Fourier Optics

Total Page:16

File Type:pdf, Size:1020Kb

Fourier Optics IMIT Swedish original by Leif Ek English verison by Anna Thaning Optics exp eriment Fourier Optics Royal Institute of Technology Department of Micro electronics and Information Technology Optics Section Intro duction In this exp eriment we will as implied by the title use optical systems to study F ourier transforms Fourier analysis describ es how a function may b e divided into a sum or an integral of sines and cosines This is often done in one dimension only but the optical system provides us with them means to easily do it in two functions or images expressed dimensions It is describ ed how twodimensional in the spatial co ordinates x y are transformed The twodimensional Fourier transform is dened as Z Z 1 ff x y g f x y expik x k y dxdy F x y 1 To day twodimensional Fourier transforms can quite easily b e found numerically for example using image pro cessing software you can also nd a function for it t in Matlab But this still requires some time and computational p ower During this exp eriment we will create an instant Fourier transform of a pattern A diractive slit in uniform illumination gives rise to a diraction pattern which turns out to b e the fourier transform of the diractive slit It is placed at innity ie very far from the slit but a fo cusing lens can b e used to move it to the fo cal plane of the lens Similarly a lens may b e used to retransform the image Schematically the i m a g e o f o b j e c t Fourier plane t h e o b j e c t l a s e r transform ing lens re-transform ing lens Figure Schematic illustration of the exp eriment setup is shown in Fig It provides us with the opp ortunity to view the Fourier transform but it also gives us the p ossibility to meddle with it By blo cking some parts of the Fourier transform we remove certain frequencies from the image The eect can then b e studied in the image of the ob ject This pro cess is known as ltering Unfortunately this metho d for viewing the Fourier transforms has some limitations The lenses used are not p erfect they have ab errations which will distort the transform But even with a p erfect lens the true transform will not b e found since the nite size of the lens will cut o the highest frequences The lens will act as a lowpass lter The extent of this ltering dep ends on whether the coherent or the incoherent illumination is used The aim of this exp eriment is to show that Fraunhofer diraction gives the Fourier transform of the diracting ap erture what twodimensional transforms of some simple images lo ok like the dierences that app ear for coherent and incoherent illumination As an extra b onus you also get the Babinets principle Theory Fourier transformation by Fraunhofer diraction Now one would think that the Fourier transform on an ob ject eg a square could b e obtained just by illuminating the ap erture and then study the diraction pattern In reality its a little bit more complicated since the diraction pattern of an ap erture there are changes its shap e dep ending on the distance of observation Generally two cases Fresnel diraction where the diraction pattern close to the ap erture is considered and Fraunhofer diraction where the pattern is studied at innity Fresnel diraction is normally much more complicated so we will stick to Fraunhofer diraction and show that the Fraunhofer diraction pattern is really the Fourier transform of the ob ject Assume that the ob ject consists of an ap erture of any y x r R Figure Diraction from an arbitrary ap erture at P X Y Z shap e in the x y plane We study the diraction pattern in the p oint P of resnel co ordinates X Y Z as illustrated in Fig Accordning to the HuygensF principle the ap erture may b e regarded as the sum of many p oint sources that pro duce spherical waves From the p oint source lo cated in the small surface element dS we obtain a spherical wave which gives rise to the electric eld dE A dE exp ik r tdS r where is the strength of the source ie the incident eld strength at this par A ticular p oint and r is the distance b etween this p oint on the ap erture and the observation p oint P as illustrated in Fig This is the normal expression for a spherical wave on complex form see eg Eq in Hecht To obtain the total eld at P we must sum all the dierent contributions This is done by integration ZZ A E P exp ik r tdS r A where A is the area of the diracting ap erture This is a fairly complicated ex pression and we need to do some approximations According to the geometry see Fig p r X x Y y Z p R X Y Z Since the size of the ob ject is small compared to the distance R we can approximate R in the denominator However due to the large value of k r very small changes r to r will cause large changes to the exp onential term so here we need a more accurate approximation By some manipulation we get r x y xX y Y r R R R The term x y R is small and may b e neglected Then expansion in a p ower series yields r xX y Y xX y Y R r R R R Insertion of Eq into Eq yields ZZ ZZ xX y Y A A E X Y Z exp ik r tdS exp ik r t expik dS r R R A A To simplify the expression we intro duce the ap erture function A exp ik r t A Ax y x y expix y R which describ es the transmittance of the ob ject It contains an amplitude part A x y and a phase part x y R is constant with resp ect to the integration variables x and y Eq may now b e rewritten as ZZ 1 E X Y Z Ax y expik xX y Y R dxdy 1 The integration can b e extended to innity since the ap erture function is zero everywhere but in the ap erture In order to identify Eq as a twodimensional Fourier transform we dene the spatial frequencies k X k Y k k x y R R Inserted into Eq they yield ZZ 1 Ax y expik x k y dxdy E k k x y x y 1 Except for the names of the variables this is identical to Eq Consequen tly we have shown that the electric eld at Fraunhofer diraction is the Fourier transform of the ap erture function ie that E k k F fAx y g x y Since the ap erture function describ es the geometry of the ap erture this means the diraction pattern far away from the ob ject will b e its Fourier transform Tw odimensional images and transforms In order to b etter understand twodimensional images and their transforms well start with the easier onedimensional case Assume we have a function of one vari able f t and its transform F The function can always b e written as a sum of sine and cosine functions that is as a sum of dierent frequency comp onents The Fourier transform of the function will the b e the sum of the Fourier transforms of the trigonometric functions that constitute ft In two dimensions the same thing happ ens An image can b e viewed as a lot of sinusoidal lattices These lattices have dierent spatial frequencies and dierent orientations as illustrated in Fig The a ) b ) Figure Two sinusoidal gratings of dierent orientations Fourier transform of a sinusoidal lattice is three delta functions one in the origin and one to each side as illustrated in Fig The p ositions of the the delta pulses are determined by the spatial frequency of the lattice the higher the frequency the longer the distance to the origin and by its orientation This can easily b e deduced mathematically but we leave this to the interested student a ) b ) Figure The Fourier transforms of the gratings in Fig Task Some simple transforms Transforms of several identical parts If the ob ject consists of several identical parts the sup erp osition principle says the image will b e the sum of the electrical eld from each part Assume there are N 0 0 parts and that each of them gets the lo cal co ordinate system x y where the origin is at x y j N as illustrated in Fig Intro duce the notation j j Figure An ob ject consisting of four identical parts 0 0 Ax y and A x y for the total ap erture function and the ap erture function for one part resp ectively Then the total eld will b e ZZ N 1 0 0 X X x x Y y y j j 0 0 0 0 E X Y A x y exp ik dx dy R 1 j or ZZ N 1 0 0 X X x Y y X x Y y j j 0 0 0 0 ik dx dy exp ik E X Y A x y exp R R 1 j For simplicity intro duce the spatial frequences k and k as dened in Eq x y Then the eld my b e written as ZZ 0 N 1 X 0 0 0 0 0 0 A x y exp ik x k y dx dy exp ik x expik y E k k x y x j y j x y 1 j The sum at the end of the expression is a phase factor only it will not aect the pattern itself Consequently several identical parts give the same Fourier transform as one of the parts except for the extra phase factor This shows that the electrical eld E at the image plane is the Fourier transform of the ap erture function for one part of the pattern A multiplied by the Fourier transform of delta pulses at the origin of each part ie that N X 0 0 E F fAx y g F fA x y g F x x y y j j j Compare to the convolution theorem which says that F fAg F fA g F fg g F fA g g Tee conclusion is that several identical parts of a gure may b e describ ed as the ap erture function of the part convoluted with delta functions at the centre of each part as illustrated in Fig A A 1 g x= x* x Figure Several identical parts can mathematically b e describ ed as a convolution b etween one part and several delta functions Task The transform of two circles a Use two delta functions and a circ function to describ e two circles at a distance a from each other Place one circle at the origin and the other at a A circ function is dened as x y D circx y x y D where D
Recommended publications
  • The Green-Function Transform and Wave Propagation
    1 The Green-function transform and wave propagation Colin J. R. Sheppard,1 S. S. Kou2 and J. Lin2 1Department of Nanophysics, Istituto Italiano di Tecnologia, Genova 16163, Italy 2School of Physics, University of Melbourne, Victoria 3010, Australia *Corresponding author: [email protected] PACS: 0230Nw, 4120Jb, 4225Bs, 4225Fx, 4230Kq, 4320Bi Abstract: Fourier methods well known in signal processing are applied to three- dimensional wave propagation problems. The Fourier transform of the Green function, when written explicitly in terms of a real-valued spatial frequency, consists of homogeneous and inhomogeneous components. Both parts are necessary to result in a pure out-going wave that satisfies causality. The homogeneous component consists only of propagating waves, but the inhomogeneous component contains both evanescent and propagating terms. Thus we make a distinction between inhomogenous waves and evanescent waves. The evanescent component is completely contained in the region of the inhomogeneous component outside the k-space sphere. Further, propagating waves in the Weyl expansion contain both homogeneous and inhomogeneous components. The connection between the Whittaker and Weyl expansions is discussed. A list of relevant spherically symmetric Fourier transforms is given. 2 1. Introduction In an impressive recent paper, Schmalz et al. presented a rigorous derivation of the general Green function of the Helmholtz equation based on three-dimensional (3D) Fourier transformation, and then found a unique solution for the case of a source (Schmalz, Schmalz et al. 2010). Their approach is based on the use of generalized functions and the causal nature of the out-going Green function. Actually, the basic principle of their method was described many years ago by Dirac (Dirac 1981), but has not been widely adopted.
    [Show full text]
  • Fourier Optics
    Fourier Optics 1 Background Ray optics is a convenient tool to determine imaging characteristics such as the location of the image and the image magni¯cation. A complete description of the imaging system, however, requires the wave properties of light and associated processes like di®raction to be included. It is these processes that determine the resolution of optical devices, the image contrast, and the e®ect of spatial ¯lters. One possible wave-optical treatment considers the Fourier spectrum (space of spatial frequencies) of the object and the transmission of the spectral components through the optical system. This is referred to as Fourier Optics. A perfect imaging system transmits all spectral frequencies equally. Due to the ¯nite size of apertures (for example the ¯nite diameter of the lens aperture) certain spectral components are attenuated resulting in a distortion of the image. Specially designed ¯lters on the other hand can be inserted to modify the spectrum in a prede¯ned manner to change certain image features. In this lab you will learn the principles of spatial ¯ltering to (i) improve the quality of laser beams, and to (ii) remove undesired structures from images. To prepare for the lab, you should review the wave-optical treatment of the imaging process (see [1], Chapters 6.3, 6.4, and 7.3). 2 Theory 2.1 Spatial Fourier Transform Consider a two-dimensional object{ a slide, for instance that has a ¯eld transmission function f(x; y). This transmission function carries the information of the object. A (mathematically) equivalent description of this object in the Fourier space is based on the object's amplitude spectrum ZZ 1 F (u; v) = f(x; y)ei2¼ux+i2¼vydxdy; (1) (2¼)2 where the Fourier coordinates (u; v) have units of inverse length and are called spatial frequencies.
    [Show full text]
  • Diffraction Fourier Optics
    Lab 3: Diffraction & Fourier Optics This week in lab, we will continue our study of wave optics by looking at diffraction and Fourier optics. As you may recall from Lab 1, the Fourier transform gives us a way to go back and forth between time domain and frequency domain. Here we will explore how Fourier transforms are useful in optics. Learning Objectives: In this lab, students will: • Learn how to understand diffraction by extending the concept of interference (Huygens' principle) • Learn how spatial Fourier transforms arise in optical systems: o Lenses o Diffraction gratings. • Learn how to change an image by manipulating its Fourier transform. Huygen’s Principle Think back to the Pre-Lab assignment. You played around with the wave simulator (http://falstad.com/ripple/). Here you saw that we can create waves by arranging point sources in a certain way. It's done in technological applications like antenna arrays where you want to create a radio wave going in a certain direction. In ultrasound probes of the body an array of acoustic sources is used to create a wave that focuses at a certain point. In the simulation we used sources with the same phase, but if you vary the phase, you can also move the focused point around. In 1678, Huygens figured out that you could calculate how a wave propagates by making a cut in space and measuring the phase and amplitude everywhere on that plane. Then you place point emitters on the plane with the same amplitude and phase as you measured. The radiation from these point sources adds up to exactly the same wave you had coming in (Figure 1).
    [Show full text]
  • 15C Sp16 Fourier Intro
    Outline 1. Ray Optics Review 1. Image formation (slide 2) 2. Special cases of plane wave or point source (slide 3) 3. Pinhole Camera (slide 4) 2. Wave Optics Review 1. Definitions and plane wave example (slides 5,6) 2. Point sources and spherical waves (slide 7,8) 3. Introduction to Huygen’s wavelets 1. Plane wave example (slide 9) 4. Transmission of a plane wave through a single slit 1. Narrow slits and Huygen’s wavelets (slides 10,11) 2. Wider slits up to the geometric optics limit (slide 12) 3. Time average intensity patterns from single slits (slide 13) 5. Transmission of a plane wave through two slits 1. Narrow slits and Huygen’s wavelets (slides 14-17) 2. Calculating the time averaged intensity pattern observed on a screen (slides 20-22) 6. Wave view of lenses (slides 24,25) 7. 4f optical system and Fourier Transforms 1. Introduction (slide 26) and reminder that the laser produces a plane wave in the z direction, so the kx and ky components of the propagation vector are 0 2. Demonstration that the field amplitude pattern g(x,y) produced by the LCD results in diffraction that creates non-zero k vector components in the x and y directions such that the amplitude of the efield in the fourier transform plane corresponds to the kx ky components of the fourier transform of g(x,y) Lec 2 :1 Ray Optics Intro Assumption: Light travels in straight lines Ray optics diagrams show the straight lines along which the light propagates Rules for a converging lens with focal length f, with the optic axis defined as the line that goes through the center of the lens perpendicular to the plane containing the lens: 1.
    [Show full text]
  • Fourier Optics
    Fourier optics 15-463, 15-663, 15-862 Computational Photography http://graphics.cs.cmu.edu/courses/15-463 Fall 2017, Lecture 28 Course announcements • Any questions about homework 6? • Extra office hours today, 3-5pm. • Make sure to take the three surveys: 1) faculty course evaluation 2) TA evaluation survey 3) end-of-semester class survey • Monday are project presentations - Do you prefer 3 minutes or 6 minutes per person? - Will post more details on Piazza. - Also please return cameras on Monday! Overview of today’s lecture • The scalar wave equation. • Basic waves and coherence. • The plane wave spectrum. • Fraunhofer diffraction and transmission. • Fresnel lenses. • Fraunhofer diffraction and reflection. Slide credits Some of these slides were directly adapted from: • Anat Levin (Technion). Scalar wave equation Simplifying the EM equations Scalar wave equation: • Homogeneous and source-free medium • No polarization 1 휕2 훻2 − 푢 푟, 푡 = 0 푐2 휕푡2 speed of light in medium Simplifying the EM equations Helmholtz equation: • Either assume perfectly monochromatic light at wavelength λ • Or assume different wavelengths independent of each other 훻2 + 푘2 ψ 푟 = 0 2휋푐 −푗 푡 푢 푟, 푡 = 푅푒 ψ 푟 푒 휆 what is this? ψ 푟 = 퐴 푟 푒푗휑 푟 Simplifying the EM equations Helmholtz equation: • Either assume perfectly monochromatic light at wavelength λ • Or assume different wavelengths independent of each other 훻2 + 푘2 ψ 푟 = 0 Wave is a sinusoid at frequency 2휋/휆: 2휋푐 −푗 푡 푢 푟, 푡 = 푅푒 ψ 푟 푒 휆 ψ 푟 = 퐴 푟 푒푗휑 푟 what is this? Simplifying the EM equations Helmholtz equation:
    [Show full text]
  • Fourier Optics
    Phys 322 Chapter 11 Lecture 31 Fourier Optics Introduction Fourier Transform: definition and properties Fourier optics Introduction Motivation: 1) To understand how an image is formed. 2) To evaluate the quality of an optical system. Optical system Star (Telescope) Film Delta function Fourier transform Inverse Fourier and filtering transform The quality of the optical system: • The image is not as sharp as the object because some high frequencies are lost. • The filtering function determines the quality of the optical system. Fourier transform: 1D case Any function can be represented as a Fourier integral: angular spatial frequency k 2 / 1 f x Ak cos kx dk B k sin kx dk 00 Fourier sine transform of f(x) Fourier cosine transform of f(x) Ak f x cos kx dx Bk f x sin kx dx Alternatively, it could be represented in complex form: 1 f x Fk eikxdk complex 2 functions! ikx Fk f x e dx Fk A k iBk Fkei k Fourier transform 1 F(k) is Fourier transform of f(x): f x Fk eikxdk 2 Ffk Y x Fk f x eikxdx f(x) is inverse Fourier transform of F(k): -1 fx Y Fk Application to waves: 1 If f(t) is shape of a wave in time: f t F eitd 2 F f t eitdt Reminder: the Fourier Transform of a rectangle function: rect(t) 1/2 1 Fitdtit( ) exp( ) [exp( )]1/2 1/2 1/2 i 1 [exp(ii / 2) exp( i exp(ii / 2) exp( 2i sin( F() Imaginary F(sinc( Component = 0 Sinc(x) and why it's important Sinc(x/2) is the Fourier transform of a rectangle function.
    [Show full text]
  • Fundamentals of Modern Optics", FSU Jena, Prof
    Script "Fundamentals of Modern Optics", FSU Jena, Prof. T. Pertsch, FoMO_Script_2017-10-10s.docx 1 Fundamentals of Modern Optics Winter Term 2017/2018 Prof. Thomas Pertsch Abbe School of Photonics, Friedrich-Schiller-Universität Jena Table of content 0. Introduction ............................................................................................... 4 1. Ray optics - geometrical optics (covered by lecture Introduction to Optical Modeling) .............................................................................................. 15 1.1 Introduction ......................................................................................................... 15 1.2 Postulates ........................................................................................................... 15 1.3 Simple rules for propagation of light ................................................................... 16 1.4 Simple optical components ................................................................................. 16 1.5 Ray tracing in inhomogeneous media (graded-index - GRIN optics) .................. 20 1.5.1 Ray equation ............................................................................................ 20 1.5.2 The eikonal equation ................................................................................ 22 1.6 Matrix optics ........................................................................................................ 23 1.6.1 The ray-transfer-matrix ............................................................................
    [Show full text]
  • Fundamental Course: Fourier Optics
    Fundamental course: Fourier Optics Lecture notes Revision date: August 27, 2018 Simulation of the Point-Spread Function of a 39 pupils interferometer, with sub-apertures disposed on 3 concentric rings. Contents 0 Reminders about Fourier analysis 4 0.1 Some useful functions . .4 0.1.1 The rectangle function . .4 0.1.2 Dirac delta distribution . .5 0.1.3 Dirac comb . .6 0.2 Convolution . .7 0.2.1 Definition . .7 0.2.2 Properties . .7 0.3 Fourier transform . .9 0.3.1 Definition . .9 0.3.2 Properties . 10 0.3.3 Table of Fourier transforms . 11 1 Reminders about diffraction 12 1.1 Some particular kinds of waves . 12 1.1.1 Monochromatic waves . 12 1.1.2 Plane waves . 12 1.1.3 Spherical waves . 13 1.2 Huyghens-Fresnel principle . 16 1.2.1 Introduction . 16 1.2.2 Paraxial approximation and Fresnel diffraction . 16 1.2.3 Far field: Fraunhofer diffraction . 17 1.2.4 Example of Fraunhofer diffraction patterns . 18 2 Fourier properties of converging lenses 22 2.1 Phase screens . 22 2.1.1 Transmission coefficient of a thin phase screen . 22 2.1.2 Example: prism . 23 2.1.3 Converging lens . 23 2.2 Converging lenses and Fourier transform . 24 2.2.1 Object in the same plane as the lens . 25 2.2.2 Object at the front focal plane . 25 3 Coherent optical filtering 27 3.1 Principle . 27 3.2 Abbe-Porter experiments . 27 3.3 Object-image relation . 29 3.4 Low-pass and high-pass filters .
    [Show full text]
  • 21. Fourier Optics 21. Fourier Optics
    21.21. FourierFourier OpticsOptics OBJECT SPECTRUM Fourier Transformation Time domain Temporal frequency [ ft : 1/sec ] Space domain Spatial frequency [ fX : 1/m ] Fourier transform 과 Optics가 무슨 관련이 있는가? Spatial Frequency 란 무엇인가? Fourier Optics 는 어떤 유용성이 있는가? FourierFourier Transforms Transforms in in space-domain space-domain and and time-domain time-domain Object in Time Object in Space ft() g ( ) eit d Object f ()x g ()keikx dk gftedt() ()it Spectrum g()k f ()xeikx dx 2 f Angular Frequency t k 2 fS wave number 2 k Frequency 11 fS m Temporal Frequency Spatial Frequency FourierFourier TransformsTransforms Fourier Transform pair : One dimension Fourier Transform pair : Two dimensions FraunhoferFraunhofer diffraction diffraction andand FourierFourier TransformTransform Spectrum plane Fraunhofer approximation X 2 X kkX rr00 Spatial angular YY2 frequency kkY rr00 The Fraunhofer pattern EP is the Fourier transform of Es ! Remind!Remind!Diffraction Diffraction underunder paraxialparaxial approx.approx. PropertiesProperties ofof 1D1D FTFT PropertiesProperties ofof 1D1D FTFT -- scaling scaling -- There is an inverse scaling relation between functions and their transforms PropertiesProperties ofof 1D1D FTFT -- translation translation (shifting)(shifting) -- Shifting in the time -domain leads to phase delay in the frequency –domain (no shift in frequency -domain), so FT amplitude is unaltered. PropertiesProperties ofof 1D1D FTFT -- modulation modulation -- Modulation in the time -domain leads to frequency shifting in the
    [Show full text]
  • Fourier Transform Method
    Fourier Optics Prof. Gabriel Popescu Fourier Optics 1. Superposition principle • The output of a sum of inputs equals the sum of the respective outputs • Input examples: • force applied to a mass on a spring • voltage applied to a RLC circuit • optical field impinging on a piece of tissue • etc. • Output examples: • Displacement of the mass on the spring • Transport of charge through a wire • Optical field scattered by the tissue • Consequence: a complicated problem (input) can be broken into a number of simpler problems Prof.Prof. GabrielGabriel PopescuPopescu FourierFourier OpticsOptics 1. Superposition principle (12) ( ) (t) (2) • Two fields incident on the medium UU12+ UU12''+ • Two choices: • i) add the two inputs, 푈1 + 푈2, and solve for the output • ii) find the individual outputs, 푈′1, 푈′2 (t) (t) U1 U1 ' and add them up, 푈′1 + 푈′2 • Choice ii) employs the superposition Medium principle • We can decompose signals further: • Green’s method (t) (t) U2 U2 ' • Decompose signal in delta-functions • Fourier method • Decompose signal in sinusoids Figure 1.1. The superposition principle. The response of the system (e.g. a piece of glass) to the sum of two fields, U1+U2, is the same as the sum of the output of each field, U1’+U2’. Prof. Gabriel Popescu Fourier Optics 1.1. Green’s function method • Decompose input signal into a series of infinitely thin pulses • Dirac delta function: =,0x ()x = 0,x 0 • Normalization: (x ) dx = 1 − • Sampling: f()()()() x x− a = f a x − a Figure 1.2. Delta function in 1D(a), 2D(b), 3D(c) • Also note: (x ) f ( x ) dx= f (0) − Prof.
    [Show full text]
  • Diffraction and Fourier Optics
    Rice University Physics 332 DIFFRACTION AND FOURIER OPTICS I. Introduction!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! "# II. Theoretical considerations!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! $# III. Measurements !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!%$# IV. Analysis !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!%&# Revised July 2011 I. Introduction In this experiment, you will first examine some of the main features of the Huygens-Fresnel scalar theory of optical diffraction. This theory approximates the vector electric and magnetic fields with a single scalar function, and adopts a simplified representation of the interaction of an electromagnetic wave with matter. As you will see, the model accounts for a number of optical phenomena rather well. If one accepts the Huygens-Fresnel theory, it becomes possible to manipulate images by altering their spatial frequency spectrum in much the same way that electronic circuits manipulate sound by altering the temporal frequency spectrum. In the second part of the experiment, you will see how this is done in some simple cases. Most of the information you will need for the data
    [Show full text]
  • Fourier Optics
    Fourier Optics • Provides a description of the propagation of light based on an harmonic analysis • It is in essence a signal processing description of light propagation • Generally Fourier transform is of the form (time-frequency) • Or (space-spatial frequency) P. Piot, PHYS 630 – Fall 2008 Propagation of light through a system • We now deal with spatial frequency Fourier transforms and introduce the two-dimensional Fourier transform [associated to (x,y) plane] Fourier transform • The Fourier Optics allows easy description of a linear system space Fourier G(" x," y ) P. Piot, PHYS 630 – Fall 2008 ! Plane wave • Consider the plane wave y • This is a wave propagating with angle k z • At z=0 θy x θx • since Spatial harmonic with freq. νx, νy Wave period in x,y directions P. Piot, PHYS 630 – Fall 2008 Plane wave • In the paraxial approximation we have • The inclinations of the wave vector is directly proportional to the spatial frequencies • There is a one-to-one between and the harmonic • If is given then • If is given then P. Piot, PHYS 630 – Fall 2008 Propagation through an harmonic element • Consider a thin optical element with transmittance λ λ • The wave is modulated by an harmonic and thus • So the incident wave can be converted into a wave propagating with angle P. Piot, PHYS 630 – Fall 2008 Propagation through a thin element • Consider a thin optical element with transmittance • Then λ • Plane waves are going to be λ dispersed along the direction define by the spatial frequency contents of the element P. Piot, PHYS 630 – Fall 2008 amplitude modulation • Consider a thin optical element with transmittance • 1st term deflects wave at angles • Fourier transform of f(x,y) • So system deflects incoming wave at P.
    [Show full text]