Building Information Modelling for Building Control Information
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to LONWORKS System
Introduction to the LONWORKS® System Version 1.0 C o r p o r a t i o n 078-0183-01A Echelon, LON, LONWORKS, LonPoint, LonTalk, Neuron, LONMARK, 3120, 3150, the LonUsers logo, the Echelon logo, and the LONMARK logo are registered trademarks of Echelon Corporation. LonMaker and LonSupport are trademarks of Echelon Corporation. Other brand and product names are trademarks or registered trademarks of their respective holders. Neuron Chips, LonPoint Modules, and other OEM Products were not designed for use in equipment or systems which involve danger to human health or safety or a risk of property damage and Echelon assumes no responsibility or liability for use of the Neuron Chips or LonPoint Modules in such applications. Parts manufactured by vendors other than Echelon and referenced in this document have been described for illustrative purposes only, and may not have been tested by Echelon. It is the responsibility of the customer to determine the suitability of these parts for each application. ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Echelon Corporation. Printed in the United States of America. Copyright © 1999 by Echelon Corporation. -
Unit Controller Bacnet Setup Guide 508112-01 2/2021
LENNOX® CORE™ UNIT CONTROLLER BACNET SETUP GUIDE 508112-01 2/2021 Table of Contents 1. BACnet Quick Start .....................................2 2.1. CORE Unit Controller BACnet MS/TP 6. Troubleshooting ..........................................8 1.1. Network Connections ................................2 Interface Specifications and Default 7. Object Definitions ......................................16 Settings .....................................................3 1.2. General .....................................................2 7.1. Analog Output .........................................16 2.2. Configuring BACnet MS/TP ......................4 1.3. Pairing Lennox® CORE Service App 7.2. Analog Input ............................................17 2.3. Additional Configuration Steps..................4 to CORE Unit Controller............................2 7.3. Analog Value ...........................................19 2.4. BACnet MS/TP Cabling ............................4 1.4. Enabling the CORE Unit Controller 7.4. Character String Values ..........................20 BACnet Interface.......................................2 2.5. Connections for BACnet MS/TP ...............4 7.5. Multi-State Values ...................................20 1.5. Integrating the CORE Unit Controller 2.6. BACnet MS/TP Network Bus Termination .5 8. Room Sensor Set Points ..........................21 into a BAS System 2.7. General BACnet MS/TP Guidelines ..........5 9. Application Details ....................................22 (Single-Zone): ...........................................2 -
Lonworks® Platform Revision 2
Introduction to the LonWorks® Platform revision 2 ® 078-0183-01B Echelon, LON, LonWorks, LonMark, NodeBuilder, , LonTalk, Neuron, 3120, 3150, LNS, i.LON, , ShortStack, LonMaker, the Echelon logo, and are trademarks of Echelon Corporation registered in the United States and other countries. LonSupport, , , OpenLDV, Pyxos, LonScanner, LonBridge, and Thinking Inside the Box are trademarks of Echelon Corporation. Other trademarks belong to their respective holders. Neuron Chips, Smart Transceivers, and other OEM Products were not designed for use in equipment or systems which involve danger to human health or safety or a risk of property damage and Echelon assumes no responsibility or liability for use of the Neuron Chips in such applications. Parts manufactured by vendors other than Echelon and referenced in this document have been described for illustrative purposes only, and may not have been tested by Echelon. It is the responsibility of the customer to determine the suitability of these parts for each application. ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Echelon Corporation. Printed in the United States of America. Copyright -
Lonworks Twisted Pair Control Module User's Guide
LONWORKS® Twisted Pair Control Module User’s Guide 078-0015-01F Echelon, LONWORKS, LONMARK, NodeBuilder, LonTalk, Neuron, 3120, 3150, ShortStack, LonMaker, and the Echelon logo are trademarks of Echelon Corporation registered in the United States and other countries. Other brand and product names are trademarks or registered trademarks of their respective holders. Smart Transceivers, Neuron Chips, and other OEM Products were not designed for use in equipment or systems, which involve danger to human health or safety, or a risk of property damage and Echelon assumes no responsibility or liability for use of the Smart Transceivers or Neuron Chips in such applications. Parts manufactured by vendors other than Echelon and referenced in this document have been described for illustrative purposes only, and may not have been tested by Echelon. It is the responsibility of the customer to determine the suitability of these parts for each application. ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Echelon Corporation. Printed in the United States of America. Copyright © 1992, 2011 Echelon Corporation. Echelon Corporation www.echelon.com Welcome Echelon’s LONWORKS® Twisted Pair Control Modules contain the core elements for device designs using LONWORKS technology. The core elements of a control module are an FT 5000 Smart Transceiver or Neuron® 3150® Chip, crystal clock circuit, I2C EEPROM or JEDEC MO-052 AE PLCC memory socket (32-pin rectangular), Communications Transformer or twisted pair transceiver, and unbuffered access to the I/O, SERVICE~, and RESET~ signals. -
Bacnet Guide of the Device Used to Verify Which Services Are Supported
BACnet MS/TP Overview Manual This manual includes: Network Wiring Guidelines BACnet Address (Mac & Device Instance) - Setting Information Baud Rate - Setting Information Trouble Shooting Tips BACnet MSTP Overview Manual-160405.docx BACnet MS/TP Overview Manual Contents Introduction ................................................................................................................................................... 1 About BACnet ............................................................................................................................................... 1 About MS/TP Protocol .................................................................................................................................. 2 EIA-485 ................................................................................................................................................. 2 Wiring .................................................................................................................................................... 2 Network Cable Type ............................................................................................................................. 4 Maximum Number of Devices .............................................................................................................. 4 Maximum Network Length .................................................................................................................... 4 Shield Wiring Recommendations ........................................................................................................ -
And Tec220x-4(+PIR) Series LONWORKS Network Staged Thermostat Controllers
TEC226x-4(+PIR) and TEC220x-4(+PIR) Series LONWORKS® Network Staged Thermostat Controllers Code No. LIT-12011611 Technical Bulletin Issued February 8, 2010 Network Variables (NVs) and Configuration Parameters (CPs) List. 3 Network Variable Inputs (NVIs) Table . 8 Network Variable Outputs (NVOs) Table . 10 Configuration Properties (CPs) . 13 Space Comfort Controller Object . 18 Commissioning the Thermostat Using a LONWORKS Network Configuration Tool . 18 Service Pin . 19 TEC22xx-4 Configuration Plug-in. 19 Installing the Plug-in. 19 Registering the Plug-in. 20 Using LN Browser to Display NVs, NCIs, and CPs . 22 Running the Plug-in . 27 Heating - Cooling Tab . 31 Hardware Tab . 32 General Tab . 33 Model Tab . 34 Scheduler Tab . 36 Network Tab . 38 About Tab . 39 Adding a Thermostat to the Network Automation Engine (NAE) . 39 LONWORKS Thermostat Controller Mapping . 40 Preparation . 40 Troubleshooting Guide . 40 Technical Specifications . 43 TEC226x-4(+PIR) and TEC220x-4(+PIR) Series LONWORKS Network Staged Thermostat Controllers . 43 TEC226x-4(+PIR) and TEC220x-4(+PIR) Series LONWORKS® Network Staged 1 Thermostat Controllers Technical Bulletin 2 TEC226x-4(+PIR) and TEC220x-4(+PIR) Series LONWORKS® Network Staged Thermostat Controllers Technical Bulletin TEC226x-4(+PIR) and TEC220x-4(+PIR) Series LONWORKS® Network Staged Thermostat Controllers Technical Bulletin Network Variables (NVs) and Configuration Parameters (CPs) List Table 1 shows the NVs and CPs for the TEC226x-4(+PIR) and TEC220x-4(+PIR) Series Thermostat Controllers. Each Network Variable Input (NVI), Network Variable Output (NVO), and Network Configuration Input (NCI) has a reference number as defined in the XIF Resource File, and some objects have a subcategory number. -
Tec22x6(H)-2 Series LONWORKS® Network Thermostats with Two Outputs, Dehumidification Capability, and Three Code No
TEC22x6(H)-2 Series LONWORKS® Network Thermostats with Two Outputs, Dehumidification Capability, and Three Code No. LIT-12011118 Speeds of Fan Control Issued August 11, 2006 Product Bulletin Supersedes May 24, 2006 The TEC22x6(H)-2 Series Thermostats are LONWORKS® network devices that provide control of two- or four-pipe fan coils, cabinet unit heaters, or other equipment using on/off, floating, or proportional 0 to 10 VDC control input, dehumidification capability, and up to three speeds of fan control. The technologically advanced TEC22x6(H)-2 Series Thermostats feature a Building Automation System (BAS) LONWORKS network communication capability that enables remote monitoring and programmability for efficient space temperature control. Specific models are available to accommodate commercial and hospitality applications. The TEC22x6(H)-2 Series Thermostats feature an intuitive user interface with backlit display that makes setup and operation quick and easy. The thermostats also employ a unique, Proportional-Integral (PI) time-proportioning algorithm that virtually eliminates Figure 1: TEC22x6-2 Series LONWORKS temperature offset associated with traditional, Network Thermostat with Two Outputs, differential-based thermostats. Dehumidification Capability, and Three Speeds of Fan Control Table 1: Features and Benefits Features Benefits LONWORKS Network Communication Provides compatibility with a proven communication network; LONWORKS network is widely accepted by Heating, Ventilating, and Air Conditioning (HVAC) control suppliers. Integral Humidity Sensing Capability and Increases occupancy comfort by providing dehumidification. Dehumidification Capability (Dehumidification Models) Backlit Liquid Crystal Display (LCD) Offers real-time control status of the environment in easy-to-read, English plain text messages with constant backlight that brightens during user interaction. On/Off, Floating, or Proportional 0 to 10 VDC Offers additional application flexibility by providing more advanced control Control signals. -
Zigbee-Based System for Remote Monitoring and Control of Switches
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. ZigBee-Based System for Remote Monitoring and Control of Switches A thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering at Massey University, Albany, New Zealand. © Matthew Lyon October 2010 1 Abstract Home automation technology has existed for nearly four decades, but is nonetheless mostly absent in the average home today. The systems that do exist are often highly customised and expensive, catering to a very niche market, or overly sophisticated and complicated. Many of these also require extensive, dedicated cabling as their communications backbone and as such are only practical to install during the construction of a new house. The core aims of this project are to develop a cheap and simple home automation system that can be easily installed in new and existing houses. These aims are achieved by creating a centralised system where most of the intelligence is managed by a PC server and the end nodes are kept as simple as possible. The server is responsible for basic security, maintaining awareness of the current system state and providing the user interface. At the outer edge of the system is a ZigBee network of wall switches and, in between, a home gateway provides a protocol translation service between the two. The new, “smart” switches are designed to be entirely compatible with existing wall switches in terms of their mounting and wiring requirements, and so ZigBee is chosen to provide a reliable wireless communication channel between the end nodes and the gateway. -
FFU-HE High Efficiency Fan Filter Unit
FFU-HE High Efficiency Fan Filter Unit Price High-Efficiency Fan Filter Units (FFU-HE) are the most energy efficient line of fan filter units (fan filter modules) on the market today. Designed specifically for use in cleanrooms, pharmacies, pharmaceutical manufacturing facilities and laboratories, the FFU-HE delivers high volumes of HEPA (or ULPA) filtered air at low sound levels while reducing energy consumption by 15 to 50% versus comparable products. Typical Applications Fan Filter Units are used in critical FFU-HE, Roomside FFU-HE, Bench Top Removable Filter Replaceable Filter applications such as healthcare, Ducted Inlet Non-Ducted pharmaceutical compounding, or microelectronics manufacturing. With the integrated HEPA or ULPA filters, ultra-clean air is delivered with a unidirectional vertical downward airflow pattern into the space. The integrated high efficiency motors are designed to overcome the static pressure of the filter, and are ideal for retrofit applications where the FFU-HE Filter Options air handler is not able to provide the required static. Product Information FFU-HE is available in 24x24, 24x36 and 24x48 modules, in both aluminum, stainless steel and hybrid construction. Both PSC and EC motors are available, and have been optimized for industry leading energy efficiency. HEPA filters are typical, while ULPA are available as an option. FEATURES AND OPTIONS High Energy Efficiency • High Energy Efficiency • Industry leading energy efficiency means lower operating costs, potentially saving thousands of dollars in electricity per year. • High Airflow Capacity • Energy consumption as low as 55 Watts at 90 fpm (2x4 module) • Complete Control and • See performance data for specific energy consumptions Monitoring via BACnet High Airflow Capacity • Roomside Removable • High airflow capacity per unit means fewer units and lower first cost (RSR) filter • Active filter area is maximized with the Bench Top Replaceable (BTR) filter, with 2x4 units able to achieve up to 930 CFM. -
SMART HOME SYSTEMS with the Contribution Of
Branko Dvoršak Juraj Havelka Elena Mainardi Hrvoje Pandžić Tea Selič Mario Tretinjak SMART HOME SYSTEMS With the contribution of: Vanja Husein Claudia Pacchiega Goran Švast 2 This publication is part of the SHVET project (https://www.smart-hvet.eu/), and has been made possible with the contribution of (in alphabetical order): Center Republike Slovenije za poklicno Izobraževanje (Slovenia) Centoform (Italy) Ecipa Nordest (Italy) Območna Obrtno-Podjetniška zbornica Krško (Slovenia) Obrtničko učilište – ustanova za obrazovanje odraslih (Croatia) Šolski center Novo mesto (Slovenia) Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva (Croatia) This project has been funded with support from the European Commission. This publication reflects the views only of the authors and the Commission cannot be held responsible for any use which may be made of the information contained therein. 3 TABLE OF CONTENTS page 1 INTRODUCTION 4 1.1 WHAT EXACTLY IS A "SMART HOUSE" 5 1.2 HOME AND BUILDING AUTOMATION 6 1.3 FUNCTIONS YOU CAN DO WITH A SMART HOME SYSTEM 6 2 DIFFERENCE BETWEEN A SMART HOME SYSTEM AND A STANDARD ELECTRIC PLANT 13 2.1 ELEMENTS OF A CLASSIC RESIDENTIAL INSTALLATION 13 2.2 STRUCTURE OF A SMART HOME SYSTEM 18 2.3 MODULES OF A SMART HOME SYSTEM 20 3 SMART HOME SYSTEM TECHNOLOGIES 26 3.1 OVERVIEW OF AUTOMATION AND CONTROL TECHNOLOGIES 25 3.2 WHY KONNEX 28 4 KONNEX 30 4.1 HISTORY OF KNX/EIB AND KONNEX ORGANIZATION 30 4.2 TRANSMISSION MEDIA 30 4.3 NET ARCHITECTURE 32 4.4 TOPOLOGY 35 4.5 ADDRESSES 36 4.6 TELEGRAM 38 4.7 PARAMETERIZATION -
Kingspan Solar Heat Pipe Collectors 34
COMPLETE COMMERCIAL SOLAR THERMAL SOLUTIONS TECHNICAL GUIDE COMPLETE SOLAR THERMAL SOLUTIONS KINGSPAN SOLAR CONTENTS INTRODUCTION 5 PRODUCT RANGE 31 SOLAR RADIATION ACROSS THE UK & IRELAND 6 SOLAR THERMAL SYSTEMS PRODUCT OVERVIEW 32 HOW IT WORKS: SOLAR THERMAL SYSTEM 7 KINGSPAN SOLAR HEAT PIPE COLLECTORS 34 BUSINESS CASE KINGSPAN SOLAR DIRECT FLOW COLLECTOR 38 • WHY SOLAR THERMAL ENERGY? 8 KINGSPAN SOLAR FRAMES 40 • IS MY BUILDING SUITABLE? 10 VARISOL, AWARD WINNING SOLAR COLLECTORS 42 • MARKET SECTOR APPLICATIONS 12 FLAT PLATE SOLAR COLLECTORS 44 ENGINEERING, SERVICE & SUPPORT 14 UNIQUE FEATURES OF KINGSPAN SOLAR TUBES 46 COMMITTED TO GREEN BUILDINGS 16 • TUBE DESIGN 46 CASE STUDIES 19 • BENEFITS 47 EVACUATED TUBE COMPARISONS 50 • FIN-IN-TUBE COPY / SINGLE-WALLED TUBE 50 • SYDNEY TUBE / DOUBLE-WALLED TUBE 55 KINGSPAN PUMP STATIONS 56 SYSTEM TECHNICAL CONSIDERATIONS 59 CONTROLS & MONITORING 79 SIZING GUIDELINES 60 SOLAR THERMAL SYSTEM CONTROLS, COMPONENTS & MONITORING 80 COLLECTOR LAYOUT & ITS EFFECT ON THE SYSTEM 72 COMPLETE SOLAR THERMAL SOLUTIONS KINGSPAN SOLAR INTRODUCTION CERTIFICATION & WARRANTY STATEMENT 87 KINGSPAN 97 HEAT PIPE COLLECTORS INSULATED PANELS 98 • HEAT PIPE COLLECTORS 88 BENCHMARK 99 • DIRECT FLOW COLLECTORS 89 INSULATION 100 • VARISOL HEAT PIPE COLLECTORS 90 PRODUCT RANGE • VARISOL DIRECT FLOW COLLECTORS 92 INSULATED DOOR COMPONENTS 101 • HAIL IMPACT TEST CERTIFICATION 93 ACCESS FLOORS 101 • WARRANTY STATEMENT 95 CONSIDERATIONS SYSTEM TECHNICAL CONTROLS & MONITORING PLEASE VISIT: www.makethesunwork.com CERTIFICATION & WARRANTY STATEMENT KINGSPAN This document is not for use as a design tool, it is for guidance only and designs should be reviewed by our technical team. All solar thermal systems should be fully designed by a competent engineer. -
Open Systems for Homes and Buildings: Comparing Lonworks and KNX Alan Kell Peter Colebrook I&I Limited
Open Systems for Homes and Buildings: Comparing LonWorks and KNX Alan Kell Peter Colebrook i&i limited No part of this publication may be transmitted or reproduced in any form or by any means, electronic or mechanical, for any purpose, without the prior written permission of i&i limited. Trademarks and Logos i&i and Proplan are trademarks of i&i limited. KNX, EIB, European Installation Bus, EHS, European Home Systems and BatiBUS are trademarks of The Konnex Association and its constituent associations; European Installation Bus Association (EIBA), European Home Systems Association (EHSA) and Club BatiBUS International (BCI). Echelon, LON, LONWORKS, LONMARK, LonBuilder, NodeBuilder, LonManager, LonTalk, LonUsers, LonPoint, Digital Home, Neuron, 3120, 3150, LNS, i.LON, LONWORLD, the Echelon logo, and the LonUsers logo are trademarks of Echelon Corporation registered in the United States and other countries. LonMaker, Panoramix, and Networked Energy Services Powered by Echelon are trademarks of Echelon Corporation. All other brand names and product names are trademarks or registered trademarks of their respective holders. About i&i limited Alan Kell was the principal author of the 1993 study by DEGW etl1 entitled “Bus Systems for Building Control” which was the first detailed study in this area to compare, among others, EIB and LONWORKS in the context of building control. Peter Colebrook collaborated closely with Siemens in Regensburg in the late 1980’s, was one of the 12 founder signatories of the European Installation Bus Association (EIBA) and subsequently served as a Director of that Association. He was also one of the founders of the LONMARK Interoperability Association and similarly served as a Director of that Association.