Supplementary information

Neurotransmitter identity and electrophysiological phenotype are genetically coupled in midbrain dopaminergic neurons

Mónica TAPIA1, , Pierre BAUDOT1, , Christine FORMISANO-TRÉZINY1, Martial A.

DUFOUR1, Simone TEMPORAL1, Manon LASSERRE1, Béatrice MARQUÈZE-POUEY1,

Jean GABERT1,2, Kazuto KOBAYASHI3 and Jean-Marc GOAILLARD1*

1 Unité de Neurobiologie des Canaux Ioniques et de la Synapse, INSERM UMR 1072, Aix

Marseille Université, 13015 Marseille, FRANCE

2 Département de Biochimie et Biologie Moléculaire, Hôpital Nord, Marseille, FRANCE

3 Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical

University, Fukushima, 960-1295, JAPAN

* Corresponding author

These authors contributed equally to this work

Corresponding author: Jean-Marc GOAILLARD

UMR_S 1072, INSERM, Aix Marseille Université, Faculté de Médecine Secteur Nord,

Marseille, FRANCE.

Email: [email protected]

a c activity Midbrain microdissection Cacna1c Cav1.2 Collected material Cacna1d Cav1.3 Cacna1g Cav3.1 SNc Hcn2 HCN2 SNr VTA Hcn4 HCN4 Scn2a1 Nav1.2 + Scn5a Nav1.5 TaqMan assays Scn8a Nav1.6 Kcna2 Kv1.2 Dissociated midbrain neurons Kcnb1 Kv2.1 Kcnd2 Kv4.2 Kcnd3 Kv4.3 Targeted reverse Kcnip3 KCHIP3 and preamplification Kcnj11 Kir6.2 Abcc8 SUR1 Abcc9 SUR2B Fluorescence imaging Kcnj5* GIRK4 Kcnj6 GIRK2 GFP Kcnn3 SK3 DA metabolism & signaling Non-GFP Microfluidic quantitative PCR Th TH Slc6a3 DAT Assays Samples Slc18a2 VMAT2 Pipette harvesting Drd2 D2R -ion-binding Calb1 CB Pvalb PV Other neuronal markers Slc17a6 VGLUT2 Gad1 GAD67 Gad2 GAD65 b 40 Chat CHAT 30 Penk ENK 20 Neuronal structure 10 Ncam2 NCAM2 Cell count 0 Map2 MAP2 16 GFP Nefm NEF3 14 Non-GFP WT Neuronal activation 12 Creb1 CREB 10 Fos C-FOS

Th (TH) 8 Bdnf BDNF x E

2 6 Housekeeping/ DA neurons transcriptional factors 4 L o g (n=111) Hprt HGPRT 2 nDA neurons Tbp TBP 0 (n=37) Tbx3* TBX3 0 2 4 6 8 10 12 14 16 0 10 20 30 40 Glia-specific markers Log2Ex Slc6a3 (DAT) Cell count Gfap GFAP Aldh1l1 FDH

Supplementary Fig. 1. Experimental workflow and classification of DA and nDA neurons. a, schematic showing the workflow for the single-cell profiling. Left, neurons were manually collected after acute dissociation from microdissected midbrain slices containing the substantia nigra pars compacta and reticulata (SNc, SNr) and part of the ventral tegmental area (VTA) obtained from TH-GFP mice. Right, specific targeted reverse transcription and amplification was then performed in the same tube, and microfluidic qPCR was run by using 96.96 Dynamic arrays on a BiomarkTM HD System. b, DA and nDA neurons were classified based on the expression levels of Th (TH) and Slc6a3 (DAT), nDA neurons corresponding to neurons expressing 0 Th and/or 0 Slc6a3. c, list of the selected for the single-cell study with the gene names (left) and corresponding names (right). Genes are classified based on the functional class of the corresponding (colored text). Genes mainly related to cardiac cell phenotype (indicated by an asterisk), glia-specific markers and housekeeping/transcriptional factors were excluded from the subsequent Pearson analysis (Fig. 2). a b acute slices GFP neuron GFP

acute dissociation non-GFP neuron non-GFP

c *** 2.5 n=10 n=9 ** -30 30 *** 80 2.0 -35 20 1.5 -40 60 -45 10 p litude (mV) 1.0 e s h o l d (mV)

40 half-width (ms)

a m -50 acute slices t h r P

P 0.5 P A A

Sag amplitude (mV) 0

A -55 20 0.0 ** n=10 n=10 n=10 n=9 n=10 n=9 -60

* 2.5 n=13 n=8 * -30 30 *** 80 2.0 -35 20 1.5 -40 60 -45 1.0 p litude (mV) 10 e s h o l d (mV) 40 -50 half-width (ms) t h r a m 0.5 P P P A A

0 A Sag amplitude (mV) -55 20 0.0 acute dissociation n=12 n=5 n=13 n=8 n=13 n=8 -60 **

Supplementary Fig. 2. Electrophysiological properties of GFP and non-GFP midbrain neurons in acute dissociation and in acute slices. a, bright field and fluorescence images corresponding to recorded GFP (top pictures) and non-GFP neurons (bottom pictures). b, representative recordings obtained from GFP (green traces) and non-GFP midbrain neurons (dark red traces) in acute slices (top traces) and after acute dissociation (bottom traces). Please note the differences in sag amplitude and rebound kinetics (left traces) and the significantly broader (right traces) in GFP neurons. c, bar and scatter plots summarizing the electrophysiological differences observed between GFP and non-GFP neurons in acute slices (top row) or after acute dissociation (bottom row). As expected for midbrain DA neurons, GFP neurons were characterized by significantly larger sag amplitude (left plot), smaller and broader action potential (middle plots), and more depolarized action potential threshold (right plot). Scale bars in b: 20mV, 500ms for left traces; 20mV, 2ms for right traces. Dotted lines indicate -60mV. Asterisks in c indicate statistical significance (Mann-Whitney). * p<0.05, ** p<0.01, *** p<0.001. 60 Scn2a1 (Nav1.2) 60 Kcnj6 (GIRK2) 60 Kcna2 (Kv1.2) 60 Slc17a6 (VGLUT2) 60 Ncam2 (NCAM2)

40 40 40 40 40

20 20 20 20 20

Cell count (%) 0 0 0 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

60 Scn8a (Nav1.6) 60 Kcnj11 (Kir6.2) 60 Kcnb1 (Kv2.1) 60 Gad1 (GAD67) 60 Map2 (MAP2)

40 40 40 40 40

20 20 20 20 20

Cell count (%) 0 0 0 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

60 Scn5a (Nav1.5) 60 Abcc8 (SUR1) 60 Kcnn3 (SK3) 60 Gad2 (GAD65) 60 Nefm (NEF3)

40 40 40 40 40

20 20 20 20 20

Cell count (%) 0 0 0 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

60 Cacna1c (Cav1.2) 60 Abcc9 (SUR2B) 60 Th (TH) 60 Penk (PENK) 60 Creb1 (CREB)

40 40 40 40 40

20 20 20 20 20

Cell count (%) 0 0 0 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

60 Cacna1d (Cav1.3) 60 Kcnd2 (Kv4.2) 60 Slc6a3 (DAT) 60 Calb1 (CB) 60 Fos (C-FOS)

40 40 40 40 40

20 20 20 20 20

Cell count (%) 0 0 0 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

60 Cacna1g (Cav3.1) 60 Kcnd3_2 (Kv4.3) 60 Slc18a2 (VMAT2) 60 Pvalb (PV) 60 Bdnf (BDNF)

40 40 40 40 40

20 20 20 20 20

Cell count (%) 0 0 0 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

60 Hcn2 (HCN2) 60 Kcnd3_1 (Kv4.3) 60 Drd2 (D2R) 60 Gfap (GFAP) 60 Hprt (HGPRT)

40 40 40 40 40

20 20 20 20 20

Cell count (%) 0 0 0 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Log2Ex Log2Ex 60 Hcn4 (HCN4) 60 Kcnip3 (KCHIP3) 60 Aldh1l1 (FDH)

40 40 40

20 20 20

Cell count (%) 0 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 DA neurons nDA neurons Log2Ex Log2Ex Log2Ex

Supplementary Fig. 3. profiles in DA and nDA neurons. Graphs showing the frequency distribution of gene expression levels in DA (green) and nDA (dark red) neurons. The three genes with the lowest expression (Tbp, Kcnj5 and Tbx3) are not represented. The Y-axes correspond to normalized cell count (%) and the X-axes to relative gene expression levels in logarithmic (Log2Ex) scale. DA neurons

16 16 16 r=0.867, p<0.001, n=111 r=0.855, p<0.001, n=111 r=0.777, p<0.001, n=111 14 14 r= 0.783, p<0.001, n=111 14 r=-0.145, p=0.622, n=14 r=0.235, p=0.382, n=16 12 12 12 10 10 10 8 8 8 6 6 6 4 4 4 Kcnd3_2(Kv4.3) Slc6a3 (DAT) 2 r=0.695, p< 0.001, n=105 2 2 0 0 Kcnd3_2 (Kv4.3) 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Th (TH) Kcnn3 (SK3) Slc6a3 (DAT) Kcnj6 (GIRK2) Scn2a1 (Nav1.2) 16 16 16 r=0.852, p<0.001, n=111 r=0.706, p<0.001, n=106 r=0.786, p<0.001, n=105 r=0.721, p<0.001, n=105 14 14 n=1 n=2 14 r=0.542, p=0.055, n=13 r=-0.07, p=0.816, n=14 12 12 12 10 10 10 8 8 8 6 6 6 4 4 4 Kcnj6 (GIRK2) Kcnn3 (SK3) 2 2 Kcnj6a (GIRK2) 2 r=0.768, p<0.001, n=109 0 0 0 r=-0.521, p=0.1235, n=10 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Slc6a3 (DAT) Drd2 (D2R) Kcnj6 (GIRK2) Scn2a1 (Nav1.2) Slc18a2 (VMAT2) 16 16 16 r=0.785, p<0.001, n=110 r=0.745, p<0.001, n=111 r=0.783, p<0.001, n=106 r=0.711, p<0.001, n=106 14 14 14 r=0.686, p< 0.001, n=30 r=0.38, p=0.024, n=35 r=0.37, p=0.044, n=30 r=0.451, p=0.046, n=20 12 12 12 10 10 10 2R) 8 8 8 6 6 6

4 Drd2( D 4 4 Kcnd2 (Kv4.2)

Scn2a1 (Nav1.2) 2 2 2 0 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Map2 (MAP2) Ncam2 (NCAM2) Th (TH) Slc6a3 (DAT) Slc17a6 (VGLUT2)

16 16 16 r= 0.757, p<0.001, n=111 r=0.736, p<0.001, n=109 r=0.708, p<0.001, n=109 r=0.683, p< 0.001, n=11130 14 14 14 n=3 n=1 r=0.473, p=0.075, n=15 12 12 12 10 10 10 8 8 8 6 6 6 4 4 4 r= 0.775, p<0.001, n=111 Kcnj6 (GIRK2)

Slc18a2 (VMAT2) 2 2 r=0.436, p=0.013, n=32 2 Ncam2 (NCAM2) 0 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Scn2a1 (Nav1.2) Th (TH) Slc6a3 (DAT) Th (TH) Kcnd3_2 (Kv4.3)

nDA neurons

16 16 16 r=-0.054, p=0.653, n=71 r=0.107, p=0.362, n=74 r=0.285, p=0.045, n=50 r=0.306, p=0.003, n=92 r=0.405, p<0.001, n=92 14 14 14 r=-0.784, p=0.007, n=10 r=0.710, p=0.048, n=8 r=0.735, p=0.004, n=13 r=0.631, p<0.001, n=31 r=0.609, p<0.001, n=30 12 12 12 10 10 10 8 8 8 6 6 6 4 4 4 Hcn2 (HCN2) Kcna2 (Kv1.2)

Kcnd3_2 (Kv4.3) 2 2 2 0 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Calb1 (CB) Kcnj11 (Kir6.2) Abcc8 (SUR1) Nefm (NEF3) Nefm (NEF3) 16 16 16 r=0.366, p=0.008, n=51 r=0.331, p<0.001, n=101 r=-0.401, p=0.001, n=62 r=0.48, p<0.001,n=51 r= 0.492, p<0.001, n=62 14 14 14 r=0.628, p=0.016, n=14 r=0.622, p<0.001, n=26 r= 0.616, p<0.001, n=28 r=0.647, p=0.012, n=14 r=-0.634, p=0.002, n=23 12 12 12 10 10 10 8 8 8 6 6 6 4 4 4 Map2 (MAP2) 2 2

2 Scn2a1 (Nav1.2) Ncam2 (NCAM2) 0 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Abcc8 (SUR1) Kcnb1 (Kv2.1) Slc17a6 (VGLUT2) Abcc8 (SUR1) Slc17a6 (VGLUT2) 16 16 16 r=0.501, p<0.001, n=95 r=0.376, p=0.006, n=51 r=0.308, p=0.028, n=51 r=0.164, p=0.295, n=43 r=0.36, p=0.006, n=58 14 14 14 r=0.616, p=0.002, n=23 r=0.653, p=0.016, n=13 r=0.875, p=0.010, n=7 r=0.621, p=0.023, n=13 r=0.663, p=0.01, n=14 12 12 12 10 10 10 8 8 8 6 6 6 4 4 4 Hcn2 (HCN2) 2 Abcc8 (SUR1) 2 2 Ncam2 (NCAM2) 0 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Fos (C-FOS) Abcc8 (SUR1) Kcnd3_2 (Kv4.3) Scn8a (Nav1.6) Creb1 (CREB)

16 16 16 r=0.663, p<0.001, n=38 r=0.078, p=0.521, n=69 14 14 r=0.668, p=0.049, n=9 14 r=0.61, p=0.009, n=17 12 12 12 10 10 10 8 8 8 6 6 6 4 4 4 Nefm (NEF3) Gad2 (GAD2) r= 0.55, p<0.001, n=47 r=0.53, p<0.001, n=54

2 2 Kcnj6 (GIRK2) 2 r=-0.676, p=0.008, n=14 r=0.662, p=0.007, n=15 r=-0.084, p=0.517, n=62 0 0 0 r=0.645, p<0.001, n=29 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Fos (C-FOS) Gad1 (GAD1) Creb1 (CREB) Hcn4 (HCN4) Slc17a6 (VGLUT2)

Supplementary Fig. 4. Scatter plots of the 20 most significant linear correlations in expression levels in DA and nDA neurons. Axes indicate relative gene expression level in logarithmic (Log2Ex) scale. Green and dark red dots correspond to DA and nDA neurons, respectively. Plain and dotted lines indicate significant and non-significant Pearson correlations, respectively. r, p, and n values are displayed for each correlation test. Protein names corresponding to each gene are given in parentheses. a b Four maxima of I3(X1; X2; X3; P)=log2(2)=1 bit Two minima of I3(X1; X2; X3; P)=-log2(2)=-1 bit Subsimplex of the probability 7-simplex Subsimplex of the probability 7-simplex P P P 001 001 0 0 001 0 P 0 P 1/2 P 1/4 P P 000 010 0 0 010 0 0 0 010 000 0 1/2 0 0 1/2 1/4 1/4

P111 P011 0 P011 P111 P011 0 1/2 0 0 0 1/2 1/4 0 1/4 0 0 P P P P P P 110 100 110 0 100 0 100 110 0 0 1/2 0 0 1/2 1/4 1/4 0 P P 0 P 101 0 101 0 0 101 0 1/2 1/4 Representation in 3-variable space Representation in 3-variable space

P011 =1/4 P111 =1/4 P010 P110 2 =1/4 =1/4 P X 101 P X 001 P P =1/4 3 =1/4 100 000 =1/4 =1/4 X 1 Representation in 2-variable subspaces Representation in 2-variable subspaces

X1,X2 X1,X3 X3,X2 X1,X2 X1,X3 X3,X2

c d Information landscapes 2-simplex of X1, X2, X3

Maxima of I3 Minima of I3 Maxima of I3 Minima of I3 Imax =log (N) 3 2 Count Count Count Count =1 = = = = Count C(3,1)=3 C(3,2)=3 C(3,3)=1 C(3,1)=3 H(X2) I H(X2) I 2 2 = (X (X Count =1 =1 C(3,2)=3 )=1 )=0 2 2 2 ;X 2 ;X 0 ;X ;X

(bits) 3 3 1 )=1 1 )=0 k I Count (X (X I 2 I 2 = I3(X1;X2;X3) I3(X1;X2;X3) Imax C(3,3)=1 =1 =-1 H(X1) H(X3) H(X1) H(X3) =-log2(N) =1 =1 =1 =1 =-1 1 I2(X1;X3)=1 I2(X1;X3)=0 1 2 3 1 2 3 k k

Supplementary Fig. 5. Examples of mutual information maxima (positive) and minima (negative). The simplest case of maxima and minima of I3 for 3 binary random variables X1,X2,X3 is represented. The corresponding probability simplex is 7-dimensional, and is depicted at the top of panels a and b. The 8 vertices are labeled by the atomic probabilities noted P000,P001,...,P111. a, there are 4 maxima of I3, I(X1;X2;X3)= 1 bit, corresponding to the 4 subsimplex of probabilities where all atomic probabilities are 0 except for the pairs {P000=1/2,P111=1/2}, {P110=1/2,P001=1/2}, {P101=1/2,P010=1/2}, {P011=1/2,P100=1/2}. The corresponding configurations in the 3-variable space correspond to the diagonals of the cube, such that the 3 projections on the 2-variable subspaces correspond to the diagonals for which I2 is maximal, i.e. I(X1;X2)=I(X1;X3)=I(X2;X3)= 1 bit, and that the projections on single-variable subspaces are maximally uncertain (H(X1)=I(X1)=I(X2)=I(X3)= 1 bit). b, the same representations as in panel a are shown for the two minima of I3, I(X1;X2;X3)= -1 bit, corresponding to the configurations where all atomic probabilities are 0 except for the 4-tuples {P001=1/4,P010=1/4,P100=1/4,P111=1/4}, {P000=1/4,P011=1/4,P101=1/4,P110=1/4}. The corresponding configurations in the 3-variable space consist of alternated volumes, such that the projections on the 2-variable subspaces are maximally uncertain, i.e. I(X1;X2)=I(X1;X3)=I(X2;X3)= 0 bit, and that the projections on marginal single-variable subspaces are also maximally uncertain (or informative; H(X1)=I(X1)=I(X2)=I(X3)= 1 bit). c, information landscapes associated with the maxima and minima presented in a and b. Count (n,k) gives the number of combinations for each degree k. d, equivalent simplicial representation with the k-faces labeled with their corresponding Ik values. 0 2 4 6 8 0 2 4 6 8 Drd2 Drd2 I4 = -0.48* 14 I4 = -0.48* 14 12 12 10 8 10 6 8 4 6 Calb1

2 4 Calb1 0 2 0 12 4 4 6 10 6 8 8 10 8 10 10 8 6 4 1214 6 Kcnd3_212 18161412 Slc6a3 1618 4 Kcnd3_2 Slc6a3

0 2 4 6 8 0 2 4 6 8 Drd2 Drd2 14 13 12 I3 = -0.26* 12 I3 = 0.21 10 11 10 8 9 6 8

Calb1 4

Kcnd3_2 7 2 6 0 5 4 4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18 Slc6a3 Slc6a3

Supplementary Fig. 6. Superposition of negative and positive Ik in high dimensions. 4D- (up) and 3D-scatter plots (botton) for a quadruplet of genes sharing positive and negative I3.The 3D-plots (up) of subsets of the original quadruplet illustrate how the gene expression profiles of DA neurons are made of the superposition of negative and positive Ik. Unsurprisingly, the mixing of positive and negative I3 leads to non-significant I4. Asterisks indicate non-significant Ik values. nDA neurons Negative Ik Positive Ik

I1 & I2 I Calb1 Gad2 Slc17a6 3 Map2 Slc18a2 Nefm Slc6a3 Cacna1c Th Cacna1g Drd2 Scn2a1 Kcnj11 I4 Hcn4 Abcc8 Hcn2 Kcnj6 Kcnn3 Kcnd3_2 Kcnb1 Kcna2

1 bit 0.5 bits 1 bit -0.5 bits 0.5 bits I1 / I2 2 bits 1 bit I3 / I4 2 bits -1 bit 1 bit 3 bits 1.5 bits 3 bits -1.5 bits 1.5 bits

Supplementary Fig. 7. Gene modules in nDA neurons. scaffold representations of the most significant Ik values shared by pairs (I2, 20 examples), triplets (I3, 5) and quadruplets (I4, 5) of genes in nDA neurons. Circle diameters are scaled according to entropy value (I1). The red shapes indicate positive Ik shared by genes while the blue shapes correspond to negative Ik. a Positive Ik-sharing Documented variation genes in midbrain DA neurons

Stronger expression in SNc than in VTA Slc6a3 / DAT Poulin et al. (2014) Figure 2 from Anderegg et al. (2015) Reyes et al. (2013) Stronger expression in SNc than in VTA Poulin et al. (2014) Kcnj6 / GIRK2 Figure 2 from Anderegg et al. (2015) Reyes et al. (2012) Stronger SK3 labeling in SNc than in VTA Kcnn3 / SK3 Wolfart et al. (2001) Potential Documented variation regulator in midbrain DA neurons

Stronger expression in SNc than in VTA Pitx3 Poulin et al. (2014) Figure 2 from Anderegg et al. (2015)

b

Negative Ik-sharing Documented heterogeneity genes in midbrain DA neurons

CB+ in VTA and SNc subpopulations Calb1 / CB Damier et al. (1999) González-Hernández et al. (2000) D2R- subpopulations in VTA Drd2 / D2R Lammel et al. (2008) Margolis et al. (2008) GAD65+ cells in VTA and SNc subpopulations Gad2 / GAD65 González-Hernández et al. (2001) Abcc8 / SUR1 Higher mRNA expression in SNc than in VTA Kcnj11 / Kir6.2 Liss et al. (2005) Higher Cav1.2 expression in lateral than in medial SNc. Differential expression of L-type Cacna1c / Cav1.2 channels in VTA and SNc Takada et al. (2001) Philippart et al. (2016) Larger T-type current density in CB- SNc cells Cacna1g / Cav3.1 Evans et al. (2017)

Supplementary Fig. 8. Bibliographical support of the mutual information results obtained in the present study. a, some of the positive Ik-sharing genes (Slc6a3, Kcnj6, Kcnn3) have been reported to show strong variations in expression levels across midbrain DA neurons (using PCR, immunohistochemistry and/or electrophysiological recordings). Moreover, a recent study reporting variations in Slc6a3 and Kcnj6 also reported parallel variations in Pitx3 expression, consistent with the proposed regulatory control of positive Ik-sharing genes by this transcription factor. b, negative Ik-sharing genes have heterogeneous profiles of expression in midbrain DA neurons. The table shows 7 genes sharing strong negative Ik and the list of articles reporting their heterogeneous expression (measured using PCR, immunohistochemistry or electrophysiological recordings). Supplementary table S1: List of genes-TaqMan assays

Panther Efficiency Gene Official full name Criteria for TaqMan assay ID/ primers Variants- Amplicon Protein Molecular Category References NCBI Ref Seq in multiplex symbol (ncbi) inclussion and probe sequence isoforms length (bp) Function (%)

NM_001159533.2; NM_001159534.2; NM_001159535.2; NM_001255997.2; Voltage-gated NM_001255998.2; Voltage-dependent L- Voltage-gated DA neuron Chan et al., 2007; Cacna1c Cav1.2 Mm01188822_m1 NM_001255999.2; 11 65 90.6 type calcium channel ion channel electric activity Dufour et al., 2014 activity NM_001256000.2 ; NM_001256001.2; NM_001256002.2; NM_001290335.1; NM_009781.4 Voltage-gated Voltage-dependent L- Voltage-gated DA neuron Chan et al., 2007; NM_001083616.1; Cacna1d Cav1.3 calcium channel Mm01209919_m1 2 76 91.8 type calcium channel ion channel electric activity Dufour et al., 2014 NM_028981.2 activity NM_001112813.2 ; Voltage-gated Dufour et al., Voltage-dependent T- Voltage-gated DA neuron NM_001177888.1; Cacna1g Cav3.1 2014; Poetschke Mm00486572_m1 4 85 98.6 type calcium channel ion channel electric activity NM_001177890.1; activity et al., 2015 NM_009783.3 Hyperpolarization Voltage-gated Neuhoff et al., activated Voltage-gated DA neuron Hcn2 HCN2 potassium 2002; Dufour et Mm00468538_m1 NM_008226.2 1 64 95.2 sodium/potassium ion channel electric activity channel activity al.,2014 channel Hyperpolarization Voltage-gated Neuhoff et al., activated Voltage-gated DA neuron Hcn4 HCN4 potassium 2002; Dufour et Mm01176086_m1 NM_001081192.1 1 70 99.1 sodium/potassium ion channel electric activity channel activity al.,2014 channel Sodium channel, Voltage-gated Seutin and Engel Voltage-gated DA neuron Scn2a1 Nav1.2 voltage-gated, type II, sodium channel 2010; Ding et al., Mm01270359_m1 NM_001099298.2 1 62 93.7 ion channel electric activity alpha 1 activity 2011 Sodium channel, Voltage-gated Voltage-gated Cardiac-cell Marionneau et al., NM_001253860.1; Scn5a Nav1.5 voltage-gated, type V, sodium channel Mm01342518_m1 2 59 99.7 ion channel electric activity 2005 NM_021544.4 alpha activity Sodium channel, Voltage-gated Seutin and Engel Voltage-gated DA neuron NM_001077499.2; Scn8a Nav1.6 voltage-gated, type sodium channel 2010; Ding et al., Mm00488110_m1 2 68 94.1 ion channel electric activity NM_011323.3 VIII, alpha activity 2011 Voltage-gated Voltage activated Voltage-gated DA neuron Ding et al., 2001; Kcna2 Kv1.2 potassium Mm00434584_s1 NM_008417.5 1 85 95.6 ion channel electric activity Fulton et al., 2011 channel activity Voltage-gated Voltage activated Voltage-gated DA neuron Ding et al., 2001; Kcnb1 Kv2.1 potassium Mm00492791_m1 NM_008420.4 1 73 96.1 potassium channel ion channel electric activity Dufour et al., 2014 channel activity Voltage-gated Voltage activated Voltage-gated DA neuron Kcnd2 Kv4.2 potassium Ding et al., 2011 Mm01161732_m1 NM_019697.3 1 66 97.8 potassium channel ion channel electric activity channel activity Kv4.3_2 Voltage-gated (isoform Voltage activated Voltage-gated DA neuron 1 (isoform potassium Liss et al., 2001 Mm00498260_m1 NM_019931.1 84 98.6 2, potassium channel ion channel electric activity 2) channel activity Kcnd3 shorter) Kv4.3_1 Voltage-gated Voltage activated Voltage-gated DA neuron 1( isoform (isoform potassium Liss et al., 2001 Mm01302125_m1 NM_001039347.1 78 99.4 potassium channel ion channel electric activity 1) 1, longer) channel activity Molecular Ion channel NM_001111331.1; Kv channel interacting DA neuron An et al., 2000; Kcnip3 KChip3 function regulatory Mm01339774_m1 NM_001291005.1; 3 98 97.6 protein 3, electric activity Liss et al., 2001 unclassified subunit NM_019789.4 Inwardly rectifying K ATP-activated channel subunit (ATP- Ligand-gated ion inward DA neuron NM_001204411.1; Kcnj11 Kir6.2 sensitive potassium Liss et al., 1999 Mm00440050_s1 2 129 91.9 channel activity potassium electric activity NM_010602.3 (K-ATP) channels channel subunit) ATPase activity, coupled to Sulphonylurea transmembrane receptor (ATP- Ion channel movement of DA neuron Abcc8 SUR1 sensitive potassium regulatory Liss et al., 1999 Mm00803450_m1 NM_011510.3 1 77 94.7 substances/ electric activity (K-ATP) channels subunit transmembrane subunit) transporter activity ATPase activity, coupled to Sulphonylurea NM_001044720.1 ; transmembrane receptor (ATP- Ion channel NM_011511.2; movement of DA neuron Abcc9 SUR2B sensitive potassium regulatory Liss et al., 1999 Mm00441622_m1 NM_021041.2; 5 75 92.5 substances/ electric activity (K-ATP) channels subunit NM_021042.2 ; transmembrane subunit) NM_001310143.1 transporter activity G protein-activated G-protein inward rectifier activated potassium channel 4 Ligand-gated ion inward Cardiac cell Marionneau et al., Kcnj5 GIRK4 (potassium inwardly- Mm01175829_m1 NM_010605.4 1 83 95.9 channel activity rectifier electric activity 2005 rectifying channel, potassium subfamily J, member channel 5) G-protein activated GIRK2_a, G-protein-gated NM_001025584.2; 3 Ligand-gated ion inward DA neuron isoform a inwardly rectifying K+ Liss et al., 1999 Mm01215648_m1 NM_001025585.2; (isoforms 97 99.5 channel activity rectifier electric activity channel NM_010606.2 a, b, 1) (b and 1) potassium channel Kcnj6 G-protein activated G-protein-gated GIRK2_c, Ligand-gated ion inward DA neuron Inanobe et al., 1 (isoform inwardly rectifying K+ Mm01215646_m1 NM_001025590.1 77 channel activity rectifier electric activity 1999 c) isoform c channel potassium channel Small conductance Cation channel Calcium- Wolfart et al., calcium-activated activity/ activated DA neuron 2001; Deignan et Kcnn3 SK3 Mm00446516_m1 NM_080466.2 1 71 96.5 potassium channel potassium electric activity al., 2012; Dufour protein 3 binding channel et al., 2014 Calcium- Damier et al., Calcium ion DA heterogeneity Calb1 CB binding 1999; Neuhoff et Mm00486647_m1 NM_009788.4 1 78 93.7 binding (VTA/SNc) protein al., 2002 Calcium ion Calcium- binding/ Interneuron Pvalb PV Parvalbumin binding Mercer et al., 2007 Mm00443100_m1 NM_013645.3 1 77 94.4 calmodulin marker protein binding Structural Structural Glial fibrillary acidic Glia-specific NM_001131020.1; Gfap GFAP constituent of (cytoskeleton) Mm01253033_m1 2 75 99.0 protein marker NM_010277.3 cytoskeleton protein Cahoy et al., 2008; Aldehyde Oxidoreductase Glia-specific Pfrieger and Aldh1l1 FDH dehydrogenase 1 Enzyme Mm03048957_m1 NM_027406.1 1 73 90.2 activity marker Slezak 2012 family, member L1 (review); Tyrosine 3- Molecular Th TH monooxygenase function Enzyme DA metabolism Mm00447546_m1 NM_009377.1 1 65 91.2 (tyrosine hidroxylase) unclassified Cation transmembrane transporter DA Dopamine Slc6a3 DAT Dopamine transporter activity/ metabolism/trans Mm00438388_m1 NM_010020.3 1 74 97.8 transporter neurotransmitter port transporter activity Amino acid Vesicular DA Synaptic vesicular transmembrane Slc18a2 VMAT2 monoamine metabolism/trans Mm00553058_m1 NM_172523.3 1 58 97.4 amine transporter transporter transporter port activity G-protein coupled receptor activity/adenylat G-coupled Drd2 D2R Dopamine receptor 2 e cyclase DA signaling Mm00438545_m1 NM_010077.2 1 62 96.2 receptor activity/signal transducer activity Amino acid Vesicular Glutamate Yamaguchi et al., Vesicular glutamate transmembrane Slc17a6 VGLUT2 glutamate metabolism/trans 2013; Morales et Mm00499874_m1 NM_080853.3 1 82 99.7 transporter 2 transporter transporter port al., 2014 activity forward primer AGAGAAGAGTTTGAGATG Glutamate Carboxy-lyase GABA GTTTTCG; reverse primer Gad1 GAD67 Enzyme Liss et al., 1999 NM_008077.4 1 82 100.4 decarboxylase 1 activity metabolism CTCGAAGGCTTTGTGGAA TGTA; probe ATGGTGAGCCTGAGCAC Glutamate Carboxy-lyase GABA Gad2 GAD65 Enzyme Liss et al., 2005 Mm00484623_m1 NM_008078.2 1 99 100.3 decarboxylase 2 activity metabolism Choline Acetyltransferas Chat CHAT Enzyme Ach metabolism Mercer et al., 2007 Mm01221882_m1 NM_009891.2 1 67 96.9 acetyltransferase e activity Proenkephalin-A Neuropeptide Interneuron Penk ENK Neuropeptide Mercer et al., 2007 Mm01212875_m1 NM_001002927.2 1 57 97.1 precursor activity marker Molecular Structural Neural cell adhesion Neuronal NM_001113208.1; Ncam2 NCAM2 function (membrane) Mm01344613_m1 2 80 96.2 molecule isoform 2 structure NM_010954.4 unclassified protein Structural Neuronal Microtubule asociated Microtubule NM_001039934.1; Map2 MAP2 (cytoskeleton) (dendritic) Mm00485231_m1 2 118 91.8 protein 2 binding NM_008632.2 protein structure Structural Structural Neurofilament Neuronal (axonal) Nefm NEF3 constituent of (cytoskeleton) Weng et al., 2010 Mm00456201_m1 NM_008691.2 1 84 99.9 medium polypeptide structure cytoskeleton protein Cyclic AMP- Molecular NM_001037726.1; Transcription Greer et al., 2008; Creb1 CREB responsive element- function Neuronal activity Mm00501607_m1 NM_009952.2; 3 106 98.2 factor Okuno et al., 2011 binding protein unclassified NM_133828.2 Molecular FBJ osteosarcoma Transcription Greer et al., 2008; Fos C-FOS function Neuronal activity Mm00487425_m1 NM_010234.2 1 59 98.7 oncogene factor Okuno et al., 2011 unclassified NM_001048139.1; NM_001048141.1; NM_001048142.1; NM_001285416.1; Growth factor Secretor NM_001285417.1; -derived activity/ Greer et al., 2008; Bdnf BDNF factor, Neuronal activity Mm04230607_s1 NM_001285418.1; 11 93 95.9 neurotrophic factor neurotrophin Okuno et al., 2011 neurotrophin NM_001285419.1; receptor binding NM_001285420.1; NM_001285421.1; NM_007540.4; NM_001285422.1; Binding/ hypoxanthine guanine transferase Marionneau et al., Housekeeping Hprt HGPRT phosphoribosyl activity, Enzyme 2005; Santos et al. Mm00446968_m1 NM_013556.2 1 65 91.1 gene transferase transferring 2008 glycosyl groups Sequence- specific DNA TATA-box-binding Transcription Housekeeping Santos et al. 2008; Tbp TBP binding Mm00446971_m1 NM_013684.3 1 93 89.4 protein factor gene Swijsen et al. 2012 transcription factor activity Sequence- specific DNA Sino-atrial node T-box transcription Transcription Mangoni and NM_011535.3; Tbx3 TBX3 binding cell specific Mm01195726_m1 2 65 91.4 factor 3 factor Nargeot 2008 NM_198052.2 transcription marker factor activity