A Comparison of Artificial Intelligence Algorithms for Dynamic Power

Total Page:16

File Type:pdf, Size:1020Kb

A Comparison of Artificial Intelligence Algorithms for Dynamic Power A Comparison of Artificial Intelligence Algorithms for Dynamic Power Allocation in Flexible High Throughput Satellites by Juan Jose Garau Luis Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2020 ○c Massachusetts Institute of Technology 2020. All rights reserved. Author................................................................ Department of Aeronautics and Astronautics May 13, 2020 Certified by. Prof. Edward F. Crawley Professor of Aeronautics and Astronautics Thesis Supervisor Accepted by . Sertac Karaman Associate Professor of Aeronautics and Astronautics Chair, Graduate Program Committee 2 A Comparison of Artificial Intelligence Algorithms for Dynamic Power Allocation in Flexible High Throughput Satellites by Juan Jose Garau Luis Submitted to the Department of Aeronautics and Astronautics on May 13, 2020, in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics Abstract The Dynamic Resource Management (DRM) problem in the context of multibeam satellite communications is becoming more relevant than ever. The future landscape of the industry will be defined by a substantial increase in demand alongside the introduction of digital and highly flexible payloads able to operate and reconfigure hundreds or even thousands of beams in real time. This increase in complexity and dimensionality puts the spotlight on new resource allocation strategies that use autonomous algorithms at the core of their decision-making systems. These algorithms must be able to find optimal resource allocations in real or near-real time. Traditional optimization approaches no longer meet all these DRM requirements and the research community is studying the application of Artificial Intelligence (AI) algorithms to the problem as a potential alternative that satisfies the operational constraints. Although multiple AI approaches have been proposed in the recent years, most of the analyses have been conducted under assumptions that do not entirely reflect the new operation scenarios’ requirements, such as near-real time performance or high- dimensionality. Furthermore, little work has been done in thoroughly comparing the performance of different algorithms and characterizing them. This Thesis considers the Dynamic Power Allocation problem, a DRM subproblem, as a use case and compares nine different AI algorithms under the same near-real time operational assumptions, using the same satellite and link budget models, and four different demand datasets. The study focuses on Genetic Algorithms (GA), Simulated Annealing (SA), Particle Swarm Optimization (PSO), Deep Reinforcement Learning (DRL), and hybrid approaches, including a novel DRL-GA hybrid. The comparison considers the following characteristics: time convergence, con- tinuous operability, scalability, and robustness. After evaluating the algorithms’ performance on the different test scenarios, three algorithms are identified as potential candidates to be used during real satellite operations. The novel DRL-GA implemen- tation shows the best overall performance, being also the most robust. When the 3 update frequency is in the order of seconds, DRL is identified as the best algorithm, since it is the fastest. Finally, when the online data substantially diverges from the training dataset of the DRL algorithm, both DRL and DRL-GA hybrid might not perform adequately and an individual GA might be the best option instead. Thesis Supervisor: Prof. Edward F. Crawley Title: Professor of Aeronautics and Astronautics 4 Acknowledgments This Thesis has not been written under normal circumstances. Right now the world is suffering the social, economic, and structural effects of the COVID-19 global pandemic. My first thoughts of gratitude go to all healthcare workers on the front line andpeople carrying out essential tasks that keep our society moving. I also appreciate the efforts that my advisor, the department of Aeronautics and Astronautics, and MIT have made to facilitate my work during these months. I would like to sincerely thank my advisor, Prof. Edward Crawley, and Dr. Bruce Cameron for their support, advice, and guidance throughout these past two years. Ed, Bruce, I really appreciate your honest input and implication to make this research project succeed. It is truly an honor to work side by side with you. I would also like to thank everyone else that has been part of this research project. First, I really appreciate the support received from SES, especially the feedback and motivation from Joel Grotz and Valvanera Moreno. Next, I would like to express my gratitude to my labmate Markus Guerster, with whom I have shared many moments of joy during the project. Markus, working together on this project has been a rewarding learning experience, I sincerely wish you all the best in your future endeavors. I also appreciate the valuable inputs and help received from Dr. Kalyan Veeramachaneni. I would like to acknowledge the rest of my labmates who also have been part of this project at some point during these two years. Nils, Damon, Rubén, and Skylar, you have been a source of inspiration and stimulating discussions, best of luck on your next steps. The rest of my labmates at the Engineering Systems Lab have been a key factor to succeed in this first part of my graduate studies. Sydney, Matt, Alex, Anne, Eric, Beldon, George, Tommy, Katie, Michael, thank you for your constant encouragement and for all the fun times together. I would also like to show my appreciation to my former labmate, Íñigo del Portillo, for his valuable advice and honest guidance during my first year at the lab. I do not want to miss the chance to say thank youforthe invaluable administrative support I always get from Amy Jarvis, Beth Marois, and 5 Ping Lee, and the counseling received from Suraiya Baluch. Going through these two years would not have been possible without the support of my roomate Marc de Cea. Marc, I feel very fortunate to share the MIT adventure with you. I am also deeply grateful to my friends for their continous doses of joy and fun throughout these two years: María, Inés, Helena, Ximo, Alex, Dani, Álvaro, Reus, Íñigo, Ondrej, Lukas, Regina, Faisal. Also, being part of Spain@MIT has been so much fun! I also want to thank the tremendous support received from my family and friends in Spain. Big thanks to my parents, Ana and Simón, for encouraging me to work hard and aim high. Also, thanks to my grandparents, godparents, aunts, uncles, cousins and the rest of my family for motivating me and constantly checking in. I am also deeply grateful to my closest friends – you know who you are – who always show me that distance is nothing when it comes to our friendship. Finally, I would like to dedicate this Thesis to my late grandmother Antònia, who passed away shortly before it was completed. Thank you for everything you have done for me, pradina. 6 Contents 1 Introduction 19 1.1 Motivation . 19 1.2 General Objectives . 22 1.3 Literature Review . 23 1.4 Specific Objectives . 26 1.5 Thesis Overview . 28 2 Dynamic Power Allocation in Multibeam Satellites 31 2.1 Introduction . 31 2.2 Dynamic Resource Management . 32 2.3 Multibeam Satellite Communications Systems . 33 2.3.1 Overview . 33 2.3.2 Dynamic Resource Management in Multibeam Satellites . 35 2.3.3 Artificial Intelligence for the DRM problem in satellite commu- nications . 38 2.4 Dynamic Power Allocation Problem . 40 2.4.1 Power Allocation and Transmission . 41 2.4.2 Problem Statement . 43 2.4.3 Objective Metrics . 45 3 Algorithm Implementations 47 3.1 Introduction . 47 3.2 Metaheuristics . 47 7 3.2.1 Genetic Algorithm . 48 3.2.2 Simulated Annealing . 49 3.2.3 Particle Swarm Optimization . 52 3.3 Deep Reinforcement Learning . 53 3.4 Hybrid Algorithms . 58 3.4.1 SA-GA Hybrid . 58 3.4.2 PSO-GA Hybrid . 59 3.4.3 DRL-GA Hybrid . 60 4 Simulation Models 61 4.1 Introduction . 61 4.2 Satellite Model . 61 4.3 Demand Models . 62 4.4 Link Budget Model . 64 5 Results 67 5.1 Introduction . 67 5.2 Convergence Analyses . 68 5.3 Continuous Operation Performance . 71 5.4 Scalability Analyses . 77 5.5 Robustness Analyses . 81 5.5.1 Sequential Activation . 82 5.5.2 Spurious Events . 85 5.5.3 Non-stationarity . 88 5.5.4 Conclusions on robustness . 92 6 Conclusions 95 6.1 Thesis Summary . 95 6.2 Main Findings . 97 6.3 Future Work . 99 8 A Additional Figures 101 A.1 Convergence Analyses . 101 A.2 Continuous Operation . 102 A.3 Scalability Analyses . 104 A.4 Robustness Analyses . 109 B Metric details 113 B.1 Satisfaction-Gap Measure . 113 B.2 Power calculation heuristic . 114 9 10 List of Figures 1-1 Data rate provided by a slightly flexible system (blue) and a highly flexible system (green) with respect to the requested data rate (red). The amount of resource savings corresponds to the area between the green and the blue curves. ...... 20 2-1 Multibeam satellite with 7 beams. ................. 34 3-1 DRL Architecture. ........................... 55 4-1 Normalized aggregated demand plot for the four scenarios considered. ................................ 64 5-1 Average aggregated power and 95% confidence interval against computing time available. Power is normalized with respect to the optimal aggregated power. Reference scenario used. 70 5-2 Average aggregated UD and 95% confidence interval against computing time available. UD is normalized with respect to the aggregated demand. Reference scenario used. ....... 70 5-3 Aggregated power delivered by every algorithm during the continuous execution simulations. Power is normalized with respect to the optimal aggregated power (optimal power is 1). Reference scenario used. ....................... 72 11 5-4 Aggregated UD achieved by every algorithm during the con- tinuous execution simulations. UD is normalized with respect to aggregated demand (optimal UD is 0).
Recommended publications
  • A Public Transport Bus Assignment Problem: Parallel Metaheuristics Assessment
    David Fernandes Semedo Licenciado em Engenharia Informática A Public Transport Bus Assignment Problem: Parallel Metaheuristics Assessment Dissertação para obtenção do Grau de Mestre em Engenharia Informática Orientador: Prof. Doutor Pedro Barahona, Prof. Catedrático, Universidade Nova de Lisboa Co-orientador: Prof. Doutor Pedro Medeiros, Prof. Associado, Universidade Nova de Lisboa Júri: Presidente: Prof. Doutor José Augusto Legatheaux Martins Arguente: Prof. Doutor Salvador Luís Bettencourt Pinto de Abreu Vogal: Prof. Doutor Pedro Manuel Corrêa Calvente de Barahona Setembro, 2015 A Public Transport Bus Assignment Problem: Parallel Metaheuristics Assess- ment Copyright c David Fernandes Semedo, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. Aos meus pais. ACKNOWLEDGEMENTS This research was partly supported by project “RtP - Restrict to Plan”, funded by FEDER (Fundo Europeu de Desenvolvimento Regional), through programme COMPETE - POFC (Operacional Factores de Competitividade) with reference 34091. First and foremost, I would like to express my genuine gratitude to my advisor profes- sor Pedro Barahona for the continuous support of my thesis, for his guidance, patience and expertise. His general optimism, enthusiasm and availability to discuss and support new ideas helped and encouraged me to push my work always a little further.
    [Show full text]
  • Solving the Maximum Weight Independent Set Problem Application to Indirect Hex-Mesh Generation
    Solving the Maximum Weight Independent Set Problem Application to Indirect Hex-Mesh Generation Dissertation presented by Kilian VERHETSEL for obtaining the Master’s degree in Computer Science and Engineering Supervisor(s) Jean-François REMACLE, Amaury JOHNEN Reader(s) Jeanne PELLERIN, Yves DEVILLE , Julien HENDRICKX Academic year 2016-2017 Acknowledgments I would like to thank my supervisor, Jean-François Remacle, for believing in me, my co-supervisor Amaury Johnen, for his encouragements during this project, as well as Jeanne Pellerin, for her patience and helpful advice. 3 4 Contents List of Notations 7 List of Figures 8 List of Tables 10 List of Algorithms 12 1 Introduction 17 1.1 Background on Indirect Mesh Generation . 17 1.2 Outline . 18 2 State of the Art 19 2.1 Exact Resolution . 19 2.1.1 Approaches Based on Graph Coloring . 19 2.1.2 Approaches Based on MaxSAT . 20 2.1.3 Approaches Based on Integer Programming . 21 2.1.4 Parallel Implementations . 21 2.2 Heuristic Approach . 22 3 Hybrid Approach to Combining Tetrahedra into Hexahedra 25 3.1 Computation of the Incompatibility Graph . 25 3.2 Exact Resolution for Small Graphs . 28 3.2.1 Complete Search . 28 3.2.2 Branch and Bound . 29 3.2.3 Upper Bounds Based on Clique Partitions . 31 3.2.4 Upper Bounds based on Linear Programming . 32 3.3 Construction of an Initial Solution . 35 3.3.1 Local Search Algorithms . 35 3.3.2 Local Search Formulation of the Maximum Weight Independent Set . 36 3.3.3 Strategies to Escape Local Optima .
    [Show full text]
  • Cognicrypt: Supporting Developers in Using Cryptography
    CogniCrypt: Supporting Developers in using Cryptography Stefan Krüger∗, Sarah Nadiy, Michael Reifz, Karim Aliy, Mira Meziniz, Eric Bodden∗, Florian Göpfertz, Felix Güntherz, Christian Weinertz, Daniel Demmlerz, Ram Kamathz ∗Paderborn University, {fistname.lastname}@uni-paderborn.de yUniversity of Alberta, {nadi, karim.ali}@ualberta.ca zTechnische Universität Darmstadt, {reif, mezini, guenther, weinert, demmler}@cs.tu-darmstadt.de, [email protected], [email protected] Abstract—Previous research suggests that developers often reside on the low level of cryptographic algorithms instead of struggle using low-level cryptographic APIs and, as a result, being more functionality-oriented APIs that provide convenient produce insecure code. When asked, developers desire, among methods such as encryptFile(). When it comes to tool other things, more tool support to help them use such APIs. In this paper, we present CogniCrypt, a tool that supports support, participants suggested tools like a CryptoDebugger, developers with the use of cryptographic APIs. CogniCrypt analysis tools that find misuses and provide code templates assists the developer in two ways. First, for a number of common or generate code for common functionality. These suggestions cryptographic tasks, CogniCrypt generates code that implements indicate that participants not only lack the domain knowledge, the respective task in a secure manner. Currently, CogniCrypt but also struggle with APIs themselves and how to use them. supports tasks such as data encryption, communication over secure channels, and long-term archiving. Second, CogniCrypt In this paper, we present CogniCrypt, an Eclipse plugin that continuously runs static analyses in the background to ensure enables easier use of cryptographic APIs. In previous work, a secure integration of the generated code into the developer’s we outlined an early vision for CogniCrypt [2].
    [Show full text]
  • Analysis and Processing of Cryptographic Protocols
    Analysis and Processing of Cryptographic Protocols Submitted in partial fulfilment of the requirements of the degree of Bachelor of Science (Honours) of Rhodes University Bradley Cowie Grahamstown, South Africa November 2009 Abstract The field of Information Security and the sub-field of Cryptographic Protocols are both vast and continually evolving fields. The use of cryptographic protocols as a means to provide security to web servers and services at the transport layer, by providing both en- cryption and authentication to data transfer, has become increasingly popular. However, it is noted that it is rather difficult to perform legitimate analysis, intrusion detection and debugging on data that has passed through a cryptographic protocol as it is encrypted. The aim of this thesis is to design a framework, named Project Bellerophon, that is capa- ble of decrypting traffic that has been encrypted by an arbitrary cryptographic protocol. Once the plain-text has been retrieved further analysis may take place. To aid in this an in depth investigation of the TLS protocol was undertaken. This pro- duced a detailed document considering the message structures and the related fields con- tained within these messages which are involved in the TLS handshake process. Detailed examples explaining the processes that are involved in obtaining and generating the var- ious cryptographic components were explored. A systems design was proposed, considering the role of each of the components required in order to produce an accurate decryption of traffic encrypted by a cryptographic protocol. Investigations into the accuracy and the efficiency of Project Bellerophon to decrypt specific test data were conducted.
    [Show full text]
  • MULTIVALUED SUBSETS UNDER INFORMATION THEORY Indraneel Dabhade Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 8-2011 MULTIVALUED SUBSETS UNDER INFORMATION THEORY Indraneel Dabhade Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Applied Mathematics Commons Recommended Citation Dabhade, Indraneel, "MULTIVALUED SUBSETS UNDER INFORMATION THEORY" (2011). All Theses. 1155. https://tigerprints.clemson.edu/all_theses/1155 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. MULTIVALUED SUBSETS UNDER INFORMATION THEORY _______________________________________________________ A Thesis Presented to the Graduate School of Clemson University _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science Industrial Engineering _______________________________________________________ by Indraneel Chandrasen Dabhade August 2011 _______________________________________________________ Accepted by: Dr. Mary Beth Kurz, Committee Chair Dr. Anand Gramopadhye Dr. Scott Shappell i ABSTRACT In the fields of finance, engineering and varied sciences, Data Mining/ Machine Learning has held an eminent position in predictive analysis. Complex algorithms and adaptive decision models have contributed towards streamlining directed research as well as improve on the accuracies in forecasting. Researchers in the fields of mathematics and computer science have made significant contributions towards the development of this field. Classification based modeling, which holds a significant position amongst the different rule-based algorithms, is one of the most widely used decision making tools. The decision tree has a place of profound significance in classification-based modeling. A number of heuristics have been developed over the years to prune the decision making process.
    [Show full text]
  • The Maritime Pickup and Delivery Problem with Cost and Time Window Constraints: System Modeling and A* Based Solution
    The Maritime Pickup and Delivery Problem with Cost and Time Window Constraints: System Modeling and A* Based Solution CHRISTOPHER DAMBAKK SUPERVISOR Associate Professor Lei Jiao University of Agder, 2019 Faculty of Engineering and Science Department of ICT Abstract In the ship chartering business, more and more shipment orders are based on pickup and delivery in an on-demand manner rather than conventional scheduled routines. In this situation, it is nec- essary to estimate and compare the cost of shipments in order to determine the cheapest one for a certain order. For now, these cal- culations are based on static, empirical estimates and simplifications, and do not reflect the complexity of the real world. In this thesis, we study the Maritime Pickup and Delivery Problem with Cost and Time Window Constraints. We first formulate the problem mathe- matically, which is conjectured NP-hard. Thereafter, we propose an A* based prototype which finds the optimal solution with complexity O(bd). We compare the prototype with a dynamic programming ap- proach and simulation results show that both algorithms find global optimal and that A* finds the solution more efficiently, traversing fewer nodes and edges. iii Preface This thesis concludes the master's education in Communication and Information Technology (ICT), at the University of Agder, Nor- way. Several people have supported and contributed to the completion of this project. I want to thank in particular my supervisor, Associate Professor Lei Jiao. He has provided excellent guidance and refreshing perspectives when the tasks ahead were challenging. I would also like to thank Jayson Mackie, co-worker and friend, for proofreading my report.
    [Show full text]
  • Author Guidelines for 8
    Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020 Easy and Efficient Hyperparameter Optimization to Address Some Artificial Intelligence “ilities” Trevor J. Bihl Joseph Schoenbeck Daniel Steeneck & Jeremy Jordan Air Force Research Laboratory, USA The Perduco Group, USA Air Force Institute of Technology, USA [email protected] [email protected] {Daniel.Steeneck; Jeremy.Jordan}@afit.edu hyperparameters. This is a complex trade space due to Abstract ML methods being brittle and not robust to conditions outside of those on which they were trained. While Artificial Intelligence (AI), has many benefits, attention is now given to hyperparameter selection [4] including the ability to find complex patterns, [5], in general, as mentioned in Mendenhall [6], there automation, and meaning making. Through these are “no hard-and-fast rules” in their selection. In fact, benefits, AI has revolutionized image processing their selection is part of the “art of [algorithm] design” among numerous other disciplines. AI further has the [6], as appropriate hyperparameters can depend potential to revolutionize other domains; however, this heavily on the data under consideration itself. Thus, will not happen until we can address the “ilities”: ML methods themselves are often hand-crafted and repeatability, explain-ability, reliability, use-ability, require significant expertise and talent to appropriately train and deploy. trust-ability, etc. Notably, many problems with the “ilities” are due to the artistic nature of AI algorithm development, especially hyperparameter determination. AI algorithms are often crafted products with the hyperparameters learned experientially. As such, when applying the same Accuracy w w w w algorithm to new problems, the algorithm may not w* w* w* w* w* perform due to inappropriate settings.
    [Show full text]
  • Constructing Parallel Algorithms for Discrete Transforms
    Constructing Parallel Algorithms for Discrete Transforms From FFTs to Fast Legendre Transforms Constructie van Parallelle Algoritmen voor Discrete Transformaties Van FFTs tot Snelle Legendre Transformaties met een samenvatting in het Nederlands Proefschrift ter verkrijging van de graad van do ctor aan de Universiteit Utrecht op gezag van de Rector Magnicus Prof dr H O Voorma inge volge het b esluit van het College voor Promoties in het op enbaar te verdedigen op woensdag maart des middags te uur do or Marcia Alves de Inda geb oren op augustus te Porto Alegre Brazilie Promotor Prof dr Henk A van der Vorst Copromotor Dr Rob H Bisseling Faculteit Wiskunde en Informatica Universiteit Utrecht Mathematics Sub ject Classication T Y C Inda Marcia Alves de Constructing Parallel Algorithms for Discrete Transforms From FFTs to Fast Legendre Transforms Pro efschrift Universiteit Utrecht Met samenvatting in het Nederlands ISBN The work describ ed in this thesis was carried out at the Mathematics Department of Utrecht University The Netherlands with nancial supp ort by the Fundacao Co or denacao de Ap erfeicoamento de Pessoal de Nivel Sup erior CAPES Aos carvoeiros In my grandmothers Ega words a family that is always together my family Preface The initial target of my do ctoral research with parallel discrete transforms was to develop a parallel fast Legendre transform FLT algorithm based on the sequential DriscollHealy algorithm To do this I had to study their algorithm in depth This task was greatly simplied thanks to previous work
    [Show full text]
  • A Comprehensible Guide to Recent Nature-Inspired Algorithms Arxiv
    Mitigating Metaphors: A Comprehensible Guide to Recent Nature-Inspired Algorithms∗ Michael A. Lonesy Abstract In recent years, a plethora of new metaheuristic algorithms have explored different sources of inspiration within the biological and natural worlds. This nature-inspired approach to algorithm design has been widely criticised. A notable issue is the ten- dency for authors to use terminology that is derived from the domain of inspiration, rather than the broader domains of metaheuristics and optimisation. This makes it difficult to both comprehend how these algorithms work and understand their relationships to other metaheuristics. This paper attempts to address this issue, at least to some extent, by providing accessible descriptions of the most cited nature- inspired algorithms published in the last twenty years. It also discusses common- alities between these algorithms and more classical nature-inspired metaheuristics such as evolutionary algorithms and particle swarm optimisation, and finishes with a discussion of future directions for the field. 1 Introduction This paper is intended to be an objective guide to the most popular nature-inspired opti- misation algorithms published since the year 2000, measured by citation count. It is not the first paper to review this area [15, 65, 67], but it is arguably the first to present these algorithms in terms that will be familiar to the broader optimisation, metaheuristics, evolutionary computation, and swarm computing communities. Unlike some previous reviews, it does not aim to advocate for this area of research or provide support for the idea of designing algorithms based upon observations of natural systems. It only aims to report and summarise what already exists in more accessible terms.
    [Show full text]
  • Experiments with Kemeny Ranking: What Works When?
    Experiments with Kemeny Ranking: What Works When? Alnur Alia, Marina Meilab a1 Microsoft Way, Microsoft, Redmond, WA, 98052, U.S.A. bUniversity of Washington, Department of Statistics, Seattle, WA, 98195, U.S.A. Abstract This paper performs a comparison of several methods for Kemeny rank aggregation (104 algorithms and combinations thereof in total) originating in social choice theory, machine learning, and theoretical computer science, with the goal of establishing the best trade-offs between search time and performance. We find that, for this theoretically NP-hard task, in practice the problems span three regimes: strong consensus, weak consensus, and no consensus. We make specific recommendations for each, and propose a computationally fast test to distinguish between the regimes. In spite of the great variety of algorithms, there are few classes that are consistently Pareto optimal. In the most interesting regime, the inte- ger program exact formulation, local search algorithms and the approximate version of a theoretically exact branch and bound algorithm arise as strong contenders. Keywords: Kemeny ranking, consensus ranking, branch and bound, sorting, experimental evaluation 1. Introduction Preference aggregation has been extensively studied by economists un- der social choice theory. Arrow discussed certain desirable properties that a ranking rule must have and showed that no rule can simultaneously satisfy them all [2]. Thus, a variety of models of preference aggregation have been Email addresses: [email protected] (Alnur Ali), [email protected] (Marina Meila) Preprint submitted to Mathematical Social Sciences July 11, 2011 proposed, each of which satisfy subsets of properties deemed desirable. In theoretical computer science, too, many applications of preference aggrega- tion exist, including merging the results of various search engines [8, 14], collaborative filtering [26], and multiagent planning [16].
    [Show full text]
  • Compression of Signal on Graphs with the Application to Image and Video Coding
    USC–SIPI REPORT #438 COMPRESSION OF SIGNAL ON GRAPHS WITH THE APPLICATION TO IMAGE AND VIDEO CODING By Yung-Hsuan Chao December 2017 Signal and Image Processing Institute UNIVERSITY OF SOUTHERN CALIFORNIA USC Viterbi School of Engineering Department of Electrical Engineering-Systems 3740 McClintock Avenue, Suite 400 Los Angeles, CA 90089-2564 U.S.A. U S C P.D. D COMPRESSION OF SIGNAL ON GRAPHS WITH THE APPLICATION TO IMAGE AND VIDEO CODING Author: Supervisor: Yung-Hsuan C Dr. Antonio O A Dissertation Presented to the FACULTY OF THE USC GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy (ELECTRICAL ENGINEERING) December 2017 Copyright 2017 Yung-Hsuan Chao iii Abstract In this Ph.D. dissertation, we discuss several graph-based algorithms for transform coding in image and video compression applications. Graphs are generic data structures that are useful in representing signals in various applications. Different from the classic transforms such as Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT), graphs can represent signals on irregular and high dimensional domains, e.g. social networks, sensor networks. For regular signals such as images and videos, graphs can adapt to local charac- teristics such as edges and therefore provide more flexibility than conventional transforms. A frequency interpretation for signal on graphs can be derived using the Graph Fourier Trans- form (GFT). By properly adjusting the graph structure, e.g. connectivity and weights, based on signal characteristics, the GFT can provide compact representations even for signals with discontinuities. However, the GFT has high implementation complexity, making it less ap- plicable in signals of large size, e.g.
    [Show full text]
  • Comparative Evaluations of Image Encryption Algorithms
    Comparative Evaluations of Image Encryption Algorithms Zhe Liu A thesis submitted to the Auckland University of Technology in partial fulfillment of the requirements for the degree of Master of Computer and Information Sciences (MCIS) 2018 School of Engineering, Computer and Mathematical Sciences Abstract Information security has become a significant issue for protecting the secret information during transmission in practical applications in the era of information. A raft of information security schemes have been used in image encryption. These schemes can be divided into two domains; the first one encrypts the images based on spatial domain, the typical method of spatial image encryption technology is in use of chaotic system, most of the earlier encryption methods are belong to this domain; the other encrypts images on frequency domain, most of the optical image encryption methods are processed in this domain. In this thesis, a slew of approaches for image encryption have been proposed. The contributions of this thesis are listed as follows. (1) We design the improved encryption method based on traditional Double Random Phase Encoding (DRPE) method and use Discrete Cosine Transform (DCT) to replace Discrete Fourier Transform (DFT) so as to avoid operations on complex numbers; we use a logistic map to generate random matrices instead of random phase masks in the traditional DRPE so as to decrease the size of secret keys. (2) We design the encryption method based on traditional watermarking scheme by using Discrete Wavelet Transform (DWT), DCT and Singular Value Decomposition (SVD) together, the proposed DWT-DCT-SVD method has higher robustness than traditional chaotic scrambling method and DRPE method.
    [Show full text]