011112021 0100211101 0001101100 Dusona 0001-00000 1000100-0- -011112021 01012110-1 1001101100 Labena 0000100000 0000100-0- -011112021 01-1210101 000110110? Lymeon 0001-00000 0010100-0- -011112021 01012100-1 1001101100 Pimpla 1000100000 0000100-0- -011112021 01002100-1 1001101100 Zagryphus 0001-10000 0000100-0- -011112021 01012100-1 1001101100 Dinapsis 1001-00100 1112110-0- -?0-112021 01002110-1 0001021100 Megalyra 1001-00000 1112110-0- -?0-112021 0100211101 0001021000 Mymaromma 1001-10000 0011100-1- 0?-?002021 0100-11??- 0?00001100 Isostasius 0000110000 0110120-11 0?0-102?21 00?1210??0 1001101100 Proplatygaster 0000100000 0110120-11 0?0-112021 00-1210??0 1001101100 Archaeoteleia 0100110000 0110120-11 000-112021 01102100-0 1011101100

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 116 L. VILHELMSEN ET AL.

APPENDIX 5 Continued

1 11213141

Sparasion 0100110000 0110120-11 0?0-112021 00-02100-0 1011101100 Telenomus 0001-00000 0100120-11 0?0-112?21 00-0210??0 1011101110 Belyta 0010100000 0120110-11 001-112021 00-02100-0 100110110? Ismarus 0?00110000 0100100-11 010-112021 01012100-0 000110110? Pantolytomia 0010100000 00201111-0 0?0011202- 00-02100-1 1001101100 Poecilospilus 0100100000 0100110-11 000-112021 01?02100-0 1001101100 Helorus 0000100010 0110110-11 000-112021 0101210100 1001101100 Maaminga 1-00110000 0000100-10 0?00012020 0100200??0 0?00001100 Monomachus 0000010000 00200011-1 0-00112021 0100210100 1001101100 Pelecinus 0000110000 0112120-11 -00-112021 01002100-0 0001101100 Austroserphus 0000110010 0100120-11 -00-112021 0101210100 0001101110 Phaenoserphus 0000100010 0112120-11 -00-112021 01012101?0 100100111? Proctotrupes 0000100010 0112120-11 -00-112021 0101210100 1001001100 Ropronia 0000110000 01001011-1 0?00112021 01002100-1 0001101100 Vanhornia 0000110010 0110110-11 0?0-112021 0101210100 0001001100 Megischus 0100000000 01210011-0 0-00112121 0100210101 0001101010 Schlettererius 0000110000 01210011-0 0-00112021 0100200101 0001101000 Orthogonalys 0001-00000 1021100-11 010-112021 01002000-0 0001111010 Taeniogonalos 0000100000 1021100-11 010-112021 01002000-0 0001111000 Ampulex 0000000000 0021110-0- -?00112021 01002100-1 1101101010 Pison 0000000000 0021110-0- --00112021 01002110-1 1001101110 Stangeella 0000100000 1021110-0- --00112021 01002000-1 100111100? Cephalonomia 0000000000 00210011-0 2-00112021 01102100-0 100100110? Chrysis 0010011000 00210011-1 0?10112021 0101110101 1001101000 Plumarius 1-00100000 10210011-1 1?00111-21 01002100-1 100100110? Ycaploca 1-00000000 00210011-1 0-00111-21 11001011?0 0001001100 Aporus 0000000000 0021000-0- -?10111-21 01012100-1 100102110? Metapolybia 0001-00000 0021100-0- -000112021 0100200101 0001101110 Rhopalosoma 0000000000 1021101101 0?00112021 01002000-1 1001121000 Sapyga 0000011000 0021000-0- --10112021 0100200101 0001101100

51 61 71 81 91

Chrysopa -000?10010 000-000000 0001-00000 000010?111 0000000001 Micropterix 0100011110 002-0000-0 0001-00000 0000000?10 111000??02 Panorpa 0100010010 0000000010 0001-00000 0000001110 0000100001 Macroxyela 1100010000 0001000000 0001-00000 1000001110 0000000001 Athalia 0100010010 0001000000 0001-00000 1000001110 0000000012 Heteroperreyia 0100010000 0001000000 0001-00000 0000001110 0000000000 Monoctenus 0100000010 0001000000 0001-00000 1000001110 0000000010 Notofenusa 1100?10010 0001000000 0001-00000 1000001110 0000000010 Onycholyda 1100?10010 0001000000 0000-00000 1000001110 0000000011 Cephus 1010010000 0001000000 0001-00000 0000101110 0010000011 Syntexis 1000011000 000-000000 0001-00000 1000001110 0000010011 Tremex 1000010001 202-001010 0001-00000 1000101110 0110010001 Urocerus 1000011001 202-001010 0001-00000 1000101110 0010010011 Xiphydria 100000--0- 0101112001 0001100000 0000101111 1120000010 Orussobaius 1011110010 202-112011 0001100000 001100010- -120001002 Orussus 1011110000 212-102001 0001100000 001100110- -120001002 Ceraphron 111100-01- 002-012101 0001100000 0001100011 112?000102 Lagynodes 1111?10010 002-112101 0001000000 0001001011 112000??02 Megaspilus 1111?11010 0100012101 1001000001 0001100011 1120000102 Acanthochalcis 1011010100 2000012101 0101000010 0001100010 1120100102 Cales ????011100 2000012110 0101000000 0?01???010 1120100?02

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 117

APPENDIX 5 Continued

51 61 71 81 91

Cirrospilus ?000010100 2?00?12111 0101000000 0001?000?? ?12010010? Cleonymus 1011011100 2000012111 0101000000 0001100010 1120100102 Coccophagus 1011010100 2000012111 0101000000 0001000010 000010??02 Eurytoma 1011010100 2000012111 0101000000 0001100010 1120100102 Gonatocerus 1011010100 2000012111 0101001000 0001100010 1120100?02 Megastigmus 1011010100 2000012111 0101000010 0001100010 1120100102 Nasonia 1011010100 2000012111 0101000010 0001100010 1120100102 Spalangia 1011010100 2000012111 0101000010 0001100010 1120100102 Anacharis 1011?10010 2110112011 0010-00000 0001100011 1120000102 Diplolepis 101100--1- 2100112111 0001000000 0001100011 1120000102 Ibalia 1011010010 1110112111 0011000000 0001100011 1120000101 Melanips 1011?10010 2010112011 0010-00000 0001100011 1120000102 Parnips 1011?11010 1110112011 0010-00000 0001100011 1120000102 Periclistus 1011011010 2110112011 0010-00000 0001100011 1120000102 Aulacus 1011010010 2100112011 0001100000 0001101110 1120000002 Pristaulacus 1011010010 2100112111 0001000000 0001101110 1120000002 Gasteruption 101100--1- 2102112111 0001000100 0001100110 1121000002 Pseudofoenus 101100--1- 2102112111 0001000100 0001100110 1121000102 Brachygaster ?011010010 2100012011 00010000?0 0001000010 1120000102 Evania 1011010010 2100112011 0001000000 0001101010 1120000100 Evaniella 1011?10010 2100012011 0001000000 0001101010 1120000100 Aleiodes 1011010010 2001012011 0001000000 0101101010 1120000002 Doryctes 1011010010 2001012011 1001000000 0101101010 0120000002 Orgilus 1011?10010 2001012011 0001000000 0001101110 0120000002 Rhysipolis 1011?10010 2001012011 0001000000 0101101010 0120000002 Urosigalphus 1011010010 2011012011 1001100001 0101101110 1120000002 Wroughtonia 1011010010 2011012011 1001000000 0101101110 0120?00002 Dusona 1011011010 202-010011 0001-00000 0001101010 1120000002 Labena 1011?10011 202-0100-1 1001-00000 0001001010 1120001002 Lymeon 1011010010 202-010001 0001-00000 0001001010 1120?00002 Pimpla 1011010011 202-010011 0001-00000 0001101010 1120000002 Zagryphus 1011010011 202-010011 0011-00000 0001101010 1120000002 Dinapsis 1011010010 012-112101 0001000000 00011?0010 1120000102 Megalyra 1011010010 012-012101 0001000000 0001100010 1120000102 Mymaromma ?011011010 202-0121-1 01-0-01010 000100?010 11200-??02 Isostasius 101100--1- 2100112011 1011??0000 0001100010 112000??02 Proplatygaster 101100--1- 2100112011 1011100000 0001100010 1120000102 Archaeoteleia 1011011011 2100112011 0001100001 0001000010 0120000102 Sparasion 1011010011 202-012011 0001100001 0001000010 0120000102 Telenomus 101100--1- 212-012011 0001-00001 0001000010 0120000102 Belyta 1011?11010 2100002001 1011000000 0001000011 1120000102 Ismarus 1011?10011 202-012011 0001100001 0001000011 1120000102 Pantolytomia 1011011010 2000112011 1001000000 0001100011 1120000102 Poecilospilus 1011011010 2000112011 0011000001 0001000011 1120000102 Helorus 1011010011 2000112011 1001100001 0101000011 1120000102 Maaminga 101100--1- 20000121-1 00-1101010 0001101010 1120000102 Monomachus 1011010000 2000112001 1001000001 0101001011 1120000102 Pelecinus ?011010011 2111112011 1001100001 0001001011 1120000002 Austroserphus 1011010011 2101112011 1001-00001 0101101010 1120000102 Phaenoserphus 1011?11011 202-010011 1000-00001 0101101011 0120000102 Proctotrupes 1011010011 202-110011 1001-00001 0101101011 0120000102 Ropronia 1011010001 2100112011 1001100001 0001001010 0120000102 Vanhornia 1011010011 2100012011 1001100001 0101101011 1120000102 Megischus 1011010010 2100012101 0001100000 0001101110 1120001002

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 118 L. VILHELMSEN ET AL.

APPENDIX 5 Continued

51 61 71 81 91

Schlettererius 1011010000 0101112101 0001100000 0001101110 1120001002 Orthogonalys 1011010010 2100112001 0001100001 0001001010 1120000102 Taeniogonalos 1011010010 2100112011 0001100001 0001001010 1120000102 Ampulex 1011010010 2100112011 0001100000 0001010110 1120100102 Pison 1011010010 212-112111 0001000000 0001110010 1120100102 Stangeella 1011?10010 212-112111 0001000000 0001110110 1120100102 Cephalonomia 1011?11100 2?2-102010 0001100000 000101?010 1120000102 Chrysis 1011010000 21001120-1 10-1000000 0001001000 0120100102 Plumarius ?011?10000 212-102011 0001100000 0001101010 1120000002 Ycaploca 1011010000 2100102010 0001100000 0001001010 1120000101 Aporus 1011?10000 212-112011 0001000000 0001101010 1120100102 Metapolybia 1011010011 212-112011 0001010000 0001000010 1120000102 Rhopalosoma 1011010010 212-102010 0001100000 0001000010 1121000102 Sapyga 1011010000 2120102010 00-1010000 0001001010 1120000102

101 111 121 131 141

Chrysopa 00111-0010 0000021000 000-000001 0000110002 0010010110 Micropterix 00100-0010 0000001000 000-000001 001?110002 0010100000 Panorpa 00111-0--0 0000001000 000-000001 0010110002 0010000110 Macroxyela 00110-0010 0010001001 010-000011 0110110011 0010010000 Athalia 00111-0110 0000001000 000-100011 0110110011 0010010010 Heteroperreyia 00111-0110 00100010?0 000-100011 0110110010 00110-0010 Monoctenus 00111-0110 0000001001 000-100011 0110110010 0010010110 Notofenusa ?0111-0110 0000001000 000-100011 0110110011 0010000000 Onycholyda 00100-0010 0000001001 010-000011 0110110011 0010010100 Cephus 00100-0000 0010001001 0111000011 0010110010 0010000010 Syntexis 00100-0000 1010001001 0111100011 0110110011 0010110000 Tremex 00101-0??0 0000001002 0111100011 0110110011 0000010000 Urocerus 00101-0000 0000001002 0111100011 0110110011 0000010000 Xiphydria 00011-0011 1000001001 0111100011 0100100001 0010111110 Orussobaius 00001-0001 1100001001 0111110011 01010--100 1110101010 Orussus 00011-0000 0100001001 0111110011 01010--100 1110101010 Ceraphron 0?011-0101 11000-1100 000-110000 --?1-----0 20-1--1012 Lagynodes 00011-0111 10000-110? ?10-?10010 --??-----? 20-1--0112 Megaspilus 0?011?0111 11000-1100 000-110010 --01-----? 20-1--1112 Acanthochalcis 01000-0111 1000121010 1111111011 1001100100 2001--1110 Cales 00100-0110 0000101010 100-1110?1 00??0--1?? 20?1--0010 Cirrospilus 00100-0110 1000101010 11101110?1 000?1001?? 2001--0010 Cleonymus 00000-0100 0000101010 1110111011 00?1110100 2001--1010 Coccophagus 02100-0110 0000101010 010-111011 00??10010? 2001--0010 Eurytoma 00000-0101 1000121010 1110111011 10?1101100 2001--0010 Gonatocerus 00000-0101 1?00111010 100-111011 000110000? 2001--1110 Megastigmus 00000-0100 0000101010 1110111001 00?1111100 2001--0010 Nasonia 00000-0110 0000101010 1110111011 000?11110? 2001--0010 Spalangia 00000-0100 1000121010 1110111011 0001110100 2001--1?10 Anacharis 0200111101 1100020-00 0111111001 10?011110? 2101--1110 Diplolepis 02000-1101 1100020-00 0111111011 1000101100 2001--0010 Ibalia 0200111101 1100020-00 0110111011 1000101100 2101--1010 Melanips 0200111101 1100020-00 0110111011 10??10110? 2101--1110 Parnips 0201111101 1100020-00 0111111011 10?0101100 2101--1110 Periclistus 02000-1101 1100020-00 0110111011 10?00-110? 2101--1110 Aulacus 0101100111 1100001100 0110110011 0001100100 2001--0110 Pristaulacus 0101100111 1101001100 0110110011 0001100100 2001--1110

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 119

APPENDIX 5 Continued

101 111 121 131 141

Gasteruption 01000-0111 1100001100 0111110011 0001100100 2001--0110 Pseudofoenus 0100110111 1100001100 0110110011 0001100100 2001--0110 Brachygaster 01000-0101 1?000-1100 01101101?1 00010-0100 2001--0011 Evania 01000-0111 11000-1100 0110110111 0001100100 2001--0111 Evaniella 11000-0111 10000-1100 0110110111 00010-0100 2001--0111 Aleiodes 0201110111 1000011000 0111111011 00?1111100 2001--1110 Doryctes 0201110111 10000-1000 0111111011 00?1110100 2001--1111 Orgilus 0201100101 1000000-00 0111111011 00?1110100 2001--0110 Rhysipolis 0201110111 0001001000 0111111011 00?1110100 2001--1110 Urosigalphus 0200110111 1000110-00 0111111011 00010--?00 2001--1110 Wroughtonia 0201110101 1000021000 0111111011 0001110100 2001--1110 Dusona 02000-0111 1000101000 0111111011 0001100100 2001--1110 Labena 0201110101 1000001000 0111111011 0001110100 2001--1110 Lymeon 0201100101 1000001000 0111111011 0001100100 2001--1110 Pimpla 0201100111 1000001000 0111111011 0001100100 2001--1110 Zagryphus 0201100111 1001001000 0111111011 0001110100 2001--1110 Dinapsis 00011-0110 11000-1100 0110110011 0001100100 2001--1111 Megalyra 0101100110 01000-1100 0111110011 0001110100 2001--1111 Mymaromma 00000-0100 00001-0-00 000-1110?1 000?0--0?? 20-1--0102 Isostasius 02000-0101 1?00120-00 000-111011 00?110110? 2001--1110 Proplatygaster 0201100101 1100120-00 010-111011 00??11010? 2001--1110 Archaeoteleia 02010-0101 1100110-00 0110111011 00?1110100 2001--1110 Sparasion 02000-0101 1000120-00 0110111001 0001110100 2001--1110 Telenomus 0201110101 1000120-00 0110111011 00?1100100 2001--1110 Belyta 00011-1101 1101111000 0110111011 00?1100100 2001--1110 Ismarus 02011?0101 110?011000 0110111011 10?1110100 2001--0110 Pantolytomia 00000-1100 0100111000 0110111111 00??110100 2001--11-0 Poecilospilus 0201110101 1000011000 0110111?11 000?110100 2001--1110 Helorus 02000-0101 1100111000 0111111001 0001110100 2001--0010 Maaminga 01000-0110 0001000-00 010-011011 00??0--10? 2001--0?10 Monomachus 0201100100 1100001010 0111111011 0001110100 2001--0010 Pelecinus 02010-0110 0100121000 000-1110?1 0001110100 2001--0010 Austroserphus 02000-0110 1100010-00 0111111001 00?1101100 2001--0110 Phaenoserphus 02000-0111 1001010-00 0111111001 0001101100 2001--1110 Proctotrupes 02000-0111 1001011000 0111111001 0001100100 2001--0110 Ropronia 02000-0101 1100110-00 0111111011 0001110100 2001--1010 Vanhornia 02000-0101 1100121000 0111111001 0001110100 2001--0010 Megischus 00000-0110 0100101000 0111110011 00010--100 2001--0110 Schlettererius 00000-0110 0100001001 0111110011 00010--100 2001--0110 Orthogonalys 11000-0111 11010-1100 0111110011 0001100100 2001--0111 Taeniogonalos 11000-0111 11010-1100 0111110011 0001100000 2001--0111 Ampulex 1101100100 11001-1010 0111111011 000?100100 2001--1112 Pison 00011-0100 01010-1000 0111110011 000110010? 2001--0111 Stangeella 1101100110 01010-1010 0111110011 0001100100 2001--0111 Cephalonomia 00011-0100 0100011010 0111111011 00??0--100 2001--0100 Chrysis 1100110100 0100001010 0111110001 0001100100 2001--0111 Plumarius 10011-0100 0100011010 01111110?1 0001110100 2001--0110 Ycaploca 10011-0100 0100001000 0111110011 00010--100 2001--1110 Aporus 1101100100 0101101001 0110111011 0001100100 2001--0110 Metapolybia 1201100100 0100001000 0110110011 0001100100 2001--0111 Rhopalosoma 1201100100 0100001001 0111111001 0001110100 2001--1110 Sapyga 1101110110 0100001001 0110110011 0001100000 2001--0110

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 120 L. VILHELMSEN ET AL.

APPENDIX 5 Continued

151 161 171 181 191

Chrysopa 0000110100 100-000001 0100000100 0110100010 010001---1 Micropterix 0000----00 100-000001 0100100000 000--0-0?0 000001---1 Panorpa 0000110000 100-000001 0100000110 0210000000 000001---0 Macroxyela 1000110000 100-001000 0100101000 010000-000 0-0001---0 Athalia 0000110100 100-101001 1000011000 011000-010 0-0001---0 Heteroperreyia 0000010000 100-001001 1000011110 0110000000 100001---0 Monoctenus 0000010000 100-001000 1000011000 011000-010 000001---0 Notofenusa 0000010000 100-001000 1000011000 011-00-010 000001---0 Onycholyda 1000101000 100-001000 0100101010 010000-000 0-0001---0 Cephus 0000101000 100-101000 0100111000 00--10-000 0-0101---0 Syntexis 0000010000 100-001000 0100000010 010-10-000 0-0001---0 Tremex 0000110000 100-001000 0100001000 011010-000 0-0001---0 Urocerus 0000110000 100-001000 0100001000 011010-000 0-0001---0 Xiphydria 0000101000 100-001000 1000011000 011010-000 0-0101---0 Orussobaius 0110110100 100-001000 1000010110 0100-00100 000101---0 Orussus 0110111100 100-001000 1000010110 0200000100 0-0101---0 Ceraphron ------1 1010001000 1000010110 0100?10110 0012110000 Lagynodes -----???-1 101000???? ?000010110 0100?10001 0?02101010 Megaspilus -----???-1 1010001000 1000010110 0200?10100 0012110000 Acanthochalcis 0001010100 0-10101001 ?011010110 0100-00010 0012110000 Cales ?10?----?0 1010??1101 1?00010110 0???-00010 000011???0 Cirrospilus 0000010100 0-10101001 1?00010110 0???-00010 0002111000 Cleonymus 0021010110 0-10101001 2010010110 0100-01010 0002100000 Coccophagus 0000110010 0-10000101 2?00010110 010?-00010 0002110000 Eurytoma 0111010010 0-10111101 2000010112 0100-00100 0002100000 Gonatocerus 0011010000 0-10111101 2?00010112 0----00110 0002110000 Megastigmus 0011010010 1011101101 2000010110 0100-01010 0002100000 Nasonia 00011??010 0-11111101 2000010110 0100-01100 0012101000 Spalangia 0101010000 0-10111101 2000010110 0?00-01011 0002101000 Anacharis 0110010000 0-10001001 1000010112 1100-00011 0002101000 Diplolepis 0001010000 0-10001001 1000010112 1200000011 0002100000 Ibalia 0010010000 0-10001001 1000010112 1100-01101 0002101000 Melanips 0000010000 0-10001001 1000010112 1100-00111 0002101000 Parnips 0010010000 0-11001001 1000010112 1100-00111 0002101000 Periclistus 0010010000 0-10001000 1000010112 1100-00101 0002101000 Aulacus 0110010200 1011001001 2000010110 0200000000 0012121000 Pristaulacus 0110011200 1011001001 2000010110 0200000000 0012121000 Gasteruption 0110010200 1011001001 2000010110 0211--1000 0102131000 Pseudofoenus 0110010200 1011001001 2000010110 0211--0000 0002131000 Brachygaster -110-10100 1010001001 20?0010110 0201-00000 ?102120110 Evania -200-11100 1110001001 2000010110 0201-00000 0102120110 Evaniella -200-11100 1010001001 2000010110 0201-00000 0102120110 Aleiodes 0021110000 0-11001001 1000010111 0200-01010 010201--10 Doryctes 0120-10100 0-10001001 1000010111 1201-01110 010201--10 Orgilus 0121110000 1010001001 1000010111 0101-00010 000201--10 Rhysipolis 0120110100 0-10001001 1000010111 0201-01110 011201--10 Urosigalphus 0120110100 1010001001 1000010111 0201-00110 0012110010 Wroughtonia 0121110100 1010001001 2001010111 0200-01110 0002110010 Dusona 0111110100 1011101001 2000010112 1200-00100 0002101010 Labena 0021010100 1-10001001 2000010112 0200-00100 0?02110010 Lymeon 0010010100 1011101001 2000010110 0201-00000 0012111010 Pimpla 0021010000 1010101001 1000010112 0200-00010 0002110010 Zagryphus 0121010100 1010101001 1000010112 1201000110 0012110010 Dinapsis -100-10000 100-001001 1000010110 020?-00100 000201--10

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 121

APPENDIX 5 Continued

151 161 171 181 191

Megalyra -110-10000 100-001001 2000010110 0200-00000 001201--00 Mymaromma -111-10100 0-1100---- -?00000112 0??0-00011 0012100000 Isostasius 0010010010 0-10001001 2000010112 0200-00111 0012100000 Proplatygaster 0000010110 0-10101001 2000010112 0200-00101 0002100010 Archaeoteleia 0011010100 1010101101 2000010110 0100-00001 0012110010 Sparasion 0121010100 1010001001 2000010110 0?00-00101 0012110010 Telenomus 0011010000 0-10000000 2000010110 0?00-00001 0112100000 Belyta 1010110100 1010001001 1000010112 1201000111 0012101000 Ismarus 0011010?00 0-10101001 1000010112 1???000111 0012100010 Pantolytomia 00101101-0 0-1000---- -000010112 1201000111 0112100000 Poecilospilus 0010110100 0-10001001 1000010112 1201000011 0002101000 Helorus 0110110100 1010001001 2000010112 1200000101 0002110010 Maaminga 0000010100 0-10101101 1000010110 0??0-00010 0?02110000 Monomachus 0000110100 1010101001 1000010112 1100-00000 0002101000 Pelecinus 0001010100 1010001001 1000010112 1200000101 0002100010 Austroserphus 0011110100 0-11001000 1000010112 1200000101 0002100010 Phaenoserphus 0111110100 0-10001000 2000010112 1100001101 0012101010 Proctotrupes 0111110100 0-10001000 2000010112 1200-01001 0002101010 Ropronia 0110110100 0-11001001 1000010110 1100000010 0002101010 Vanhornia 0101110100 1010001001 1000010112 1200001101 0002100010 Megischus 0111110000 110-001000 2011010110 0211000000 100201--00 Schlettererius 0110110000 110-001000 0011010110 0211000000 110201--00 Orthogonalys 0110-01000 1010001001 2000011110 0200001101 010201--10 Taeniogonalos 0011-01000 1010001001 2000011110 0200-00001 010201--10 Ampulex -110-10100 1110101001 2000010110 0101-01100 0112111010 Pison -120-10100 101000101- 2000010110 0101-00001 000201--10 Stangeella -120-10100 101000101- 2000010110 0201-00001 0002101010 Cephalonomia 0211010200 0-00101101 1000000110 00---00110 0012110010 Chrysis 0111010000 1010101001 1000010110 1101-00100 000201--10 Plumarius 0001010000 1010101001 1000010110 0110000000 0002110010 Ycaploca 0100110100 1010001001 1000010110 0101000000 000201--10 Aporus 0121010100 1110001000 2000010110 0201-00000 000201--10 Metapolybia -120-10100 1010001001 2000010110 0201-00001 000201--10 Rhopalosoma 0110101000 1011001000 1000010110 0201000000 000201--10 Sapyga 0100011000 1010001000 2000010110 0201000000 000201--10

201 211 221 231 241

Chrysopa 00--000000 ?????????? ?????????? ?????????? ?????????? Micropterix 00--000000 ?????????? ?????????? ?????????? ?????????? Panorpa 00--000000 ?????????? ?????????? ?????????? ?????????? Macroxyela 00--000000 0010000-10 1111110011 1101001101 1100101111 Athalia 00--000000 0010000-01 1111010111 0101000001 1100101110 Heteroperreyia 00--000000 ??????2??? ?????????? ?????????? ?????????? Monoctenus 00--000000 ??????0??? ?????1???? ?????????? ?????????? Notofenusa 00--000000 ??????2??? ?????????? ?????????? ?????????? Onycholyda 00--000000 0010001-10 1111110011 0101001111 1100101111 Cephus 00--000000 0010000-00 1111000011 110101011? 1100101111 Syntexis 00--000000 ??????0??? ?????0?0?? ?????????? ?????????1 Tremex 00--000000 ??????0??? ?????????? ?????????? ?????????? Urocerus 00--000000 ??????0??? ?????0?0?? ?????????? ?????????1 Xiphydria 00--000000 0010000-00 101-000011 0101010000 1010101111 Orussobaius 00--000001 ?????????? ?????????? ?????????? ?????????? Orussus 00--000001 0010000-00 1011100010 0100000000 1100?01111

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 122 L. VILHELMSEN ET AL.

APPENDIX 5 Continued

201 211 221 231 241

Ceraphron 100-100010 ??????2??? ?????????? ?????????? ?????????? Lagynodes 100-100011 ??????2??? ?????????? ?????????? ?????????? Megaspilus 100-100011 0001002011 1000001101 0110010000 0010000?00 Acanthochalcis 1110000000 ?????????? ?????????? ?????????? ?????????? Cales ?0??00??00 ?????????? ?????????? ?????????? ?????????? Cirrospilus 11100?10-- ??????0??? ?????????? ?????????? ?????????? Cleonymus 1110000000 ?????????? ?????????? ?????????? ?????????? Coccophagus 000-001010 ?????????? ?????????? ?????????? ?????????? Eurytoma 1110100011 ?????????? ?????????? ?????????? ?????????? Gonatocerus 1110000000 0100000-10 0000000-00 0110011001 0011000?00 Megastigmus 10101010-- 0100000-10 1000000300 0110011001 0011000?00 Nasonia 10100010-- ?????????? ?????????? ?????????? ?????????? Spalangia 11100?0001 0100000-10 1000000300 0110011001 1011000?00 Anacharis ?????????? ??????2??? ?????????? ?????????? ?????????? Diplolepis 1010100010 0100002010 1100000101 0000010000 1010001000 Ibalia 1110000000 0100002010 1100000101 0000010000 1010001000 Melanips ?????????? ??????2??? ?????????? ?????????? ?????????? Parnips 1010100010 ??????2??? ?????????? ?????????? ?????????? Periclistus 1010100010 ??????2??? ?????????? ?????????? ?????????? Aulacus 000-000000 ??????2??? ?????????? ?????????? ?????????? Pristaulacus 000-000000 1001002110 11010001?0 0000011000 1010001000 Gasteruption 110-000000 ?????????? ?????????? ?????????? ?????????? Pseudofoenus 100-000000 1001002110 11010001?0 0000011000 1010001000 Brachygaster 1110000010 1101002110 1101000100 0000010000 1010011000 Evania 1110000010 1100002110 010?000100 0000011000 1010011000 Evaniella 1110000010 1101002110 1101000100 0000010000 1010011000 Aleiodes 0011100101 ??????2??? ?????????? ?????????? ?????????? Doryctes 0011000101 ?001002000 1000101110 0000010000 1011001000 Orgilus 0011000100 ??????2??? ?????????? ?????????? ?????????? Rhysipolis 0011100100 ??????2??? ?????????? ?????????? ?????????? Urosigalphus 1011100100 ?201002010 10001011?0 0001010000 1010001000 Wroughtonia 0011000100 ??????2??? ?????????? ?????????? ?????????? Dusona 1111000001 ??????2??? ?????????? ?????????? ?????????? Labena 0010000100 ??????2??? ?????????? ?????????? ?????????? Lymeon 1011000000 ??????2??? ?????????? ?????????? ?????????? Pimpla 0011000100 ??????2??? ?????????? ?????????? ?????????? Zagryphus 001?000100 ??????2??? ?????????? ?????????? ?????????? Dinapsis 0010000001 ?????????? ?????????? ?????????? ?????????? Megalyra 0010000001 0101102100 0000001100 0100011000 1010001000 Mymaromma 110-1?0011 ?????????? ?????????? ?????????? ?????????? Isostasius 100-100010 ?????????? ?????????? ?????????? ?????????? Proplatygaster 10101?0010 ?????????? ?????????? ?????????? ?????????? Archaeoteleia 00101?0010 0001112000 0000001100 0000011000 101101?000 Sparasion 0011100011 0100112110 000?001100 0000011000 1011011000 Telenomus 000-100010 0000112110 0000001100 0000011000 1011011000 Belyta 1110100010 0200002010 0000?00101 0010010000 1011001100 Ismarus 1110100010 ??????2??? ?????????? ?????????? ?????????? Pantolytomia 1110100010 ?????????? ?????????? ?????????? ?????????? Poecilospilus 1110100010 0100002000 0000100101 0010010000 1011001100 Helorus 1110100000 1200002010 1000100100 0001011000 1011001000 Maaminga 1100000000 ?????????? ?????????? ?????????? ?????????? Monomachus 1110100010 0100000-10 1000100101 0001011000 1011001100 Pelecinus 1110100010 1100002110 10001002?0 0000010000 1011011000 Austroserphus 1110000010 ??????2??? ?????????? ?????????? ??????????

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 123

APPENDIX 5 Continued

201 211 221 231 241

Phaenoserphus ?????????? ??????2??? ?????????? ?????????? ?????????? Proctotrupes 1?10100010 1100002010 1000100200 0001011000 1011011000 Ropronia 1110100000 0100002110 1000?00?00 0000011000 1011011000 Vanhornia 0010100011 1200012010 1000101?01 0000011000 1011011000 Megischus 11101?0000 1000000-10 0100100?00 0010011000 101000000? Schlettererius 0110100001 ??????0??? ?????????? ?????????? ?????????? Orthogonalys 0010000000 1101002010 1101000100 0000011000 1010001000 Taeniogonalos 0010000000 1101002010 1101000100 0000011000 1010001000 Ampulex 1011010010 ?????????? ?????????? ?????????? ?????????? Pison 0011010000 0000001-10 1101100100 0000111000 1010011000 Stangeella 1111000010 ??????1??? ?????????? ?????????? ?????????? Cephalonomia 0011010000 ??????0??? ?????????? ?????????? ?????????? Chrysis 0011000000 0000000-10 0100000300 0000011001 ?110001100 Plumarius 0011010000 0000000-10 0?00000-?0 0000011001 ?110011100 Ycaploca 0011010001 ??????0??? ?????????? ?????????? ?????????? Aporus 0011000011 ?????????? ?????????? ?????????? ?????????? Metapolybia 1011010000 ??????2??? ?????????? ?????????? ?????????? Rhopalosoma 0011000010 ?????????? ?????????? ?????????? ?????????? Sapyga 0011010010 1000001-10 ?101?00-00 0000111001 ?110001100

251 261 271

Chrysopa ?????????? ?????????? ??? Micropterix ?????????? ?????????? ??? Panorpa ?????????? ?????????? ??? Macroxyela 1111111001 0111100000 110 Athalia 1111010100 0111100000 110 Heteroperreyia ?????????? ?????????? ??? Monoctenus ?????????? ?????????? ??? Notofenusa ?????????? ?????????? ??? Onycholyda 1111101101 0111100000 110 Cephus 0111111001 0111100100 110 Syntexis 1????????? ?????????? ??? Tremex ?????????? ?????????? ??? Urocerus 0????????? ?????????? ??? Xiphydria 01?1101001 0011000?00 110 Orussobaius ?????????? ?????????? ??? Orussus 00-1001101 001?000100 110 Ceraphron ?????????? ?????????? ??? Lagynodes ?????????? ?????????? ??? Megaspilus 01?0010010 0010000000 010 Acanthochalcis ?????????? ?????????? ??? Cales ?????????? ?????????? ??? Cirrospilus ?????????? ?????????? ??? Cleonymus ?????????? ?????????? ??? Coccophagus ?????????? ?????????? ??? Eurytoma ?????????? ?????????? ??? Gonatocerus 00-0000100 000??00000 010 Megastigmus 00-0000100 000??00000 010 Nasonia ?????????? ?????????? ??? Spalangia 00-0000100 000??00000 010 Anacharis ?????????? ?????????? ??? Diplolepis 0101100100 011??00000 000 Ibalia 0101100100 1011000000 000

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 124 L. VILHELMSEN ET AL.

APPENDIX 5 Continued

251 261 271

Melanips ?????????? ?????????? ??? Parnips ?????????? ?????????? ??? Periclistus ?????????? ?????????? ??? Aulacus ?????????? ?????????? ??? Pristaulacus 0111000000 1010000000 011 Gasteruption ?????????? ?????????? ??? Pseudofoenus 0111000000 1010000000 011 Brachygaster 0110000000 1110000001 012 Evania 0110000000 1110000001 012 Evaniella 0110000000 1110000001 012 Aleiodes ?????????? ?????????? ??? Doryctes 00-0000001 001??01000 010 Orgilus ?????????? ?????????? ??? Rhysipolis ?????????? ?????????? ??? Urosigalphus 00-0000001 001??01000 010 Wroughtonia ?????????? ?????????? ??? Dusona ?????????? ?????????? ??? Labena ?????????? ?????????? ??? Lymeon ?????????? ?????????? ??? Pimpla ?????????? ?????????? ??? Zagryphus ?????????? ?????????? ??? Dinapsis ?????????? ?????????? ??? Megalyra 00-0000010 0010000001 010 Mymaromma ?????????? ?????????? ??? Isostasius ?????????? ?????????? ??? Proplatygaster ?????????? ?????????? ??? Archaeoteleia 00-0000100 0010000000 010 Sparasion 00-0000000 0010000000 010 Telenomus 00-0000100 0010000000 010 Belyta 00-0000100 0010000000 010 Ismarus ?????????? ?????????? ??? Pantolytomia ?????????? ?????????? ??? Poecilospilus 00-0000000 0010000000 010 Helorus 0100000100 001??00000 010 Maaminga ?????????? ?????????? ??? Monomachus 0100000100 0010000000 010 Pelecinus 00-0000100 0010010000 010 Austroserphus ?????????? ?????????? ??? Phaenoserphus ?????????? ?????????? ??? Proctotrupes 00-0000100 0010010000 010 Ropronia 0100000100 001??00000 010 Vanhornia 00-0000100 001??10000 010 Megischus 00-0000000 0010000000 000 Schlettererius ?????????? ?????????? ??? Orthogonalys 00-0000000 1010000000 010 Taeniogonalos 00-0000000 1010000000 010 Ampulex ?????????? ?????????? ??? Pison 01?1000000 0010001010 010 Stangeella ?????????? ?????????? ??? Cephalonomia ?????????? ?????????? ??? Chrysis 00-0000000 1010001010 010 Plumarius 0101000000 1110001010 010 Ycaploca ?????????? ?????????? ??? Aporus ?????????? ?????????? ??? Metapolybia ?????????? ?????????? ??? Rhopalosoma ?????????? ?????????? ??? Sapyga 0101100000 1010001010 010

?, unknown; -, inapplicable. Matrix is available from the senior author on request.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 125

Figure 1. Prothorax and procoxa of Taeniogonalos gundlachii (Trigonalidae). A, prothorax and procoxa, posterior view; B, pronotum, posterior view; C, right procoxa, median view; D, propectus, dorsal view; E, propectus and procoxa, posterolateral view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 126 L. VILHELMSEN ET AL.

Figure 2. Pro- and mesothorax of Trigonaloidea. A, Taeniogonalos gundlachii, mesopectus, posterior view; B, T. gun- dlachii, mesopleuron, median view; C, Orthogonalys pulchella, pro- and mesothorax, median view; D, T. gundlachii, propleuron and procoxa, median view (anterior to the left); E, T. gundlachii, mesoscutum, anterior view. Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 127

Figure 3. Metathorax–propodeum complex of Taeniogonalos gundlachii (Trigonalidae). A, anterior view; B, C, median view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 128 L. VILHELMSEN ET AL.

Figure 4. Pro- and mesothorax of Megaspilus fuscipennis (Megaspilidae). A, pronotum, median view; B, propectus, lateral view; C, propectus, posterolateral view; D, propectus, dorsal view; E, F, pro- and mesothorax, median view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 129

Figure 5. Mesopectus and metathorax–propodeum complex of Megaspilus fuscipennis (Megaspilidae). A, mesopectus and metathorax–propodeum complex, median view; B, metathorax–propodeum complex, anterior view; C, mesopectus and metathorax–propodeum complex, median view; D, metathorax–propodeum complex, median view; E, mesopectus and metathorax–propodeum complex, median view; F, metathorax–propodeum complex, median view; G, metacoxa, antero- lateral view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 130 L. VILHELMSEN ET AL.

Figure 6. Pro- and mesothorax of Chalcidoidea. A, Spalangia nigripes (Pteromalidae), pronotum, posteromedian view; B–G, Megastigmus transvaalensis (Torymidae): B, pronotum, posteromedian view; C, propectus, posterior view; D, prepectus, median view; E, mesopleuron, median view; F, mesopectus, dorsal view; G, mesopectus and mesonotum, posterior view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 131

Figure 7. Metathorax–propodeum complex of Chalcidoidea. A, B, Megastigmus transvaalensis (Torymidae), median view; C, Spalangia nigripes (Pteromalidae), anteromedian view; D, E, M. transvaalensis, dorsal view; F, median view; G, Ormyrus sp. (Ormyridae), median view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 132 L. VILHELMSEN ET AL.

Figure 8. Head, pro- and mesothorax of Cynipoidea. A–C, Andricus spp. (Cynipidae): A, head and propectus, posterior view; B, pronotum, median view; C, propectus, posterior view; D, E, Diplolepis rosae (Cynipidae): D, mesopectus posterior view; E, mesopectus median view; F, Andricus sp., mesopectus, median view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 133

Figure 9. Metathorax-propodeum complex of Cynipoidea. A, Diplolepis rosae (Cynipidae), anterior view; B, C, Andricus sternlichti (Cynipidae) B, metathorax–propodeum complex, median view; C, metanotum, median view; D, E, D. rosae:D, dorsomedian view; E, median view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 134 L. VILHELMSEN ET AL.

Figure 10. Pro- and mesothorax of Evaniidae. A, B, Evaniella semaeoda, A, prothorax, posterior view; B, propectus, dorsal view; C–D, Evania albofascialis: C, profurca and prosternum, anterior view; D, mesopleuron, median view; E, mesofurca, anterior view; F, E. semaeoda, mesopleuron, median view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 135

Figure 11. Pro- and mesothorax of Evanioidea. A–C, Pristaulacus strangaliae (Aulacidae): A, B, propectus posterolateral view; C, mesopectus, median view; D, E, Pseudofoenus spp. (Gasteruptiidae), pro- and mesopectus, median view; F–H, Pr. strangaliae: F, mesopectus, posterior view; G, propleuron, median view; H, pronotum and mesopleuron, median view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 136 L. VILHELMSEN ET AL.

Figure 12. Metathorax–propodeum complex of Evanioidea. A, B, Evaniella semaeoda (Evaniidae): A, anterior view; B, median view; C–E: Evania albofascialis, median view; F, Pristaulacus strangaliae (Aulacidae), median view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 137

Figure 13. Mesosoma of Evanioidea. A, Pseudofoenus sp. (Gasteruptiidae), metathorax–propodeum complex, anterior view; B, Pristaulacus strangaliae (Aulacidae), metathorax–propodeum complex, anterior view; C, Pseudofoenus sp., mesothorax and metathorax–propodeum complex, median view; D, E, Pr. strangaliae, metathorax–propodeum complex, median view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 138 L. VILHELMSEN ET AL.

Figure 14. Mesosoma of Ichneumonoidea. A, Doryctes erythromelas (Braconidae), propleuron and procoxa, median view; B, Urosigalphus sp. (Braconidae), propleuron, median view; C, Urosigalphus sp., pronotum, posterior view; D, Urosigal- phus sp., mesopectus, posterior view; E, F, D. erythromelas, mesosoma, median view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 139

Figure 15. Mesosoma of Ichneumonoidea. A, metathorax–propodeum complex of Urosigalphus sp. (Braconidae), median view; B, C, metathorax–propodeum complex of Doryctes erythromelas (Braconidae), median view; D, anterior and posterior mesonotometanotal muscles of Mesochorus sp. (Ichneumonidae), ventral view; E, F, metathorax–propodeum complex of Urosigalphus sp.: E, anterior view; F, anteromedian view; G, mesopectus and metathorax–propodeum complex of D. erythromelas, median view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 140 L. VILHELMSEN ET AL.

Figure 16. Pro- and mesothorax of Megalyra fasciipennis (Megalyridae). A, propectus, dorsal view; B, propectus posteroventral view; C, pronotum, median view, D, propectus, dorsal view; E, F, propectus, posterolateral view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 141

Figure 17. Pro- and mesothorax of Megalyra fasciipennis (Megalyridae). A, depressors of the mesotrochanter, median view; B, pronotum and mesopleuron, median view; C, prothorax and mesopectus, median view; D, ventral part of the mesopectus, dorsomedian view; E, mesosoma, dorsal view (anterior to the top); F, mesosoma, dorsal view (anterior to the top). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 142 L. VILHELMSEN ET AL.

Figure 18. Mesosoma and second abdominal sternite of Megalyra fasciipennis (Megalyridae). A–E, mesopectus, metathorax–propodeum complex and metacoxa, median view; F, G, second abdominal sternite, lateral view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 143

Figure 19. Pro- and mesothorax of Proctotrupoidea. A, Pelecinus polyturator (Pelecinidae), prothorax, posteromedian view; B, Helorus spp. (Heloridae), prothorax, posterior view; C, Vanhornia eucnemidarum (Vanhorniidae), pronotum, median view; D, Ropronia garmani (Roproniidae), pronotum, median view; E, Belyta spp. (Diapriidae), prothorax and mesothorax, median view; F, Proctotrupes sp. (Proctotrupidae), pronotum, posterolateral view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 144 L. VILHELMSEN ET AL.

Figure 20. Pro- and mesothorax of Proctotrupoidea. A, B, Monomachus antipodalis (Monomachidae): A, pronotum, median view; B, prothorax, median view; C, Pelecinus polyturator (Pelecinidae), propectus posterolateral view; D, Helorus spp. (Heloridae), propectus median view; E, F, M. antipodalis, propectus and procoxa posterolateral view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 145

Figure 21. Pro- and mesothorax of Proctotrupoidea. A, Pelecinus polyturator (Pelecinidae), pronotum and mesopleuron, median view; B, Helorus sp. (Heloridae), pronotum and mesopleuron, median view; C, D, Pelecinus sp.: C, mesopectus, posterior view; D, ventral part of the mesopectus, dorsolateral view; E, Monomachus sp. (Monomachidae), ventral part of the mesopectus, lateral view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 146 L. VILHELMSEN ET AL.

Figure 22. Mesonotum and metathorax–propodeum complex of Platygastroidea and Proctotrupoidea. A, metathorax– propodeum complex of Psix sp. (Scelionidae), anterior view; B, metathorax–propodeum complex of Helorus sp. (Heloridae), anterior view; C, mesonotum of Monomachus antipodalis (Monomachidae), ventral view; D, E, metathorax–propodeum complex of M. antipodalis, median view; F, G, metathorax–propodeum complex of Helorus sp., median view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 147

Figure 23. Metathorax–propodeum complex and petiole of Proctotrupoidea. A–E, Proctotrupes sp. (Proctotrupidae): A, metathorax–propodeum complex, median view; B, C, petiole, dorsal view; D, metaphragmo–second abdominal tergal muscle, dorsal view; E, petiole, anterior view; F, Pelecinus polyturator (Pelecinidae), petiole, lateral view; G, H, Proctotrupes sp., metanotum, median view; I, Pe. polyturator, depressor muscles of metatrochanter, lateral view (anterior to the left; dorsal to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 148 L. VILHELMSEN ET AL.

Figure 24. Metathorax–propodeum complex of Proctotrupoidea, pro- and mesothorax of Stephanoidea. A, B, Psilus sp. (Diapriidae), metathorax–propodeum complex, lateral view; C–G, Megischus spp. (Stephanidae): C, propectus, median view; D, E, propectus posterolateral view; F, G, mesopectus, median view (anterior to the left). Abbreviations in Appendices 2 and 3. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 149

Figure 25. Metathorax–propodeum complex of Stephanoidea and pro-, mesothorax, and procoxa of Apoidea. A–C, Megischus sp. (Stephanidae), metathorax–propodeum complex, median view; D–H, Pison chilense (Crabronidae): D, procoxa, median view; E, propectus dorsal view; F, propectus posterior view; G, mesopleuron, median view; H, propectus, posterior view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 150 L. VILHELMSEN ET AL.

Figure 26. Metathorax–propodeum complex and mesophragma of Apoidea. A–D, Pison chilense (Crabronidae): A, metathorax–propodeum complex, median view; B, metathorax–propodeum complex and mesofurca, anterior view; C, metathorax–propodeum complex, anterior view; D, metathorax–propodeum complex, median view (anterior to the left); E, F, Apis mellifera (Apidae): E, propodeum and articulating condyle of T2, anterior view; F, mesophragma, posterior view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 151

Figure 27. Pro- and mesothorax of Chrysidoidea. A, Chrysis sp. (Chrysididae), pronotum, posterior view; B, Plumarius sp. (Plumaridae), pronotum, posterior view; C, Chrysis sp. mesopleuron and prepectus, median view; D, Chrysis sp., propectus, posterolateral view; E, Plumarius sp., propectus, median view; F, Chrysis sp., propectus, posterior view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 152 L. VILHELMSEN ET AL.

Figure 28. Mesothorax and metathorax–propodeum complex of Chrysidoidea. A, B, Plumarius sp. (Plumaridae): A, mesofurca, anterior view; B, mesopectus, median view; C, Chrysis sp. (Chrysididae), metathorax–propodeum complex, median view; D, E, Bethylus sp. (Bethylidae), metathorax–propodeum complex: D, anterior view, E, median view; F, G: Plumarius sp., metathorax–propodeum complex: F, lateral view; G, anterior view; H, Chrysis sp., metathorax–propodeum complex, median view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 153

Figure 29. Mesosoma of Vespoidea. A–F, Sapyga pumila (Sapygidae): A, mesopectus, posterior view; B, mesopectus, median view; C, propectus and procoxa, posterior view; D, metathorax–propodeum complex, anterior view; E, metathorax– propodeum complex, median view; F, G, Vespula sp. (Vespidae): F, metapectus, dorsal view; G, metanotum ventral view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 154 L. VILHELMSEN ET AL.

Figure 30. Prothorax of non-apocritan Hymenoptera. A, Orussus abietinus (Orussidae), prothorax, median view; B–C, Cephus pygmeus (Cephidae): B, prothorax, median view, C, prothorax, posterior view; D, propectus, posterior view; E, Athalia rosae (Tenthredinidae), propectus, posterolateral view; F, Xiphydria camelus (Xiphydriidae), propectus, median view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 155

Figure 31. Mesothorax of non-apocritan Hymenoptera. A, Cephus pygmeus (Cephidae), mesopleuron, median view; B, Macroxyela ferruginea (Xyelidae), mesopleuron, median view; C, Xiphydria camelus (Xiphydriidae), mesopleuron, median view; D, Athalia rosae (Tenthredinidae), mesopleuron, median view; E–G, Orussus abietinus (Orussidae): E, F, mesopleu- ron, median view, G, mesofurca and mesodiscrimenal lamella, lateral view; H, X. camelus, depressor of the left mesotrochanter, anterior view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 156 L. VILHELMSEN ET AL.

Figure 32. Mesothorax of non-apocritan Hymenoptera. A, Athalia rosae (Tenthredinidae), mesofurca, mesodiscrimenal lamella and mesocoxa, anterior view; B, C, Cephus pygmeus (Cephidae), mesothorax, median view; D, Xiphydria camelus (Xiphydriidae), mesothorax, anterior view; E, Macroxyela ferruginea (Xyelidae), mesothorax, posterior view. Abbreviations in Appendices 2 and 3. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 157

Figure 33. Metathorax–propodeum complex of non-apocritan Hymenoptera. A–C, Macroxyela ferruginea (Xyelidae), metapectus, metanotum, and metacoxa, median view; D–I, Onycholyda luteicornis (Pamphiliidae): D, metathorax and metacoxa, anteromedian view; E–G, metathorax and metacoxa, median view; H, metanotum, dorsal view, I, metanotum, posterior view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 158 L. VILHELMSEN ET AL.

Figure 34. Metathorax–propodeum complex of non-apocritan Hymenoptera. A–D, Cephus pygmeus (Cephidae), median view; E, Xiphydria prolongata (Xiphydriidae), posteromedian view; F, Xiphydria camelus, anterior view; G, X. prolongata, median view; H, I, Orussus abietinus (Orussidae), median view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 159

Figure 35. Metathorax–propodeum complex of Orussus abietinus (Orussidae). A, metanotum, posterolateral view; B–D, metathorax–propodeum complex, median view; E, metanotum, dorsal view (anterior to the left). Abbreviations in Appendices 2 and 3.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 160 L. VILHELMSEN ET AL.

A N1c B

N1c

N1s

100 µm 100 µm

C D epc

N1c

adp

N1b

100 µm 100 µm

E F notch

N1a

apr

oma

mvp psa N1b 100 µm 100 µm

Figure 36. Pronotum. A–D, anterior view. A, Sapyga pumila (Sapygidae); B, Evaniella semaeoda (Evaniidae); C, Periclistus brandtii (Cynipidae); D, Archaeoteleia mellea (Scelionidae); E–F, posterior view: E, Ceraphron sp. (Ceraph- ronidae), F, Proctotrupes sp. (Proctotrupidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 161

A B

N1c

N1l N1s pre

100 µm 100 µm

C D

sp1 notch N1c N1l N1s N1s sp1

100 µm 100 µm

E F

sp1 N1s

sp1 ppi N1c N1s

100 µm 100 µm

Figure 37. Pronotum, lateral view, anterior to the left. A, Schlettererius cinctipes (Stephanidae); B, Gasteruption sp. (Gasteruptiidae); C, Megalyra fasciipennis (Megalyridae); D, Monomachus antipodalis (Monomachidae); E, Anacharis sp. (Figitidae); F, Poecilospilus sp. (Diapriidae). Abbreviations in Appendix 2. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 162 L. VILHELMSEN ET AL.

A B N1l

ppi pre

sp1 100 µm 100 µm

C D sp1

sp1

projection oma

ppi

100 µm 100 µm

Figure 38. Prepectus, pronotum, anterior thoracic spiracle. A, Megastigmus transvaalensis (Torymidae), prepectus and anterior mesopectus, ventral view; B, Taeniogonalos gundlachii (Trigonalidae), pronotum, posterior view; C, Orgilus gracilis (Braconidae), pronotum and anterior mesopectus, lateral view, (anterior to the left); D, Diplolepis rosae (Cynipidae), pronotum, posterior view. Abbreviations in Appendix 2. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 163

A B

pl1 pl1

s1 s1

pss epl

cx1 cx1 C D pl1

pl1

s1 s1

lss dc1 cx1 cx1

Figure 39. Propectus, ventral view, anterior to the top. A, Ycaploca evansi (Scolebythidae); B, Evaniella semaeoda (Evaniidae); C, Coccophagus rusti (Aphelinidae); D, Gasteruption sp. (Gasteruptiidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 164 L. VILHELMSEN ET AL.

A B cvpr cvpr

pl1c

10 µm 10 µm C D

fu1a

ppa

cva dlfu1 fu1a

10 µm 100 µm

E F

cva pl1

dcl1

apa

fu1a

ppa epl

100 µm 100 µm

Figure 40. Propectus. A–B, anterior portion, ventral view: A, Anacharis sp. (Figitidae); B, Coccophagus rusti (Aphelin- idae); C, Cales noacki (Aphelinidae), anterodorsal view; D–F, dorsal view, anterior to the top: D, Proctotrupes sp. (Proctotrupidae); E, Pseudofoenus sp. (Gasteruptiidae); F, Zagryphus nasutus (Ichneumonidae). Abbreviations in Appen- dix 2. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 165

A B

ppa

apa

ppa

fu1b dlfu1

100 µm 100 µm

C ppa D

fu1a ppa fu1b

fu1a

fu1p pss epl 100 µm 100 µm

E ppa F fu1b ppa fu1a vlfu1 fu1a

s1i

s1 fu1p

10 µm 100 µm

Figure 41. Propectus. A–B, posterior portion, dorsal view, anterior to the top: A, Schlettererius cinctipes (Stephanidae); B, Megalyra fasciipennis (Megalyridae); C–F, posterior view: C, Dusona egregia (Ichneumonidae); D, Gasteruption sp. (Gasteruptiidae); E, Melanips sp. (Figitidae); F, Archaeoteleia mellea (Scelionidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 166 L. VILHELMSEN ET AL.

A B pcx1

pcx1

100 µm

100 µm

C carina D

100 µm 100 µm

Figure 42. Fore leg, lateral view. A, Aleiodes terminalis (Braconidae); B, Acanthochalcis nigricans (Chalcididae); C, Periclistus brandtii (Cynipidae); D, Rhopalosoma nearcticum (Rhopalosomatidae). Abbreviation in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 167

A B

ams ph1

ph1

100 µm 100 µm C D

ph1

100 µm 100 µm

Figure 43. Prophragma, anterior view. A, Monomachus antipodalis (Monomachidae); B, Phaenoserphus sp. (Proctotrupi- dae); C, Gasteruption sp. (Gasteruptiidae); D, Cleonymus sp. (Pteromalidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 168 L. VILHELMSEN ET AL.

A B aas

mms not not

par par psc

tsa psc tsa

100 µm 100 µm

C D

mms 100 µm

tsa not

100 µm tsa E

F

mmsr notr

tsa tsa tsr ssr ssr

100 µm 100 µm

Figure 44. Mesoscutum, anterior to the top. A–D, dorsal view: A, Schlettererius cinctipes (Stephanidae); B, Pseudofoenus sp. (Gasteruptiidae); C, Ceraphron sp. (Ceraphronidae); D, Eurytoma gigantea (Eurytomidae); E–F, ventral view: E, Megalyra fasciipennis (Megalyridae); F, Orthogonalys pulchella (Trigonalidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 169

A B ax ax sss scl2 sss axc

scl2 frl fr

100 µm 100 µm

C D axc ax

scl2 sss axc scl2 msa msa

frl? 100 µm frl? 10 µm E F ax ax sss sss sulcus msa scl2 scl2 msa

100 µm 100 µm

Figure 45. Mesoscutellum, dorsal view, anterior to the top. A, Ceraphron sp. (Ceraphronidae); B, Megastigmus trans- vaalensis (Torymidae); C, Monomachus antipodalis (Monomachidae); D, Maaminga rangi (Maamingidae); E, Periclistus brandtii (Cynipidae); F, Pseudofoenus sp. (Gasteruptiidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 170 L. VILHELMSEN ET AL.

axph A B tsr

tsr

ssr ssr fene- strum frl?

100 µm 10 µm

C D

ssr ridge ssr

100 µm 100 µm

Figure 46. Mesoscutellum, ventral view, anterior to the top. A, Acanthochalcis nigricans (Chalcididae); B, Maaminga rangi (Maamingidae); C, Metapolybia cingulata (Vespidae); D, Parnips nigripes (Figitidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 171

A B

gap

ph2

ph2

100 µm 1 mm

C D scl2

ph2p

ph2p

ph2 ph2

100 µm 100 µm

E ph2a F ph2l ph2l

ph2a ph2r flange ph2 ph2

100 µm 100 µm

Figure 47. Mesophragma. A, B, D, dorsal view; C, E, F, ventral view; anterior to the top. A, Acanthochalcis nigricans (Chalcididae); B, Pison chilense (Crabronidae); C, Monomachus antipodalis (Monomachidae); D, Zagryphus nasutus (Ichneumonidae); E, Pseudofoenus sp. (Gasteruptiidae); F, Anacharis sp. (Figitidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 172 L. VILHELMSEN ET AL.

A psc B psc tg axc N2 pax tg

N1l pl2 sp1 acs

10 µm 100 µm C D N2 psc tg axc

N1l

sms

sp2

100 µm sms 10 µm

E F

basalare basalare basalar tendon baa

pre

100 µm 10 µm

Figure 48. Mesopectus, pronotum, mesonotum. A–D, lateral view, anterior to the left: A, Periclistus brandtii (Cynipidae); B, Pison chilense (Crabronidae); C, Evaniella semaeoda (Evaniidae); D, Rhopalosoma nearcticum (Rhopalosomatidae); E–F, dorsal view, anterior to the left: E, Megischus sp. (Stephanidae); F, Nasonia vitripennis (Pteromalidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 173

A sp2 B

mepr mepr

100 µm 100 µm C D mepr

mpr mpa

10 µm 100 µm

E mepr F

sp1

mpa pl2t pl2

pl2

100 µm 100 µm

Figure 49. Mesopectus. A–B, posterodorsal view, anterior to the right: A, Pimpla aequalis (Ichneumonidae); B, Tae- niogonalos gundlachii (Trigonalidae); C, Coccophagus rusti (Aphelinidae), posteromedian view, anterior to the right; D, Ceraphron sp. (Ceraphronidae), anterolateral view, anterior to the right; E, Urosigalphus sp. (Braconidae), median view, anterior to the bottom; F, Anacharis sp. (Figitidae), lateral view anterior to the right. Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 174 L. VILHELMSEN ET AL.

A B

act

abc mepr dc2 fu2p

cx2f 100 µmompr 100 µm C D

pre

dc2 fu2p

100 µm 100 µm

Figure 50. Mesopectus, mesopostnotum, prepectus. A, Aporus niger (Pompilidae), median view (anterior to the right); B–D, ventral view, anterior to the top: B, Parnips nigripes (Figitidae); C, Megastigmus transvaalensis (Torymidae); D, Pantolytomyia ferruginea (Diapriidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 175

A B fu2p

cx2f cx2f sps

100 µm cx2ma 100 µm C D

cx2f fu2p fu2p

pmc

cx2ma cx2f

100 µm 100 µm

Figure 51. Mesopectus. A, Pseudofoenus sp. (Gasteruptiidae), dorsal view, anterior to the top; B–D, posteroventral view: B, Diplolepis rosae (Cynipidae); C, Acanthochalcis nigricans (Chalcididae); D, Poecilospilus sp. (Diapriidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 176 L. VILHELMSEN ET AL.

A B

fu2b

depression

fu2aa psa

100 µm fu2a C

projection 10 µm D

fu2b fu2b mepr msap dcl2 fu2a

100 µm 10 µm

Figure 52. Mesofurca, dorsal view. A, Eurytoma gigantea (Eurytomidae); B, Maaminga rangi (Maamingidae); C, Schlettererius cinctipes (Stephanidae); D, Telonomus podisi (Scelionidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 177

A B

median articulation

100 µm 10 µm C D

100 µm 100 µm

Figure 53. Mid leg, lateral view, proximal to the left. A, Pseudofoenus sp. (Gasteruptiidae); B, Pantolytomyia ferruginea (Diapriidae); C, Cephalonomia stephanoderis (Bethylidae); D, Proctotrupes sp. (Proctotrupidae).

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 178 L. VILHELMSEN ET AL.

A scl2 B scl2

N3

N3

C D

scl3 lap N3? ans ans map psp prp tpc

E scl3 F N3c

incurvation

ans

Figure 54. Metanotum. A, B, lateral view, anterior to the left: A, Anacharis sp. (Figitidae); B, Zagryphus nasutus (Ichneumonidae); C–F, dorsal view, anterior to the top: C, Z. nasutus;D,Ceraphron sp. (Ceraphronidae); E, Parnips nigripes (Figitidae); F, Ycaploca evansi (Scolebythidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 179

A B psp

psp

T1 T1 carina

cx3la

mtpi mtps pl3 pl3 cx3la

100 µm 100 µm C D

T1 mtps psp

T1 extension pl2+pl3 mtpi

cx3la

pl3 cx3la

cx3

100 µm 10 µm

Figure 55. Metapectus, propodeum, lateral view, anterior to the left. A, Dusona egregia (Ichneumonidae); B, Eurytoma gigantea (Eurytomidae); C, Anacharis sp. (Figitidae); D, Ceraphron sp. (Ceraphronidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 180 L. VILHELMSEN ET AL.

A B llmc cx3f cx2f tmc mlmc

pdf fu3p cx3f

C D

pcs fu3p fu3p tmc F pcs

E

lmp dc3 mlmc

cx3f

tmc pdf

Figure 56. Metapectus, ventral view, anterior to the top (except B). A, Megaspilus fuscipennis (Megaspilidae); B, Proctotrupes sp. (Proctotrupidae), anterior to the left; C, Eurytoma gigantea (Eurytomidae); D, Maaminga rangi (Maamingidae); E, Zagryphus nasutus (Ichneumonidae); F, Cephalonomia stephanoderis (Bethylidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 181

A B pdf

arn cx3la cx3la

cx3ma

cx3ma

C D

pdf cx3la

cx3ma cx3la

100 µm

Figure 57. Metacoxal foramina. A, Megischus sp. (Stephanidae); B, Pseudofoenus sp. (Gasteruptiidae); C, Eurytoma gigantea (Eurytomidae); D, Ceraphron sp. (Ceraphronidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 182 L. VILHELMSEN ET AL.

A B

ph3 ph3 ph3l ph3l mtpa mtpa fu3a

fu3a

pcr mlmc pcr llmc

C D

ph3 ph3 mtpa mtpa dlfu3 fa dcl3 fu3a fu3a mtpp

E F ph3

ph3

fu3aa mtpa fu3a fu3a+mtpa+pcr

Figure 58. Metathorax–propodeum complex, anterior view. A, Megischus sp. (Stephanidae); B, Pseudofoenus sp. (Gaster- uptiidae); C, Melanips sp. (Figitidae); D, Eurytoma gigantea (Eurytomidae); E, Sapyga pumila (Sapygidae); F, Pantoly- tomyia ferruginea (Diapriidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 183

A B

setae

C D fem3 cx3 fem3 spine

spine cx3

Figure 59. Hind leg, lateral view. A, Phaenoserphus sp. (Proctotrupidae); B, Eurytoma gigantea (Eurytomidae); C, Megischus sp. (Stephanidae); D, Acanthochalcis nigricans (Chalcididae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 184 L. VILHELMSEN ET AL.

A B

scl3

lap ans ans map psp

lpc tpc

pdf pdf C D

pdf ans ans

psp pdf

carina

arn

cx3f arn

Figure 60. Propodeum, dorsal view. A, Belyta sp. (Diapriidae); B, Sparasion formosum (Scelionidae); C, Pristaulacus strangaliae (Aulacidae); D, Gasteruption sp. (Gasteruptiidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 185

A psp B T1 T1 ans lap psp pl3

pl3

C D

Figure 61. Propodeum, lateral view, anterior to the left. A, B, lateral view: A, Megischus sp. (Stephanidae); B, Doryctes erythromelas (Braconidae); C, D, dorsal view: C, Sapyga pumila (Sapygidae); D, Pantolytomyia ferruginea (Diapriidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 186 L. VILHELMSEN ET AL.

A B

T1 tpc T1

pdf pdf T1b T1b cx3f cx3f

C D T1 T1 pdf pdf

T1t T1t

cx3f cx3f

Figure 62. Propodeum, posterior view. A, Ceraphron sp. (Ceraphronidae); B, Anacharis sp. (Figitidae); C, Ycaploca evansi (Scolebythidae); D, Orthogonalys pulchella (Trigonalidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 187

A B

incurvation

T1b T1b

C D

T1t

T1t T1b

E F

T1t

shelf

T1b

Figure 63. Propodeal foramen. A, Lagynodes sp. (Megaspilidae); B, Spilomicrus stigmaticalis (Diapriidae); C, Sparasion formosum (Scelionidae); D, Sapyga pumila (Sapygidae); E, Nasonia vitripennis (Pteromalidae); F, Brachygaster minuta (Evaniidae). A, ventral view; B–F, posterior view. Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 188 L. VILHELMSEN ET AL.

A B T2 T2 T2tc sulcus arc arc

S2

C D T2tc T2tc T2 T2

arc

S2 S2

S2tc

E F T2 T2

S2

S2

Figure 64. Petiole, anterior view. A, Ycaploca evansi (Scolebythidae); B, Rhysipolis sp. (Braconidae); C, Sparasion formosum (Scelionidae); D, Telenomus podisi (Scelionidae); E, Nasonia vitripennis (Pteromalidae); F, Coccophagus rusti (Aphelinidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 189

A B

arc arc T2tc

T2tc S2 S2

T2

CDseparation separation arc

arc

T2 S2 S2 T2

E F arc arc?

S2 T2

T2

Figure 65. Petiole, lateral view, anterior to the top, dorsal to the right. A, Megischus sp. (Stephanidae); B, Diplolepis rosae (Cynipidae); C, Orthogonalys pulchella (Trigonalidae); D, Doryctes erythromelas (Braconidae); E, Pseudofoenus sp. (Gasteruptiidae); F, Podagrion sp. (Torymidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 190 L. VILHELMSEN ET AL.

spa spa

T2 S2lc S2lc T2 S2 S2

membrane

spa

spa

S2tc

S2 membrane

arc

T2? S2

Figure 66. Petiole, ventral view, anterior to the top. A, Megalyra fasciipennis (Megalyridae); B, Doryctes erythromelas (Braconidae); C, Evaniella semaeoda (Evaniidae); D, Megastigmus transvaalensis (Torymidae); E, Gonatocerus morrilli (Mymaridae); F, Asaphes vulgaris (Pteromalidae). Abbreviations in Appendix 2.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 191

Chrysopa (NEU) Figure 67. Strict con- Micropterix (LEP) Panorpa (MEC) sensus of trees produced Macroxyela (Xye) by equal weights analy- Onycholyda (Pam) Athalia (Ten) sis. Bremer/jacknife Monoctenus (Dip) support values (the 4/72 TENTHREDINOIDEA 8/94 3 Heteroperreyia (Per) 1 Notofenusa (Ten) latter only displayed Syntexis (Ana) when above 50) below Tremex (Sir) branches. Monophyletic 2 9/99 Urocerus (Sir) Cephus (Cep) superfamilies coloured. 2 Xiphydria (Xip) Orussobaius (Oru) Abbreviations. Amp, 1 11/98 Orussus (Oru) ORUSSOIDEA Megischus (Ste) Ampulicidae; Ana, Ana- 12/99 7/95 Schlettererius (Ste) STEPHANOIDEA xyelidae; Aph, Aphelin- Aporus (Pom) Chrysis (Chy) idae; Aul, Aulacidae; Metapolybia (Ves) 19/100 Rhopalosoma (Rho) Bet, Bethylidae; Bra, Sapyga (Sap) Braconidae; Cep, Ceph- Ycaploca (Sco) Cephalonomia (Bet) idae; Cer, Ceraphro- 12/98 6/67 Plumarius (Plu) nidae; Cha, Chalcididae; Ampulex (Amp) Pison (Cra) Chy, Chrysididae; Cra, 1 APOIDEA Stangeella (Spe) Crabronidae; Cyn, Cyn- Dinapsis (Meg) MEGALYROIDEA 7/79 Megalyra (Meg) ipidae; Dia, Diapriidae; 8/76 Lagynodes (Mes) Dip, Diprionidae; Eul, 9/92 Ceraphron (Cer) CERAPHRONOIDEA 3 3/80 Megaspilus (Mes) Eulophidae; Eur, Eury- Aulacus (Aul) tomidae; Eva, Evani- Pristaulacus (Aul) 8/97 Gasteruption (Gas) idae; Fig, Figitidae; Gas, 9/95 Pseudofoenus (Gas) Gasteruptiidae; Hel, 3 Orthogonalys (Tri) 9/99 Taeniogonalos (Tri) TRIGONALOIDEA Heloridae; Iba, Ibali- 3 Evania (Eva) idae; Ich, Ichneumoni- 12/99 Brachygaster (Eva) 2 Evaniella (Eva) dae; LEP, Lepidoptera; Dusona (Ich) Mam, Maamingidae; Labena (Ich) Lymeon (Ich) MEC, Mecoptera; Meg, Pimpla (Ich) Megalyridae; Mes, Meg- 5/55 Zagryphus (Ich) 4 Orgilus (Bra) ICHNEUMONOIDEA aspilidae; Mom, My- Wroughtonia (Bra) marommatidae; Mon, 5/61 Urosigalphus (Bra) Aleiodes (Bra) Monomachidae; Mym, 3 Doryctes (Bra) 3/62 Rhysipolis (Bra) Mymaridae; NEU, Neu- Monomachus (Mon) roptera; Oru, Orussidae; Ropronia (Rop) Maaminga (Mam) Pam, Pamphilidae; Pel, 6/50 Mymaromma (Mom) Pelecinidae; Per, Per- Poecilospilus (Dia) Belyta (Dia) gidae; Pla, Platyga- 4/64 8/77 Pantolytomia (Dia) stridae; Plu, Plumari- Diplolepis (Cyn) Anacharis (Fig) dae; Pom, Pompilidae; 9/99 Ibalia (Iba) Pro, Proctotrupidae; Melanips (Fig) CYNIPOIDEA 7/78 Parnips (Fig) Pte, Pteromalidae; Rho, Periclistus (Cyn) Rhopalosomatidae; Rop, 4 Acanthochalcis (Cha) Cales (Aph) Roproniidae; Sap, Sapy- Cirrospilus (Eul) Cleonymus (Pte) gidae; Sce, Scelionidae; Coccophagus (Aph) Sco, Scolebythidae; Sir, 6/79 Eurytoma (Eur) CHALCIDOIDEA Gonatocerus (Mym) Siricidae; Spe, Sphe- Megastigmus (Tor) Nasonia (Pte) cidae; Ste, Stephanidae; Spalangia (Pte) Ten, Tenthredinidae; Ismarus (Dia) Isostasius (Pla) Tor, Torymidae; Tri, 6/77 Proplatygaster (Pla) Trigonalidae; Van, Van- 1 Archaeoteleia (Sce) 1 PLATYGASTROIDEA horniidae; Ves, Vespi- 3/80 Sparasion (Sce) 2 Telenomus (Sce) dae; Xip, Xiphydriidae; 1 Pelecinus (Pel) Vanhornia (Van) Xye, Xyelidae. 1 Helorus (Hel) 2 Austroserphus (Pro) 2 Phaenoserphus (Pro) 7/98 Proctotrupes (Pro)

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 192 L. VILHELMSEN ET AL.

Chrysopa (NEU) Micropterix (LEP) Panorpa (MEC) Macroxyela (Xye) Onycholyda (Pam) Cephus (Cep) Syntexis (Ana) Tremex (Sir) SIRICOIDEA Urocerus (Sir) Notofenusa (Ten) Athalia (Ten) Monoctenus (Dip) TENTHREDINOIDEA Heteroperreyia (Per) Xiphydria (Xip) Orussobaius (Oru) Orussus (Oru) ORUSSOIDEA Orthogonalys (Tri) Taeniogonalos (Tri) TRIGONALOIDEA Brachygaster (Eva) Evania (Eva) Evaniella (Eva) Aulacus (Aul) EVANIOIDEA Pristaulacus (Aul) Gasteruption (Gas) Pseudofoenus (Gas) Megischus (Ste) Schlettererius (Ste) STEPHANOIDEA Lagynodes (Mes) Ceraphron (Cer) Megaspilus (Mes) CERAPHRONOIDEA Maaminga (Mam) Mymaromma (Mom) Coccophagus (Aph) Cales (Aph) Cirrospilus (Eul) Acanthochalcis (Cha) Cleonymus (Pte) Megastigmus (Tor) CHALCIDOIDEA Nasonia (Pte) Spalangia (Pte) Gonatocerus (Mym) Eurytoma (Eur) Ismarus (Dia) Ropronia (Rop) Helorus (Hel) Vanhornia (Van) Pelecinus (Pel) Austroserphus (Pro) Phaenoserphus (Pro) Proctotrupes (Pro) Monomachus (Mon) Poecilospilus (Dia) Belyta (Dia) Pantolytomia (Dia) Diplolepis (Cyn) Ibalia (Iba) Melanips (Fig) Periclistus (Cyn) CYNIPOIDEA Anacharis (Fig) Parnips (Fig) Aporus (Pom) Rhopalosoma (Rho) Dinapsis (Meg) Megalyra (Meg) MEGALYROIDEA Isostasius (Pla) Proplatygaster (Pla) Telenomus (Sce) PLATYGASTROIDEA Archaeoteleia (Sce) Sparasion (Sce) Chrysis (Chy) Ycaploca (Sco) Plumarius (Plu) Metapolybia (Ves) Sapyga (Sap) Cephalonomia (Bet) Ampulex (Amp) Pison (Cra) Stangeella (Spe) APOIDEA Lymeon (Ich) Dusona (Ich) Zagryphus (Ich) Labena (Ich) Pimpla (Ich) Orgilus (Bra) Wroughtonia (Bra) ICHNEUMONOIDEA Urosigalphus (Bra) Doryctes (Bra) Aleiodes (Bra) Rhysipolis (Bra)

Figure 68. Tree produced by implied weighting analysis with k = 1. Monophyletic superfamilies coloured. Abbreviations as in Figure 67.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 PHYLOGENY OF HYMENOPTERA 193

Chrysopa (NEU) Micropterix (LEP) Panorpa (MEC) Macroxyela (Xye) Onycholyda (Pam) Notofenusa (Ten) Athalia (Ten) Heteroperreyia (Per) TENTHREDINOIDEA Monoctenus (Dip) Syntexis (Ana) Tremex (Sir) Urocerus (Sir) Cephus (Cep) Xiphydria (Xip) Orussobaius (Oru) Orussus (Oru) ORUSSOIDEA Megischus (Ste) Schlettererius (Ste) STEPHANOIDEA Dinapsis (Meg) Megalyra (Meg) MEGALYROIDEA Lagynodes (Mes) Ceraphron (Cer) CERAPHRONOIDEA Megaspilus (Mes) Orthogonalys (Tri) Taeniogonalos (Tri) TRIGONALOIDEA Brachygaster (Eva) Evania (Eva) Evaniella (Eva) Aulacus (Aul) EVANIOIDEA Pristaulacus (Aul) Gasteruption (Gas) Pseudofoenus (Gas) Maaminga (Mam) Mymaromma (Mom) Acanthochalcis (Cha) Spalangia (Pte) Eurytoma (Eur) Gonatocerus (Mym) Cleonymus (Pte) Megastigmus (Tor) CHALCIDOIDEA Nasonia (Pte) Cirrospilus (Eul) Cales (Aph) Coccophagus (Aph) Monomachus (Mon) Poecilospilus (Dia) Belyta (Dia) Pantolytomia (Dia) Ismarus (Dia) Diplolepis (Cyn) Ibalia (Iba) Melanips (Fig) Periclistus (Cyn) CYNIPOIDEA Anacharis (Fig) Parnips (Fig) Ropronia (Rop) Pelecinus (Pel) Helorus (Hel) Vanhornia (Van) Austroserphus (Pro) Phaenoserphus (Pro) Proctotrupes (Pro) Isostasius (Pla) Proplatygaster (Pla) Telenomus (Sce) PLATYGASTROIDEA Archaeoteleia (Sce) Sparasion (Sce) Aporus (Pom) Rhopalosoma (Rho) Chrysis (Chy) Sapyga (Sap) Ycaploca (Sco) Cephalonomia (Bet) Plumarius (Plu) Metapolybia (Ves) Pison (Cra) Ampulex (Amp) Stangeella (Spe) APOIDEA Lymeon (Ich) Dusona (Ich) Zagryphus (Ich) Labena (Ich) Pimpla (Ich) Orgilus (Bra) Wroughtonia (Bra) ICHNEUMONOIDEA Urosigalphus (Bra) Doryctes (Bra) Aleiodes (Bra) Rhysipolis (Bra)

Figure 69. Tree produced by implied weighting analysis with k = 10. Monophyletic superfamilies coloured. Abbreviations as in Figure 67.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194 194 L. VILHELMSEN ET AL.

Chrysopa (NEU) Micropterix (LEP) Panorpa (MEC) Notofenusa (Ten) Athalia (Ten) Heteroperreyia (Per) TENTHREDINOIDEA Monoctenus (Dip) Macroxyela (Xye) Onycholyda (Pam) Syntexis (Ana) Tremex (Sir) Urocerus (Sir) Cephus (Cep) Xiphydria (Xip) Orussobaius (Oru) Orussus (Oru) ORUSSOIDEA Megischus (Ste) Schlettererius (Ste) STEPHANOIDEA Chrysis (Chy) Ycaploca (Sco) Cephalonomia (Bet) Plumarius (Plu) Sapyga (Sap) Aporus (Pom) Rhopalosoma (Rho) Metapolybia (Ves) Pison (Cra) Ampulex (Amp) Stangeella (Spe) APOIDEA Dinapsis (Meg) Megalyra (Meg) MEGALYROIDEA Lagynodes (Mes) Ceraphron (Cer) CERAPHRONOIDEA Megaspilus (Mes) Orthogonalys (Tri) Taeniogonalos (Tri) TRIGONALOIDEA Brachygaster (Eva) Evania (Eva) Evaniella (Eva) Aulacus (Aul) Pristaulacus (Aul) Gasteruption (Gas) Pseudofoenus (Gas) Labena (Ich) Pimpla (Ich) Zagryphus (Ich) Dusona (Ich) Lymeon (Ich) Orgilus (Bra) Wroughtonia (Bra) ICHNEUMONOIDEA Urosigalphus (Bra) Doryctes (Bra) Aleiodes (Bra) Rhysipolis (Bra) Acanthochalcis (Cha) Spalangia (Pte) Eurytoma (Eur) Gonatocerus (Mym) Cleonymus (Pte) Megastigmus (Tor) CHALCIDOIDEA Nasonia (Pte) Cirrospilus (Eul) Cales (Aph) Coccophagus (Aph) Maaminga (Mam) Mymaromma (Mom) Diplolepis (Cyn) Ibalia (Iba) Melanips (Fig) Periclistus (Cyn) CYNIPOIDEA Anacharis (Fig) Parnips (Fig) Monomachus (Mon) Poecilospilus (Dia) Belyta (Dia) Pantolytomia (Dia) Ismarus (Dia) Ropronia (Rop) Pelecinus (Pel) Helorus (Hel) Vanhornia (Van) Austroserphus (Pro) Phaenoserphus (Pro) Proctotrupes (Pro) Isostasius (Pla) Proplatygaster (Pla) Telenomus (Sce) PLATYGASTROIDEA Archaeoteleia (Sce) Sparasion (Sce)

Figure 70. Tree produced by implied weighting analysis with k = 25. Monophyletic superfamilies coloured. Abbreviations as in Figure 67.

© 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159, 22–194