Review on Unmanned Underwater Robotics, Structure Designs, Materials, Sensors, Actuators, and Navigation Control

Total Page:16

File Type:pdf, Size:1020Kb

Review on Unmanned Underwater Robotics, Structure Designs, Materials, Sensors, Actuators, and Navigation Control Hindawi Journal of Robotics Volume 2021, Article ID 5542920, 26 pages https://doi.org/10.1155/2021/5542920 Review Article Review on Unmanned Underwater Robotics, Structure Designs, Materials, Sensors, Actuators, and Navigation Control Javier Neira, Cristhel Sequeiros, Richard Huamani, Elfer Machaca, Paola Fonseca, and Wilder Nina Veox Inc., Arequipa, Peru Correspondence should be addressed to Wilder Nina; [email protected] Received 21 February 2021; Accepted 7 June 2021; Published 6 July 2021 Academic Editor: L. Fortuna Copyright © 2021 Javier Neira et al. (is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Since its beginning, around the 50s decade, until present days, the area of unmanned underwater vehicles (UUV) has considerably grown through time; those have been used for many tasks and applications, from bomb searching and recovery to sea exploration. Initially, these robots were used mainly for military and scientific purposes. However, nowadays, they are very much extended into civils, and it is not hard to find them being used for recreation. In this context, the present research is an effort to make a walkthrough of evolution in this area, showing a diversity of structure designs, used materials, sensor and instrumentation technologies, kinds and the number of actuators employed, navigation control techniques, and what is new in development trends. (e paper gives a clear starting point for those who are initializing into this research area; also, it brings some helpful knowledge for those who already have experience. 1. Introduction to have an impact on the future survival of humanity. (at is why researchers have strived to develop unmanned vehicles Robotics is a branch of engineering that involves the con- that are increasingly efficient and can provide work and cept, design, manufacture, and operation of programmable maintenance services underwater, as well as explorations of machines, which can develop their autonomy in the exe- ever deeper marine environments. For example, there are an cution of a specific task. Submarine robotics can be sub- estimated 2 billion tons of manganese nodules in the Pacific divided as shown in Figure 1, where one can identify those Ocean near the Hawaiian Islands [2]. related to underwater robotics (unmanned water vehicles). (e UUVs are identified in Figure 1. Mainly, they are Underwater robotics have been developed for decades, and subdivided into those that are remotely operated (ROV) and they were characterized by manned water vehicles devel- those that are autonomous (AUV). (e ROV is a vehicle opment. However, in the last decades, due to the cost joined to an umbilical cable, and, according to its applica- demanded by the construction and use of these vehicles, tion, it can be classified into observation, work, and special researchers led to the development of robots or unmanned purpose [3, 4]. ROVs play a vital role in military operations underwater vehicles (UUV), where each time the robots (e.g., torpedo and mine recovery), rescue operations (e.g., were optimized and used in a wide variety of applications for locating historic shipwrecks, such as the RMS Titanic), and the benefit and sustainable development of the planet. Since critical oil and gas operations. In recent years, the range of there is an immense magnitude of the oceans and due to the vehicles and mimitizing the need for human operators have human difficulty for their exploration, the vast majority of increased due to research efforts. However, we have au- them have not yet been explored (two-thirds of the planet) tonomous vehicles (AUVs); these are indispensable tools, and around 37% of the world’s population is less than mainly for ocean exploration tasks. (ey are built using 100 kilometres from the ocean [1]. (is means that various high-end technologies and equipped with several of knowledge of the marine environment has and will continue them [5, 6]. During the subsea exploration process, the AUV 2 Journal of Robotics Robots Unmanned Workers Zoomorphic Humanoids vehicles Industrial With wings Androids Space Of service With legs Aerial With fins Terrestrial Aquatic Figure 1: Location of unmanned water vehicles within a basic robotics classification. performs necessary maintenance and repairs, transports the movements, such as jellyfishes, stingrays, and sharks. Even necessary equipment, and monitors and records different though underwater robots that use thrusters with symmetrical situations under exploration. In oceanographic research, the geometric shapes are generally more efficient, many works in AUV may be used in various measurements; one of them is bioinspired robots are being developed and continue looking to for the observation, release, and recovery of instruments increase knowledge in this study area. related to the monitoring of submarine volcanoes, in ad- dition to carrying out surveys of the seabed and various studies in areas such as biology and hydrology. 2.2. By Hull Type. Some robots work underwater; those are (e unmanned vehicles’ structural designs have been of two hull types, open and close. (e open ones generally based on their shape, actuators’ distribution, and materials have a hermetic box that is over a frame, and the other used. (ey include monitoring and measurement tasks of components like engines, buoyancy elements, sensors, and oceanographic variables and navigation of the UUV; to lights are over it too, while the closest ones have a bigger case achieve these objectives, it will be necessary to have a di- that covers all elements; they do not have a frame because all versity of sensors. Everything presented is the subject of elements are inside of the case. (e prototypes or designs analysis in this article. (is article is structured as follows: which have a close hull usually have a cylindrical or round Section 2analyzes the morphologies used which are char- geometric shapes; for example, there are some which look acterized by their type of hull and geometric shape and those like a torpedo or a sphere. that are bioinspired; additionally, it considers the distri- bution of propellants, materials used, and hermeticity. 2.3. By Geometric Shape. One of the most famous shapes of Section 3presents the instrumentation and actuation ele- underwater robots is the cylindrical shape, and on the top ments used interchangeably in ROVs and AUVs. Section they have the appearance of a dome, which means they look 4analyzes the navigation, orientation, and movement’s like a torpedo. In 1973, one of the first portable ROVs was control of both ROVs and AUVs. Finally, the conclusions of made, and it had a torpedo shape as shown in Figure 2. this work are presented in Section 5. (e robot was hydraulically controlled from the surface, and it began to be controlled with electricity. (at was the main 2. Structural Designs and Used Materials reason of its popularity, ten years later, 500 prototypes were sold. (ose kinds of shapes come from military technology 2.1. Morphologies. (e morphological review refers to un- developments like many other technological advances. In this derwater robots’ geometrical shape, which is dependent on specific situation, the form comes from torpedoes that were on many factors like internal electronic devices distribution, military ships; this is the case of MK-38. sensor, motors, structure stability, and drag coefficient de- In the Applied Physics Laboratory of Washington fined to move the robot, among others. Additionally, it must University, some modifications to a torpedo were made, and take the robot’s degrees of freedom into account, since this is it became an inspiration to create the REMUS robot in 1994 needed to locate motors in the structure correctly. [8]; a schematic of such robot is shown in Figure 3. (is kind of robot does not necessarily have a geometrical (e design was of a cylindrical shape, and it moved shape; there are many ROVs and AUVs with biomimetic thanks to only one propeller behind the robot and four fins structure; (at is to say, they try to mimic aquatic animal’s behind the propellers; two of them were located on a vertical Journal of Robotics 3 (ere are new studies that have been done during the last few years about different shapes of underwater robots. In comparison, those have advantages compared with tradi- tional shapes, since their forms are symmetrical. In an in- vestigation project, the goal was to control the position of the symmetrical robot in events of disturbances with a pro- portional change of the direction force from propellers; all their motors were inside of the closed hull. (e design was developed in 2012, and it had a diameter of 40 cm and weighted 6.3 kg. (is spherical robot is shown in Figure 8. (e assembly of the mechanical components which are Figure 2: Snoopy ROV [7]. inside of the robot was made manually, and it caused troubles in the robot’s operation underwater because the robot was less stable, and it could not move for long periods. axis, and they had their drive mechanism like the ones that Figure 9 shows some of the improvements made with a 3D were located on a horizontal axis. (ey were there to give printer to fabricate the mechanism for the water jets [15]. direction to the robot. (e robot had a length of 114 cm with (e robot has two servomotors and a water jet in each leg. a diameter of 18 cm and a weight of 40 kg. (e torpedo shape For its movements, one servomotor is first turned vertically is still used because of hydrodynamic advantages. to lift the propeller of the water jet; then, the horizontal In 1997, the REMUS robot’s development continued with servomotor moves the propeller of the water jet to go for- one smaller model that a person could uphold and transport.
Recommended publications
  • Remote and Autonomous Controlled Robotic Car Based on Arduino with Real Time Obstacle Detection and Avoidance
    Universal Journal of Engineering Science 7(1): 1-7, 2019 http://www.hrpub.org DOI: 10.13189/ujes.2019.070101 Remote and Autonomous Controlled Robotic Car based on Arduino with Real Time Obstacle Detection and Avoidance Esra Yılmaz, Sibel T. Özyer* Department of Computer Engineering, Çankaya University, Turkey Copyright©2019 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Abstract In robotic car, real time obstacle detection electronic devices. The environment can be any physical and obstacle avoidance are significant issues. In this study, environment such as military areas, airports, factories, design and implementation of a robotic car have been hospitals, shopping malls, and electronic devices can be presented with regards to hardware, software and smartphones, robots, tablets, smart clocks. These devices communication environments with real time obstacle have a wide range of applications to control, protect, image detection and obstacle avoidance. Arduino platform, and identification in the industrial process. Today, there are android application and Bluetooth technology have been hundreds of types of sensors produced by the development used to implementation of the system. In this paper, robotic of technology such as heat, pressure, obstacle recognizer, car design and application with using sensor programming human detecting. Sensors were used for lighting purposes on a platform has been presented. This robotic device has in the past, but now they are used to make life easier. been developed with the interaction of Android-based Thanks to technology in the field of electronics, incredibly device.
    [Show full text]
  • An Overview of Novel Actuators for Soft Robotics
    actuators Review An Overview of Novel Actuators for Soft Robotics Pinar Boyraz 1,2,* ID , Gundula Runge 3 and Annika Raatz 3 1 Mechanics and Maritime Sciences Department, Chalmers University of Technology, 41296 Gothenburg, Sweden 2 Mechanical Engineering Department, Istanbul Technical University, Istanbul 34437, Turkey 3 Institut fur Montagetechnik (match), Leibniz Universität Hannover, 30823 Garbsen, Hannover, Germany; [email protected] (G.R.); [email protected] (A.R.) * Correspondence: [email protected]; Tel.: +46-730-49-8780 Received: 10 June 2018; Accepted: 9 August 2018; Published: 16 August 2018 Abstract: In this systematic survey, an overview of non-conventional actuators particularly used in soft-robotics is presented. The review is performed by using well-defined performance criteria with a direction to identify the exemplary and potential applications. In addition to this, initial guidelines to compare the performance and applicability of these novel actuators are provided. The meta-analysis is restricted to five main types of actuators: shape memory alloys (SMAs), fluidic elastomer actuators (FEAs), shape morphing polymers (SMPs), dielectric electro-activated polymers (DEAPs), and magnetic/electro-magnetic actuators (E/MAs). In exploring and comparing the capabilities of these actuators, the focus was on eight different aspects: compliance, topology-geometry, scalability-complexity, energy efficiency, operation range, modality, controllability, and technological readiness level (TRL). The overview presented here provides a state-of-the-art summary of the advancements and can help researchers to select the most convenient soft actuators using the comprehensive comparison of the suggested quantitative and qualitative criteria. Keywords: soft-robotics; actuator performance; SMA; SMP; FEA; DEAP; E/MA 1.
    [Show full text]
  • AI, Robots, and Swarms: Issues, Questions, and Recommended Studies
    AI, Robots, and Swarms Issues, Questions, and Recommended Studies Andrew Ilachinski January 2017 Approved for Public Release; Distribution Unlimited. This document contains the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the sponsor. Distribution Approved for Public Release; Distribution Unlimited. Specific authority: N00014-11-D-0323. Copies of this document can be obtained through the Defense Technical Information Center at www.dtic.mil or contact CNA Document Control and Distribution Section at 703-824-2123. Photography Credits: http://www.darpa.mil/DDM_Gallery/Small_Gremlins_Web.jpg; http://4810-presscdn-0-38.pagely.netdna-cdn.com/wp-content/uploads/2015/01/ Robotics.jpg; http://i.kinja-img.com/gawker-edia/image/upload/18kxb5jw3e01ujpg.jpg Approved by: January 2017 Dr. David A. Broyles Special Activities and Innovation Operations Evaluation Group Copyright © 2017 CNA Abstract The military is on the cusp of a major technological revolution, in which warfare is conducted by unmanned and increasingly autonomous weapon systems. However, unlike the last “sea change,” during the Cold War, when advanced technologies were developed primarily by the Department of Defense (DoD), the key technology enablers today are being developed mostly in the commercial world. This study looks at the state-of-the-art of AI, machine-learning, and robot technologies, and their potential future military implications for autonomous (and semi-autonomous) weapon systems. While no one can predict how AI will evolve or predict its impact on the development of military autonomous systems, it is possible to anticipate many of the conceptual, technical, and operational challenges that DoD will face as it increasingly turns to AI-based technologies.
    [Show full text]
  • AUV Adaptive Sampling Methods: a Review
    applied sciences Review AUV Adaptive Sampling Methods: A Review Jimin Hwang 1 , Neil Bose 2 and Shuangshuang Fan 3,* 1 Australian Maritime College, University of Tasmania, Launceston 7250, TAS, Australia; [email protected] 2 Department of Ocean and Naval Architectural Engineering, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; [email protected] 3 School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, Guangdong, China * Correspondence: [email protected] Received: 16 July 2019; Accepted: 29 July 2019; Published: 2 August 2019 Abstract: Autonomous underwater vehicles (AUVs) are unmanned marine robots that have been used for a broad range of oceanographic missions. They are programmed to perform at various levels of autonomy, including autonomous behaviours and intelligent behaviours. Adaptive sampling is one class of intelligent behaviour that allows the vehicle to autonomously make decisions during a mission in response to environment changes and vehicle state changes. Having a closed-loop control architecture, an AUV can perceive the environment, interpret the data and take follow-up measures. Thus, the mission plan can be modified, sampling criteria can be adjusted, and target features can be traced. This paper presents an overview of existing adaptive sampling techniques. Included are adaptive mission uses and underlying methods for perception, interpretation and reaction to underwater phenomena in AUV operations. The potential for future research in adaptive missions is discussed. Keywords: autonomous underwater vehicle(s); maritime robotics; adaptive sampling; underwater feature tracking; in-situ sensors; sensor fusion 1. Introduction Autonomous underwater vehicles (AUVs) are unmanned marine robots. Owing to their mobility and increased ability to accommodate sensors, they have been used for a broad range of oceanographic missions, such as surveying underwater plumes and other phenomena, collecting bathymetric data and tracking oceanographic dynamic features.
    [Show full text]
  • Development of an Open Humanoid Robot Platform for Research and Autonomous Soccer Playing
    Development of an Open Humanoid Robot Platform for Research and Autonomous Soccer Playing Karl J. Muecke and Dennis W. Hong RoMeLa: Robotics and Mechanisms Lab Virginia Tech Blacksburg, VA 24061 [email protected], [email protected] Abstract This paper describes the development of a fully autonomous humanoid robot for locomotion research and as the first US entry in to RoboCup. DARwIn (Dynamic Anthropomorphic Robot with Intelligence) is a humanoid robot capable of bipedal walking and performing human like motions. As the years have progressed, DARwIn has evolved from a concept to a sophisticated robot platform. DARwIn 0 was a feasibility study that investigated the possibility of making a humanoid robot walk. Its successor, DARwIn I, was a design study that investigated how to create a humanoid robot with human proportions, range of motion, and kinematic structure. DARwIn IIa built on the name ªhumanoidº by adding autonomy. DARwIn IIb improved on its predecessor by adding more powerful actuators and modular computing components. Finally, DARwIn III is designed to take the best of all the designs and incorporate the robot's most advanced motion control yet. Introduction Dynamic Anthropomorphic Robot with Intelligence (DARwIn), a humanoid robot, is a sophisticated hardware platform used for studying bipedal gaits that has evolved over time. Five versions of DARwIn have been developed, each an improvement on its predecessor. The first version, DARwIn 0 (Figure 1a), was used as a design study to determine the feasibility of creating a humanoid robot abd for actuator evaluation. The second version, DARwIn I (Figure 1b), used improved gaits and software.
    [Show full text]
  • Customizing a Self-Healing Soft Pump for Robot
    ARTICLE https://doi.org/10.1038/s41467-021-22391-x OPEN Customizing a self-healing soft pump for robot ✉ Wei Tang 1, Chao Zhang 1 , Yiding Zhong1, Pingan Zhu1,YuHu1, Zhongdong Jiao 1, Xiaofeng Wei1, ✉ Gang Lu1, Jinrong Wang 1, Yuwen Liang1, Yangqiao Lin 1, Wei Wang1, Huayong Yang1 & Jun Zou 1 Recent advances in soft materials enable robots to possess safer human-machine interaction ways and adaptive motions, yet there remain substantial challenges to develop universal driving power sources that can achieve performance trade-offs between actuation, speed, portability, and reliability in untethered applications. Here, we introduce a class of fully soft 1234567890():,; electronic pumps that utilize electrical energy to pump liquid through electrons and ions migration mechanism. Soft pumps combine good portability with excellent actuation per- formances. We develop special functional liquids that merge unique properties of electrically actuation and self-healing function, providing a direction for self-healing fluid power systems. Appearances and pumpabilities of soft pumps could be customized to meet personalized needs of diverse robots. Combined with a homemade miniature high-voltage power con- verter, two different soft pumps are implanted into robotic fish and vehicle to achieve their untethered motions, illustrating broad potential of soft pumps as universal power sources in untethered soft robotics. ✉ 1 State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China. email: [email protected]; [email protected] NATURE COMMUNICATIONS | (2021) 12:2247 | https://doi.org/10.1038/s41467-021-22391-x | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22391-x nspired by biological systems, scientists and engineers are a robotic vehicle to achieve untethered and versatile motions Iincreasingly interested in developing soft robots1–4 capable of when the customized soft pumps are implanted into them.
    [Show full text]
  • Position Control for Soft Actuators, Next Steps Toward Inherently Safe Interaction
    electronics Article Position Control for Soft Actuators, Next Steps toward Inherently Safe Interaction Dongshuo Li, Vaishnavi Dornadula, Kengyu Lin and Michael Wehner * Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA 95064, USA; [email protected] (D.L.); [email protected] (V.D.); [email protected] (K.L.) * Correspondence: [email protected] Abstract: Soft robots present an avenue toward unprecedented societal acceptance, utility in popu- lated environments, and direct interaction with humans. However, the compliance that makes them attractive also makes soft robots difficult to control. We present two low-cost approaches to control the motion of soft actuators in applications common in human-interaction tasks. First, we present a passive impedance approach, which employs restriction to pneumatic channels to regulate the inflation/deflation rate of a pneumatic actuator and eliminate the overshoot/oscillation seen in many underdamped silicone-based soft actuators. Second, we present a visual servoing feedback control approach. We present an elastomeric pneumatic finger as an example system on which both methods are evaluated and compared to an uncontrolled underdamped actuator. We perturb the actuator and demonstrate its ability to increase distal curvature around the obstacle and maintain the desired end position. In this approach, we use the continuum deformation characteristic of soft actuators as an advantage for control rather than a problem to be minimized. With their low cost and complexity, these techniques present great opportunity for soft robots to improve human–robot interaction. Citation: Li, D.; Dornadula, V.; Lin, Keywords: soft robot; human–robot interaction; control K.; Wehner, M. Position Control for Soft Actuators, Next Steps toward Inherently Safe Interaction.
    [Show full text]
  • Lab Notebook – Soft Robotics
    Technology Lab: Lab Notebook – Soft Robotics ã2018 Boy Scouts of America. All rights reserved. No portion of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means without the proper written permission of the Boy Scouts of America or as expressly permitted by law. The design of a circle divided into four quadrants with wavy lines along the perimeter (the “BSA STEM logo”) is a trademark of the Boy Scouts of America. Lab Notebook Soft Robotics OVERVIEW ........................................................................................................................... 3 MEETING 1: SOFT ROBOT STRUCTURES ............................................................................. 5 MEETING 2: POWERING SOFT ROBOTS ............................................................................. 16 MEETING 3: BUILD A SOFT ROBOTIC GRASPER ............................................................... 24 MEETING 4: BUILD A SOFT TENTACLE-ARM ROBOT – PART 1 ......................................... 30 MEETING 5: BUILD A SOFT TENTACLE-ARM ROBOT – PART 2 ........................................ 36 MEETING 6: PROGRAMMING MOTIONS ............................................................................41 2 Lab Notebook Soft Robotics Overview This module will delve into an exciting and newly developing branch of robotics—soft or flexible robotic structures. When you look at an elephant’s trunk or an octopus’s arm, you can see natural examples of flexible structures used to grasp and manipulate objects. There are many tasks in our world that a rigid structure just does not perform well. Soft Robotics explores the development of flexible structures to work in these areas. In this module, you and your team will explore the concept of soft robots and learn how flexible structures move and how they can be programmed to perform useful tasks. This module was developed by the REACH Lab at the University of Tennessee, Knoxville. The group focuses on medical applications of robots and soft robots, and the mathematics behind them.
    [Show full text]
  • Architectures of Soft Robotic Locomotion Enabled by Simple
    Architectures of Soft Robotic Locomotion Enabled by Simple Mechanical Principles Liangliang Zhu a, c, Yunteng Cao a, Yilun Liu b, Zhe Yang a, Xi Chen c* a International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China b State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China c Columbia Nanomechanics Research Center, Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA Abstract In nature, a variety of limbless locomotion patterns flourish from the small or basic life form (Escherichia coli, the amoeba, etc.) to the large or intelligent creatures (e.g., slugs, starfishes, earthworms, octopuses, jellyfishes, and snakes). Many bioinspired soft robots based on locomotion have been developed in the past decades. In this work, based on the kinematics and dynamics of two representative locomotion modes (i.e., worm-like crawling and snake-like slithering), we propose a broad set of innovative designs for soft mobile robots through simple mechanical principles. Inspired by and go beyond existing biological systems, these designs include 1-D (dimensional), 2-D, and 3-D robotic locomotion patterns enabled by simple actuation of continuous beams. We report herein over 20 locomotion modes achieving various locomotion * Corresponding author at: Columbia Nanomechanics Research Center, Department of Earth and Environmental Engineering, Columbia University, New York, NY10027, USA. Tel.: +1 2128543787. E-mail address: [email protected] (X. Chen). 1 functions, including crawling, rising, running, creeping, squirming, slithering, swimming, jumping, turning, turning over, helix rolling, wheeling, etc.
    [Show full text]
  • Learning Preference Models for Autonomous Mobile Robots in Complex Domains
    Learning Preference Models for Autonomous Mobile Robots in Complex Domains David Silver CMU-RI-TR-10-41 December 2010 Robotics Institute Carnegie Mellon University Pittsburgh, Pennsylvania, 15213 Thesis Committee: Tony Stentz, chair Drew Bagnell David Wettergreen Larry Matthies Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Robotics Copyright c 2010. All rights reserved. Abstract Achieving robust and reliable autonomous operation even in complex unstruc- tured environments is a central goal of field robotics. As the environments and scenarios to which robots are applied have continued to grow in complexity, so has the challenge of properly defining preferences and tradeoffs between various actions and the terrains they result in traversing. These definitions and parame- ters encode the desired behavior of the robot; therefore their correctness is of the utmost importance. Current manual approaches to creating and adjusting these preference models and cost functions have proven to be incredibly tedious and time-consuming, while typically not producing optimal results except in the sim- plest of circumstances. This thesis presents the development and application of machine learning tech- niques that automate the construction and tuning of preference models within com- plex mobile robotic systems. Utilizing the framework of inverse optimal control, expert examples of robot behavior can be used to construct models that generalize demonstrated preferences and reproduce similar behavior. Novel learning from demonstration approaches are developed that offer the possibility of significantly reducing the amount of human interaction necessary to tune a system, while also improving its final performance. Techniques to account for the inevitability of noisy and imperfect demonstration are presented, along with additional methods for improving the efficiency of expert demonstration and feedback.
    [Show full text]
  • Uncorrected Proof
    JrnlID 10846_ ArtID 9025_Proof# 1 - 14/10/2005 Journal of Intelligent and Robotic Systems (2005) # Springer 2005 DOI: 10.1007/s10846-005-9025-1 Temporal Range Registration for Unmanned 1 j Ground and Aerial Vehicles 2 R. MADHAVAN*, T. HONG and E. MESSINA 3 Intelligent Systems Division, National Institute of Standards and Technology, Gaithersburg, MD 4 20899-8230, USA; e-mail: [email protected], {tsai.hong, elena.messina}@nist.gov 5 (Received: 24 March 2004; in final form: 2 September 2005) 6 Abstract. An iterative temporal registration algorithm is presented in this article for registering 8 3D range images obtained from unmanned ground and aerial vehicles traversing unstructured 9 environments. We are primarily motivated by the development of 3D registration algorithms to 10 overcome both the unavailability and unreliability of Global Positioning System (GPS) within 11 required accuracy bounds for Unmanned Ground Vehicle (UGV) navigation. After suitable 12 modifications to the well-known Iterative Closest Point (ICP) algorithm, the modified algorithm is 13 shown to be robust to outliers and false matches during the registration of successive range images 14 obtained from a scanning LADAR rangefinder on the UGV. Towards registering LADAR images 15 from the UGV with those from an Unmanned Aerial Vehicle (UAV) that flies over the terrain 16 being traversed, we then propose a hybrid registration approach. In this approach to air to ground 17 registration to estimate and update the position of the UGV, we register range data from two 18 LADARs by combining a feature-based method with the aforementioned modified ICP algorithm. 19 Registration of range data guarantees an estimate of the vehicle’s position even when only one of 20 the vehicles has GPS information.
    [Show full text]
  • The SLS-Generated Soft Robotic Hand – an Integrated Approach Using Additive Manufacturing and Reinforcement Learning
    The SLS-generated Soft Robotic Hand – An Integrated Approach using Additive Manufacturing and Reinforcement Learning Arne Rost Corporate Research Festo AG & Co. KG 73734 Esslingen, Germany [email protected] Stephan Schädle Institute for Artificial Intelligence University of Applied Sciences Ravensburg-Weingarten 88250 Weingarten, Germany [email protected] / [email protected] Abstract – To develop a robotic system for a complex task is a time- targeted task execution is trained via Reinforcement Learning, a consuming process. Merging methods available today, a new ap- machine learning approach. Optimization points are subsequently proach for a faster realization of a multi-finger soft robotic hand is derived and fed back into the hardware development. With this presented here. This paper introduces a robotic hand with four Concurrent Engineering strategy a fast development of this robotic fingers and 12 Degrees of Freedom (DoFs) using bellow actuators. hand is possible. The paper outlines the relevant key strategies and The hand is generated via Selective Laser Sintering (SLS), an Additive gives insight into the design process. At the end, the final hand with Manufacturing method. The complex task execution of a specific its capabilities is presented and discussed. action, i.e. the lifting, rotating and precise positioning of a handling- object with this robotic hand, is used to structure the whole develop- Soft Robotic Hand; Reinforcement Learning; Additive Manufacturing; ment process. To validate reliable functionality of the hand from SLS; Concurrent Engineering; Compliant; LearningGripper; the beginning, each development stage is SLS-generated and the I INTRODUCTION Soft robots are one kind of intrinsically safe service robots, which strategies [5, 6].
    [Show full text]